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René Koch

joint work with Hartmut Führ
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Motivation

Signal f ∈ L2(Rd),W k,p(Rd), . . .

Decompose f with respect to elementary building blocks.

This decomposition is based on prior transform of f .

Behind this transform is (in some cases) the action of a group.
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Shearlet groups in dimension 2

The original shearlet group in dimension 2 is given by

H =

{
±
(

a ab

0 a1/2

)
:

a > 0,
b ∈ R

}
=

{
±
(

a 0

0 a1/2

)(
1 b
0 1

)
:

a > 0,
b ∈ R

}
.

Motivation

The anisotropic scaling inherent in the dilation group gives rise to shearlet
systems whose approximation-theoretic properties improve on the classical
wavelets.
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Generalized Shearlet Groups

Let H ≤ GL(d ,R) be an admissible group. H is called generalized shearlet
dilation group if there exist two closed subgroups S ,D ≤ H such that

S is a connected closed abelian subgroup of T (d ,R), where T (d ,R)
is the set of upper triangular matrices with 1 on their diagonal,

D = {exp(rY ) | r ∈ R} for some diagonal matrix Y ,

every h ∈ H can be uniquely written as h = ±ds for some d ∈ D and
s ∈ S .
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Shearlet groups in dimension 3

Standard shearlet group

Hλ :=

±
a 0 0

0 aλ1 0
0 0 aλ2

1 b1 b2

0 1 0
0 0 1

∣∣∣∣∣∣ a > 0,
b1, b2 ∈ R

 < GL(3,R)

for λ := (λ1, λ2) ∈ R2.

Toeplitz shearlet group

Hδ :=

±
a 0 0

0 a1−δ 0
0 0 a1−2δ

1 b1 b2

0 1 b1

0 0 1

∣∣∣∣∣∣ a > 0,
b1, b2 ∈ R

 < GL(3,R)

for δ ∈ R.
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René Koch (RWTH Aachen) Analysis of Shearlet Coorbit Spaces Bernried 2018 7 / 29



Shearlet transform

For a shearlet group H define G := Rd o H with group law

(x , h) ◦ (y , g) = (x + hy , hg)

Unitary representation π of G on L2(Rd)

[π(x , h)ψ](y) = | det(h)|−1/2ψ(h−1(y − x))

For ψ, f ∈ L2(Rd), we define the continuous shearlet transform

Sψf : (x , h) 7→ 〈f , π(x , h)ψ〉

and the associated continuous shearlet system

S(ψ) := {π(x , h)ψ : (x , h) ∈ G}
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Shearlet coorbit spaces

A function 0 6= ψ ∈ L2(Rd) is called admissible shearlet if Sψψ ∈ L2(G ),
i.e. ∫

G
|〈ψ, π(x , h)ψ〉|2 dµG (x , h) <∞.

For an admissible shearlet ψ the map

Sψ : L2(Rd)→ L2(G ), f 7→ Sψf

is a multiple of an isometry, which implies the inversion formula

f =
1

Cψ

∫
G
Sψf (x , h)π(x , h)ψ dµG (x , h).
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Coorbit theory

For measurable, locally bounded, submultiplicative weight v : H → (0,∞)
and p, q ∈ (1,∞) define the weighted mixed Lp,q-norm

‖f ‖Lp,qv
:=

(∫
H

(∫
R3

v(h)p |f (x , h)|p dx
)q/p dh

| det(h)|

)1/q

For a shearlet ψ define the coorbit space norm ‖f ‖Co(Lp,qv ) := ‖Sψf ‖Lp,qv
.

The coorbit space Co
(
Lp,qv (G )

)
is given as completion of{

f ∈ L2(Rd) : Sψf ∈ Lp,qv (G )
}
.

Features of coorbit theory

Consistency: independence of ψ

Discretization: f =
∑

i∈I λi (f )π(gi )ψ
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Shearlet coorbit spaces

Remark (Führ & Voigtlaender)

Different dilation groups can induce the same coorbit space.

Goal

Different shearlet groups induce different shearlet coorbit spaces!

