Analysis of Shearlet Coorbit Spaces

René Koch

joint work with Hartmut Führ

Lehrstuhl A für Mathematik RWTH Aachen University

IM-Workshop 2018 on Signals, Images, and Approximation, February 19 - 23, 2018, Bernried, Germany

- Signal $f \in L^2(\mathbb{R}^d), W^{k,p}(\mathbb{R}^d), \ldots$
- Decompose f with respect to elementary building blocks.
- This decomposition is based on prior transform of f.
- Behind this transform is (in some cases) the action of a group.

Introduction: shearlet groups and associated coorbit spaces

2 Coorbit spaces as decomposition spaces

- 3 Rigidity of decomposition spaces and coarse geometry
- 4 Comparison of shearlet coorbit spaces

Introduction: shearlet groups and associated coorbit spaces

- 2 Coorbit spaces as decomposition spaces
- 3 Rigidity of decomposition spaces and coarse geometry
- 4 Comparison of shearlet coorbit spaces

The original shearlet group in dimension 2 is given by

$$\begin{aligned} H &= \left\{ \pm \left(\begin{array}{cc} a & ab \\ 0 & a^{1/2} \end{array} \right) : \begin{array}{c} a > 0, \\ b \in \mathbb{R} \end{array} \right\} \\ &= \left\{ \pm \left(\begin{array}{cc} a & 0 \\ 0 & a^{1/2} \end{array} \right) \left(\begin{array}{c} 1 & b \\ 0 & 1 \end{array} \right) : \begin{array}{c} a > 0, \\ b \in \mathbb{R} \end{array} \right\}. \end{aligned}$$

Motivation

The anisotropic scaling inherent in the dilation group gives rise to shearlet systems whose approximation-theoretic properties improve on the classical wavelets.

The original shearlet group in dimension 2 is given by

$$\begin{aligned} H &= \left\{ \pm \left(\begin{array}{cc} a & ab \\ 0 & a^{1/2} \end{array} \right) : \begin{array}{c} a > 0, \\ b \in \mathbb{R} \end{array} \right\} \\ &= \left\{ \pm \left(\begin{array}{cc} a & 0 \\ 0 & a^{1/2} \end{array} \right) \left(\begin{array}{c} 1 & b \\ 0 & 1 \end{array} \right) : \begin{array}{c} a > 0, \\ b \in \mathbb{R} \end{array} \right\}. \end{aligned}$$

Motivation

The anisotropic scaling inherent in the dilation group gives rise to shearlet systems whose approximation-theoretic properties improve on the classical wavelets.

The original shearlet group in dimension 2 is given by

$$\begin{aligned} H &= \left\{ \pm \left(\begin{array}{cc} a & ab \\ 0 & a^{1/2} \end{array} \right) : \begin{array}{c} a > 0, \\ b \in \mathbb{R} \end{array} \right\} \\ &= \left\{ \pm \left(\begin{array}{cc} a & 0 \\ 0 & a^{1/2} \end{array} \right) \left(\begin{array}{c} 1 & b \\ 0 & 1 \end{array} \right) : \begin{array}{c} a > 0, \\ b \in \mathbb{R} \end{array} \right\}. \end{aligned}$$

Motivation

The anisotropic scaling inherent in the dilation group gives rise to shearlet systems whose approximation-theoretic properties improve on the classical wavelets.

Let $H \leq \operatorname{GL}(d, \mathbb{R})$ be an admissible group. *H* is called *generalized shearlet dilation group* if there exist two closed subgroups $S, D \leq H$ such that

- S is a connected closed abelian subgroup of T(d, ℝ), where T(d, ℝ) is the set of upper triangular matrices with 1 on their diagonal,
- $D = \{\exp(rY) \mid r \in \mathbb{R}\}$ for some diagonal matrix Y,
- every $h \in H$ can be uniquely written as $h = \pm ds$ for some $d \in D$ and $s \in S$.

Standard shearlet group

$$H_{\lambda} := \left\{ \pm egin{pmatrix} a & 0 & 0 \ 0 & a^{\lambda_1} & 0 \ 0 & 0 & a^{\lambda_2} \end{pmatrix} egin{pmatrix} 1 & b_1 & b_2 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \middle| egin{pmatrix} a > 0, \ b_1, b_2 \in \mathbb{R} \ b_1, b_2 \in \mathbb{R} \end{bmatrix} > \operatorname{GL}(3, \mathbb{R})$$

for
$$\lambda := (\lambda_1, \lambda_2) \in \mathbb{R}^2$$
.

