Adaptive anisotropic approximation of multivariate functions by piecewise constants

O. Davydov¹, O. Kozynenko², D. Skorokhodov² ¹Justus-Liebig-Universität Gießen, Gießen, Germany ²Oles Honchar Dnipro National University, Dnipro, Ukraine

> IM-Workshop Bernried, February 19 – 23, 2018

Let $\Omega \subset \mathbb{R}^d$, $d \ge 2$, be a bounded domain.

Partition

A finite collection $\Delta = \{\omega\}$ of subdomains $\omega \subset \Omega$ is called a *partition* of Ω provided that $\omega \cap \omega' = \emptyset$, for any $\omega, \omega' \in \Delta$, $\omega \neq \omega'$, and $\sum_{\omega \in \Delta} |\omega| = |\Omega|$, where $|\cdot|$ is the Lebesgue measure.

Convex partition

A partition Δ is called *convex* if every cell $\omega \in \Delta$ is convex.

For $N \in \mathbb{N}$, denote by \mathfrak{D}_N the set of all convex partitions of Ω comprising *N* cells.

ヘロア 人間 アメヨア 人口 ア

For $1 \leq q \leq \infty$ and $k \in \mathbb{N}$, by $W_q^k(\Omega)$ we denote the standard Sobolev space of functions $f : \Omega \to \mathbb{R}$ endowed with the norm

$$\|f\|_{W^k_q(\Omega)} = \sum_{lpha \in \mathbb{Z}^d_+ \, : \, |lpha| \leqslant k} \|D^lpha f\|_{L_q(\Omega)} \, ,$$

where $\alpha \in \mathbb{Z}_{+}^{d}$ is the multi-index.

(4) E > (4) E > (4)

For $1 \le p \le \infty$, we define the error of the best L_p -approximation of a function $f : \Omega \to \mathbb{R}$ by picewise constant functions on N cells:

$$E_{N}(f)_{p} := \inf_{\Delta \in \mathfrak{D}_{N}} \inf_{s \in \mathcal{S}(\Delta)} \|f - s\|_{L_{p}(\Omega)},$$

where $S(\Delta)$ is the space of functions $s : \Omega \to \mathbb{R}$ constant on every $\omega \in \Delta$.

< 回 > < 回 > < 回 > … 回

History

- Birman M. S., Solomyak M. Z. (1967): for $f \in W_q^1(\Omega)$, $E_N(f)_p = O(N^{-1/d})$ as $N \to \infty$ provided that $\frac{1}{d} + \frac{1}{p} - \frac{1}{q} > 0$
- R. A. DeVore (1990) established that for *f* from Besov space B^α_{q,σ}(Ω), the quantity E_N(*f*)_p behaves as O(N^{-α/d}) as N → ∞ provided that ^α/_d + ¹/_p ¹/_q > 0
- O. Davydov (2012) : $E_N(f)_p = O(N^{-2/(d+1)})$ as $N \to \infty$ for functions $f \in W_p^2(\Omega)$
- O. Davydov (2012) : proved that the saturation order of piecewise constant approximation in L_ρ norm on convex partitions is N^{-2/(d+1)}, and achievable for any f ∈ W²_ρ(Ω).

イロト 不得 とくほ とくほ とうほ

Assume $f \in W_p^2(\Omega)$, $\Omega = (0, 1)^d$. Split Ω into $N_1 = m^d$ cubes $\omega_1, ..., \omega_{N_1}$ of edge length $h = \frac{1}{m}$. Then split each ω_i into N_2 slices ω_{ij} , $j = 1, ..., N_2$, by equidistant hyperplanes orthogonal to the average gradient $h_i := |\omega_i|^{-1} \int_{\omega_i} \nabla f$ on ω_i . Set $\Delta = \{\omega_{ij} : i = 1, ..., N_1, j = 1, ..., N_2\}$, and define the piecewise constant approximation $s_{\Delta}(f) := \sum_{\delta \in \Delta} f_{\delta} \chi_{\delta}$. Clearly, $|\Delta| = N_1 N_2$ and each ω_{ij} is a convex polyhedron with at most 2(d+1) facets.