In order to improve our understanding of the associated coorbit spaces

Co
(
Lp,qv (Rd o Hλ)

)
Co
(
Lp,qv (Rd o Hδ)

)
the next aim is to identify them with certain decomposition spaces.
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Decomposition spaces

Definition (decomposition space)

Let p, q ∈ (1,∞), Q = (Qi )i∈I a covering of O and u : I → R>0 a discrete
weight. Then define for a suitable partition of unity (ϕi )i∈I subordinate to
Q the norm

‖f ‖D(Q,Lp ,`qu) =
∥∥∥ (ui · ‖F−1(ϕi f )‖Lp

)
i∈I

∥∥∥
`q

and the space

D(Q, Lp, `qu) =
{
f ∈ D′(O) : ‖f ‖D(Q,Lp ,`qu) <∞

}
Dual action and dual orbit

The dual action is given by H ×Rd → Rd , (h, ξ) 7→ h−tξ and for a shearlet
group this action has a unique open dual orbit H−tξ0 = O = R∗ × Rd−1.
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René Koch (RWTH Aachen) Analysis of Shearlet Coorbit Spaces Bernried 2018 13 / 29



Decomposition spaces

Definition (decomposition space)

Let p, q ∈ (1,∞), Q = (Qi )i∈I a covering of O and u : I → R>0 a discrete
weight. Then define for a suitable partition of unity (ϕi )i∈I subordinate to
Q the norm

‖f ‖D(Q,Lp ,`qu) =
∥∥∥ (ui · ‖F−1(ϕi f )‖Lp

)
i∈I

∥∥∥
`q

and the space

D(Q, Lp, `qu) =
{
f ∈ D′(O) : ‖f ‖D(Q,Lp ,`qu) <∞

}
Dual action and dual orbit

The dual action is given by H ×Rd → Rd , (h, ξ) 7→ h−tξ and for a shearlet
group this action has a unique open dual orbit H−tξ0 = O = R∗ × Rd−1.
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Decomposition spaces

Definition (induced covering)

The family Q = (h−Ti Q)i∈I is a covering of O induced by H if

Q ⊂ O is open with Q ⊂ O compact

The set of elements (hi )i∈I is well-spread in H, i.e.

(hiV )i∈I is pairwise disjoint for a suitable unit neighborhood V ⊂ H
(hiU)i∈I covers H for some relatively compact unit neighborhood
U ⊂ H

Q covers O

Intuition: This covering determines the coorbit/decomposition space
associated to it.

René Koch (RWTH Aachen) Analysis of Shearlet Coorbit Spaces Bernried 2018 14 / 29



Decomposition spaces

Definition (induced covering)

The family Q = (h−Ti Q)i∈I is a covering of O induced by H if

Q ⊂ O is open with Q ⊂ O compact

The set of elements (hi )i∈I is well-spread in H, i.e.

(hiV )i∈I is pairwise disjoint for a suitable unit neighborhood V ⊂ H
(hiU)i∈I covers H for some relatively compact unit neighborhood
U ⊂ H

Q covers O

Intuition: This covering determines the coorbit/decomposition space
associated to it.
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Decomposition spaces

Let Q be a covering induced by H and define the discrete weight
u = (ui )i∈I by

ui := | det(hi )|
1
2
− 1

q v(hi ) for i ∈ I .

Theorem (Führ & Voigtlaender 2014)

The Fourier transform

F : Co(Lp,qv (G ))→ D(Q, Lp, `qu)

is an isomorphism of Banach spaces.
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Rigidity of decomposition spaces

Let Q = (Qi )i∈I and P = (Pj)j∈J be two induced coverings (potentially
induced by different groups!).

Definition (intersection sets)

Define the intersection sets of Q and P for i ∈ I and j ∈ J by

Ij := {i ∈ I : Qi ∩ Pj 6= ∅} and Ji := {j ∈ J : Qi ∩ Pj 6= ∅} .