Toeplitz shearlet group

$$H_{\delta} := \left\{ \pm \begin{pmatrix} a & 0 & 0 \\ 0 & a^{1-\delta} & 0 \\ 0 & 0 & a^{1-2\delta} \end{pmatrix} \begin{pmatrix} 1 & b_1 & b_2 \\ 0 & 1 & b_1 \\ 0 & 0 & 1 \end{pmatrix} \middle| \begin{array}{c} a > 0, \\ b_1, b_2 \in \mathbb{R} \\ b_1, b_2 \in \mathbb{R} \end{array} \right\} < \operatorname{GL}(3, \mathbb{R})$$

for $\delta \in \mathbb{R}$.

Standard shearlet group

$$H_{\lambda} := \left\{ \pm egin{pmatrix} a & 0 & 0 \ 0 & a^{\lambda_1} & 0 \ 0 & 0 & a^{\lambda_2} \end{pmatrix} egin{pmatrix} 1 & b_1 & b_2 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \middle| egin{pmatrix} a > 0, \ b_1, b_2 \in \mathbb{R} \ b_1, b_2 \in \mathbb{R} \end{bmatrix} > \operatorname{GL}(3, \mathbb{R})$$

for
$$\lambda := (\lambda_1, \lambda_2) \in \mathbb{R}^2$$
.

Toeplitz shearlet group

$$H_{\delta} := \left\{ \pm egin{pmatrix} a & 0 & 0 \ 0 & a^{1-\delta} & 0 \ 0 & 0 & a^{1-2\delta} \end{pmatrix} egin{pmatrix} 1 & b_1 & b_2 \ 0 & 1 & b_1 \ 0 & 0 & 1 \end{pmatrix} \middle| egin{pmatrix} a > 0, \ b_1, b_2 \in \mathbb{R} \ b_1, b_2 \in \mathbb{R} \end{pmatrix}
ight\} < \mathrm{GL}(3,\mathbb{R})$$

for $\delta \in \mathbb{R}$.

• For a shearlet group H define $G := \mathbb{R}^d \rtimes H$ with group law $(x,h) \circ (y,g) = (x + hy,hg)$

• Unitary representation π of G on $L^2(\mathbb{R}^d)$

 $[\pi(x,h)\psi](y) = |\det(h)|^{-1/2}\psi(h^{-1}(y-x))$

• For $\psi, f \in L^2(\mathbb{R}^d)$, we define the *continuous shearlet transform*

$$\mathcal{S}_{\psi}f:(x,h)\mapsto \langle f,\pi(x,h)\psi\rangle$$

$$\mathcal{S}(\psi) := \{\pi(x,h)\psi : (x,h) \in G\}$$

• For a shearlet group H define $G := \mathbb{R}^d \rtimes H$ with group law

$$(x,h)\circ(y,g)=(x+hy,hg)$$

• Unitary representation π of G on $L^2(\mathbb{R}^d)$

$$[\pi(x,h)\psi](y) = |\det(h)|^{-1/2}\psi(h^{-1}(y-x))$$

• For $\psi, f \in L^2(\mathbb{R}^d)$, we define the *continuous shearlet transform*

$$\mathcal{S}_{\psi}f:(x,h)\mapsto \langle f,\pi(x,h)\psi\rangle$$

$$\mathcal{S}(\psi) := \{\pi(x,h)\psi : (x,h) \in G\}$$

• For a shearlet group H define $G := \mathbb{R}^d \rtimes H$ with group law

$$(x,h)\circ(y,g)=(x+hy,hg)$$

• Unitary representation π of G on $L^2(\mathbb{R}^d)$

$$[\pi(x,h)\psi](y) = |\det(h)|^{-1/2}\psi(h^{-1}(y-x))$$

• For $\psi, f \in L^2(\mathbb{R}^d)$, we define the *continuous shearlet transform* $S_{\psi}f : (x, h) \mapsto \langle f, \pi(x, h)\psi \rangle$

$$\mathcal{S}(\psi) := \{\pi(x,h)\psi : (x,h) \in G\}$$

• For a shearlet group H define $G := \mathbb{R}^d \rtimes H$ with group law

$$(x,h)\circ(y,g)=(x+hy,hg)$$

• Unitary representation π of G on $L^2(\mathbb{R}^d)$

$$[\pi(x,h)\psi](y) = |\det(h)|^{-1/2}\psi(h^{-1}(y-x))$$

• For $\psi, f \in L^2(\mathbb{R}^d)$, we define the *continuous shearlet transform*

$$\mathcal{S}_{\psi}f:(x,h)\mapsto \langle f,\pi(x,h)\psi
angle$$

$$\mathcal{S}(\psi) := \{\pi(x,h)\psi : (x,h) \in G\}$$

A function $0 \neq \psi \in L^2(\mathbb{R}^d)$ is called *admissible shearlet* if $S_{\psi}\psi \in L^2(G)$, i.e.

$$\int_{\mathcal{G}} |\langle \psi, \pi(x,h)\psi \rangle|^2 \, \mathrm{d}\mu_{\mathcal{G}}(x,h) < \infty.$$