イロト 不得 とくほ とくほ とうほ

Illustration of the algorithm

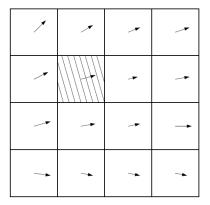


Fig. 1: Demonstration of the algorithm when d=2, m=4. The arrows stand for the average gradients h_i on the cubes ω_i . The cells ω_{ij} are shown only for one cube.

Suppose we are interested in approximation in L_p norm, $1 \le p \le \infty$. Choose $1 \le q < \infty$, such that $\frac{1}{d} + \frac{1}{p} - \frac{1}{q} \ge 0$, and assume that $f \in W_q^1(\Omega), \Omega = (0, 1)^d$. Set $\Delta_0 = \Omega$. While $|\Delta_k| < N$, obtain Δ_{k+1} from Δ_k by the dyadic subdivision of those cubes $\omega \in \Delta_k$, for which

$$egin{aligned} g_lpha(\omega) &\geq 2^{-dlpha} \max_{\omega \in \Delta_k} g_lpha(\omega), \ g_lpha(\omega) &:= |\omega|^lpha |f|^q_{W^1_q(\omega)'} lpha = q \Big(rac{1}{d} + rac{1}{
ho} - rac{1}{q} \Big). \end{aligned}$$

Since $|\Delta_k| < |\Delta_{k+1}|$, the subdivisions terminate at some $\Delta = \Delta_m$ with $|\Delta_m| \ge N$ and $|\Delta_m| = O(N)$. The resulting piecewise constant approximation $s_{\Delta}(f)$ of f is $s_{\Delta}(f) := \sum_{\delta \in \Delta} f_{\delta} \chi_{\delta}$.

(雪) (ヨ) (ヨ)

Illustration of the algorithm

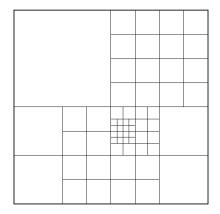


Fig. 2: Dyadic partition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $1 \leq p \leq \infty$ and $1 \leq q \leq \infty$ be such that $\frac{2}{d+1} + \frac{1}{p} - \frac{1}{q} \geq 0$, and let $f \in W_q^2(\Omega)$. Then

$$E_{\mathsf{N}}(f)_{p}\leqslant C(d,p,q){\mathsf{N}}^{-rac{2}{d+1}}\left(\left|f
ight|_{W^{1}_{q}(\Omega)}^{q}+\left|f
ight|_{W^{2}_{q}(\Omega)}^{q}
ight)^{rac{1}{q}}$$
 ,

with the constant C(d, p, q) independent on f. Remark. Condition when $W_q^2(\Omega) \subset L_p(\Omega)$ is $\frac{2}{d} + \frac{1}{p} - \frac{1}{q} \ge 0$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Lemma 1

 $\Phi(\omega)$ – a nonnegative function of sets $\omega \subset \Omega$, subadditive in sence: if set $\{\omega_i\}$ is such, that $\bigcup_i \omega_i = \omega$ and $\omega_i \cap \omega_j = \emptyset$ then $\sum_i \Phi(\omega_i) \le \Phi(\omega)$. Set

$$g_{\alpha}(\omega) := |\omega|^{\alpha} \Phi(\omega), \quad \omega \subset \Omega.$$

 $\{\Delta_k\}_{k=0}^{\infty}$ – sequence of partitions of bounded domain $\Omega \subset \mathbb{R}^d$ into dyadic cubes. $\Delta_0 = \{\Omega\}$. Obtain Δ_{k+1} from Δ_k by one subdivision into 2^d cubes of those cubes $\omega \in \Delta_k$ for which

$$g_{\alpha}(\omega) \ge 2^{-d\alpha} \max_{\omega \in \Delta} g_{\alpha}(\omega).$$

For each $k \ge 1$ split each $\omega_i \in \Delta_k$ into $N_{i,k} \le |\omega_i|^{-\gamma}$ pieces, where $\alpha \ge \gamma$. $N_k := \sum_i N_{i,k}$, then

$$\max_{\omega \in \Delta_k} g_{\alpha}(\omega) \leq C(d, \alpha) N_k^{-\frac{\alpha+1}{\gamma+1}} \Omega^{\frac{\alpha-\gamma}{\gamma+1}} \Phi(\Omega), \quad k = 0, 1, \dots$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Algorithm 1