Definition (weak equivalence)

We call the coverings Q and P weakly equivalent if

sup
j∈J
|Ij | <∞ and sup

i∈I
|Ji | <∞.
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Rigidity of decomposition spaces

Rigidity Theorem (Voigtlaender 2016)

Let Q = (Qi )i∈I and P = (Pj)j∈J be induced coverings,
p1, p2, q1, q2 ∈ (1,∞) and u = (ui )i∈I , u

′ = (u′j)j∈J discrete weights. If

D (Q, Lp1 , `q1
u ) = D

(
P, Lp2 , `q2

u′
)
,

then

1 p1 = p2 and q1 = q2,

2 in the case (p1, q1) 6= (2, 2) the coverings Q,P are weakly equivalent.
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Coarse Geometry

Study of metric spaces from a large scale point of view.

Induced coverings can be used to define a metric on their associated
orbits.

For a metric space (X , d) define the bounded coarse structure on X
as the family of sets

C :=

{
A ⊆ X × X : sup

(x ,y)∈A
d(x , y) <∞

}
.

Weak equivalence of coverings is a property of their coarse structure
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Coarse geometry

Definition (quasi-isometry)

Let (X , dX ), (Y , dY ) be metric spaces. We call a map f : X → Y
quasi-isometric (embedding) if there exist c , d ,C ,D > 0 such that

cdX (x , x ′)− d ≤ dY (f (x), f (x ′)) ≤ CdX (x , x ′) + D

holds for all x , x ′ ∈ X .

coarse equivalence

Let (X , dX ), (Y , dY ) be metric spaces. Then X and Y are coarsely
equivalent if there exist quasi-isometric maps f : X → Y , g : Y → X such
that

sup
x∈X

dX

(
(g ◦ f )(x), x)

)
<∞ and sup

y∈Y
dY

(
(f ◦ g)(y), y)

)
<∞.

Example: (R, | · |) is coarsely equivalent to (Z, | · |).
René Koch (RWTH Aachen) Analysis of Shearlet Coorbit Spaces Bernried 2018 20 / 29
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Coarse geometry

Definition (induced metric on dual orbit)

For an induced covering Q = (Qi )i∈I of an orbit O ⊆ Rn consisting of
relatively compact, open and connected sets, define a metric dQ on O by

dQ(x , y) :=

inf

{
n ∈ N :

∃Qi1 , . . . ,Qin ∈ Q s.t. x ∈ Qi1 ,

y ∈ Qin ,Qij ∩ Qij+1
6= ∅

}
, for x 6= y

0, for x = y .

Definition (induced metric on the group)

For a group H ≤ GL(d ,R) and a relatively compact, symmetric, connected
neighborhood of the identity W ⊂ H, define a metric dW on H by

dW (g , h) :=

{
inf
{
n ∈ N : g−1h ∈W n

}
, for g 6= h

0, for g = h
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Theorem (Führ & K. 2017)

Let Q,P be induced coverings of an orbit O consisting of open connected
sets. Then the following statements are equivalent

1 Q and P are weakly equivalent.

2 id : (O, dQ)→ (O, dP) is a quasi-isometry.

Theorem (Führ & K. 2017)

If H ≤ GL(d ,R) is an admissible group with dual orbit O ⊂ Rd and
ξ ∈ O such that Hξ ⊂ H0, where Hξ = {h ∈ H : h−tξ = ξ} and H0 is the
connected component of E , then the orbit map

pξ : (H, dW )→ (O, dQ), h 7→ h−tξ

is a quasi-isometry.
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Theorem (Führ & K. 2017)

Let Q,P be induced coverings of an orbit O consisting of open connected
sets. Then the following statements are equivalent

1 Q and P are weakly equivalent.

2 id : (O, dQ)→ (O, dP) is a quasi-isometry.
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Overview

1 Introduction: shearlet groups and associated coorbit spaces

2 Coorbit spaces as decomposition spaces

3 Rigidity of decomposition spaces and coarse geometry

4 Comparison of shearlet coorbit spaces
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Standard shearlet group

Hλ :=

±
a 0 0

0 aλ1 0
0 0 aλ2

1 b1 b2

0 1 0
0 0 1

∣∣∣∣∣∣ a > 0,
b1, b2 ∈ R

 < GL(3,R)

for λ := (λ1, λ2) ∈ R2.
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Shearlet groups are admissible with Hξ = {E} for ξ = e1. We get the
following commutative diagram:

(O, dQλ)
(
O, dQλ′

)

(Hλ, dWλ
)

(
Hλ′ , dWλ′

)
id

[
pλ
′
ξ

]−1
pλξ

ϕλ,λ
′

ξ

with ϕλ,λ
′

ξ :=
[
pλ
′
ξ

]−1
◦ id ◦ pλξ .