Let $1 \le p \le \infty$, choose $1 \le q < \infty$, such that $\frac{2}{d+1} + \frac{1}{p} - \frac{1}{q} \ge 0$, and assume $f \in W_q^2(\Omega), \Omega = (0, 1)^d$. Set $\Delta_0 = \Omega$. While $\sum_i |\omega_i|^{-1/d} < N$, obtain Δ_{k+1} from Δ_k by the dyadic subdivision of cubes $\omega \in \Delta_k$, for which

$$g_{\alpha}(\omega) \ge 2^{-d\alpha} \max_{\omega \in \Delta_{k}} g_{\alpha}(\omega), \quad g_{\alpha}(\omega) := |\omega|^{\alpha} \Phi(\omega),$$
$$\alpha = q \left(\frac{2}{d} + \frac{1}{p} - \frac{1}{q} + \frac{1}{dp}\right), \quad \Phi(\omega) := |f|_{W_{q}^{1}(\omega)}^{q} + |f|_{W_{q}^{2}(\omega)}^{q}.$$

The subdivisions terminate at some $\Delta = \Delta_m$. Each cube $\omega_i \in \Delta_m$ split into $|\omega_i|^{-\frac{1}{d}}$ slices by hyperplanes orthogonal to $h_i := |\omega_i|^{-1} \int_{\omega_i} \nabla f dx$ on ω_i , and which make one dimensional dyadic subdivision of cube. The final partition we denote as Δ . The resulting piecewise constant approximation $s_{\Delta}(f)$ of f is $s_{\Delta}(f) := \sum_{\delta \in \Delta} f_{\delta} \chi_{\delta}$.

(個) (日) (日) (日)

Illustration of the algorithm

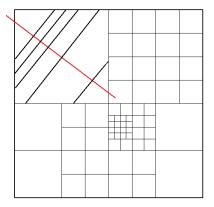


Fig. 3: Demonstration of the algorithm. The cells are shown only for one cube.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $1 \leq p \leq \infty$ and $1 \leq q \leq \infty$ be such that $\frac{2}{d+1} + \frac{1}{p} - \frac{1}{q} < 0$, $\frac{2}{d} - \frac{1}{d^2} + \frac{1}{p} - \frac{1}{q} > 0$ and let $f \in W_q^2(\Omega)$. Then

$$E_N(f)_p \leq C(d, p, q) N^{-d(\frac{2}{d} + \frac{1}{p} - \frac{1}{q})} \left(|f|^q_{W^1_q(\Omega)} + |f|^q_{W^2_q(\Omega)} \right)^{\frac{1}{q}},$$

with the constant C(d, p, q) independent on f.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Lemma 2

 $\Phi(\omega)$ – a nonnegative function of sets $\omega \subset \Omega$, subadditive in sence: if set $\{\omega_i\}$ is such, that $\bigcup_i \omega_i = \omega$ and $\omega_i \cap \omega_j = \emptyset$ then $\sum_i \Phi^{\frac{\gamma}{\alpha}}(\omega_i) \leq \Phi^{\frac{\gamma}{\alpha}}(\omega)$. Set

$$g_{\alpha}(\omega) := |\omega|^{\alpha} \Phi(\omega), \quad \omega \subset \Omega, \quad \alpha < \gamma.$$

 $\{\Delta_k\}_{k=0}^{\infty}$ – sequence of partitions of bounded domain $\Omega \subset \mathbb{R}^d$ into dyadic cubes. $\Delta_0 = \{\Omega\}$. Obtain Δ_{k+1} from Δ_k by one subdivision into 2^d cubes of those cubes $\omega \in \Delta_k$ for which

$$g_{\alpha}(\omega) \ge 2^{-d\alpha} \max_{\omega \in \Delta} g_{\alpha}(\omega).$$

For each $k \ge 1$ split each $\omega_i \in \Delta_k$ into $N_{i,k} \le |\omega_i|^{-\gamma}$ pieces. $N_k := \sum_i N_{i,k}$, then

$$\max_{\omega \in \Delta_k} g_{\alpha}(\omega) \leq C(d, \alpha) N_k^{-\frac{\alpha}{\gamma}} \Phi(\Omega), \quad k = 0, 1, \dots$$

<週 → < 注 → < 注 → … 注