Lemma (Führ & K. 2017)

The following statements are equivalent

ϕλ,λ
′

ξ is a quasi-isometry.

id : (O, dQλ)→
(
O, dQλ′

)
is a quasi-isometry.
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Application to standard shearlet groups (λ 6= λ′):

Determine sequences (hn)n∈N, (h′n)n∈N in Hλ such that

dWλ
(hn, h

′
n) ≤ K

for some K > 0 and all n ∈ N, but

dWλ′

(
ϕλ,λ

′

ξ (hn), ϕλ,λ
′

ξ (h′n)
)

n→∞−−−→∞.

This implies that ϕλ,λ
′

ξ is not a quasi-isometry.

The coverings Qλ and Qλ′ are not weakly equivalent.

The associated decomposition spaces don’t coincide.

Main point

Different shearlet groups lead to substantially different coverings of the
dual orbit through the dual action. We can show this without actually
computing any covering.
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René Koch (RWTH Aachen) Analysis of Shearlet Coorbit Spaces Bernried 2018 26 / 29



Application to standard shearlet groups (λ 6= λ′):

Determine sequences (hn)n∈N, (h′n)n∈N in Hλ such that

dWλ
(hn, h

′
n) ≤ K

for some K > 0 and all n ∈ N, but

dWλ′

(
ϕλ,λ

′

ξ (hn), ϕλ,λ
′

ξ (h′n)
)

n→∞−−−→∞.

This implies that ϕλ,λ
′

ξ is not a quasi-isometry.

The coverings Qλ and Qλ′ are not weakly equivalent.

The associated decomposition spaces don’t coincide.

Main point

Different shearlet groups lead to substantially different coverings of the
dual orbit through the dual action. We can show this without actually
computing any covering.
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René Koch (RWTH Aachen) Analysis of Shearlet Coorbit Spaces Bernried 2018 26 / 29



Application to standard shearlet groups (λ 6= λ′):

Determine sequences (hn)n∈N, (h′n)n∈N in Hλ such that

dWλ
(hn, h

′
n) ≤ K

for some K > 0 and all n ∈ N, but

dWλ′

(
ϕλ,λ

′

ξ (hn), ϕλ,λ
′

ξ (h′n)
)

n→∞−−−→∞.

This implies that ϕλ,λ
′

ξ is not a quasi-isometry.

The coverings Qλ and Qλ′ are not weakly equivalent.

The associated decomposition spaces don’t coincide.

Main point

Different shearlet groups lead to substantially different coverings of the
dual orbit through the dual action. We can show this without actually
computing any covering.

René Koch (RWTH Aachen) Analysis of Shearlet Coorbit Spaces Bernried 2018 26 / 29



Assume λ1 < λ′1 and let

W ′
λ :=


a ab1 ab2

0 aλ1 0
0 0 aλ2

∣∣∣∣∣∣ 2/3 ≤ a ≤ 4/3
−1 ≤ bi ≤ 1

 ,

then set Wλ := W ′
λ ∪ (W ′

λ)−1 . Furthermore, define an := n for n ∈ N,
b := 1, b′ := 2 and

hn :=

an anb 0
0 aλ1

n 0
0 0 aλ2

n

 , h′n :=

an anb
′ 0

0 aλ1
n 0

0 0 aλ2
n

 .
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Then we get

h−1
n h′n =

1 1 0
0 1 0
0 0 1

 ∈Wλ =⇒ dWλ
(hn, h

′
n) = 1,

and

An :=
[
ϕλ,λ

′

ξ (hn)
]−1

ϕλ,λ
′

ξ (h′n) =

1 a
λ′1−λ1
n 0

0 1 0
0 0 1

 .

Since
∣∣∣aλ′1−λ1

n

∣∣∣ n→∞−−−→∞, the sequence (An)n∈N is not contained in any

relatively compact set.
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H. Führ, F. Voigtlaender (2014)

Wavelet Coorbit Spaces viewed as Decomposition Spaces
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