For an admissible shearlet ψ the map

$$S_{\psi}: L^2(\mathbb{R}^d) \to L^2(G), \ f \mapsto S_{\psi}f$$

is a multiple of an isometry, which implies the inversion formula

$$f = \frac{1}{C_{\psi}} \int_{\mathcal{G}} S_{\psi} f(x, h) \, \pi(x, h) \psi \, \mathrm{d} \mu_{\mathcal{G}}(x, h).$$

A function $0 \neq \psi \in L^2(\mathbb{R}^d)$ is called *admissible shearlet* if $S_{\psi}\psi \in L^2(G)$, i.e.

$$\int_{\mathcal{G}} |\langle \psi, \pi(x,h)\psi\rangle|^2 \, \mathrm{d}\mu_{\mathcal{G}}(x,h) < \infty.$$

For an admissible shearlet ψ the map

$$S_{\psi}: L^2(\mathbb{R}^d) \to L^2(G), \ f \mapsto S_{\psi}f$$

is a multiple of an isometry, which implies the inversion formula

$$f = \frac{1}{C_{\psi}} \int_{\mathcal{G}} S_{\psi} f(x, h) \pi(x, h) \psi \, \mathrm{d} \mu_{\mathcal{G}}(x, h).$$

For measurable, locally bounded, submultiplicative weight $v : H \to (0, \infty)$ and $p, q \in (1, \infty)$ define the weighted mixed $L^{p,q}$ -norm

$$\|f\|_{L^{p,q}_{v}} := \left(\int_{H} \left(\int_{\mathbb{R}^{3}} v(h)^{p} |f(x,h)|^{p} \mathrm{d}x\right)^{q/p} \frac{\mathrm{d}h}{|\det(h)|}\right)^{1/q}$$

For a shearlet ψ define the coorbit space norm $\|f\|_{\operatorname{Co}(L^{p,q}_v)} := \|\mathcal{S}_{\psi}f\|_{L^{p,q}_v}$. The coorbit space $\operatorname{Co}(L^{p,q}_v(G))$ is given as completion of

$$\left\{f\in L^2(\mathbb{R}^d)\,:\,\mathcal{S}_\psi f\in L^{p,q}_v(G)
ight\}.$$

Features of coorbit theory

- Consistency: independence of ψ
- Discretization: $f = \sum_{i \in I} \lambda_i(f) \pi(g_i) \psi$

For measurable, locally bounded, submultiplicative weight $v : H \to (0, \infty)$ and $p, q \in (1, \infty)$ define the weighted mixed $L^{p,q}$ -norm

$$\|f\|_{L^{p,q}_{v}} := \left(\int_{H} \left(\int_{\mathbb{R}^{3}} v(h)^{p} |f(x,h)|^{p} \mathrm{d}x\right)^{q/p} \frac{\mathrm{d}h}{|\det(h)|}\right)^{1/q}$$

For a shearlet ψ define the coorbit space norm $\|f\|_{\operatorname{Co}(L^{p,q}_{\nu})} := \|\mathcal{S}_{\psi}f\|_{L^{p,q}_{\nu}}$. The coorbit space $\operatorname{Co}(L^{p,q}_{\nu}(G))$ is given as completion of

$$\left\{f\in L^2(\mathbb{R}^d)\,:\,\mathcal{S}_\psi f\in L^{p,q}_{v}(G)
ight\}.$$

Features of coorbit theory

- Consistency: independence of ψ
- Discretization: $f = \sum_{i \in I} \lambda_i(f) \pi(g_i) \psi$

For measurable, locally bounded, submultiplicative weight $v : H \to (0, \infty)$ and $p, q \in (1, \infty)$ define the weighted mixed $L^{p,q}$ -norm

$$\|f\|_{L^{p,q}_{\nu}} := \left(\int_{H} \left(\int_{\mathbb{R}^{3}} \nu(h)^{p} |f(x,h)|^{p} \,\mathrm{d}x\right)^{q/p} \frac{\mathrm{d}h}{|\det(h)|}\right)^{1/q}$$

For a shearlet ψ define the coorbit space norm $\|f\|_{\operatorname{Co}(L^{p,q}_v)} := \|\mathcal{S}_{\psi}f\|_{L^{p,q}_v}$. The *coorbit space* $\operatorname{Co}(L^{p,q}_v(G))$ is given as completion of

$$\left\{f\in L^2(\mathbb{R}^d)\,:\,\mathcal{S}_\psi f\in L^{p,q}_v(G)
ight\}.$$

Features of coorbit theory

- Consistency: independence of ψ
- Discretization: $f = \sum_{i \in I} \lambda_i(f) \pi(g_i) \psi$

For measurable, locally bounded, submultiplicative weight $v : H \to (0, \infty)$ and $p, q \in (1, \infty)$ define the weighted mixed $L^{p,q}$ -norm

$$\|f\|_{L^{p,q}_{\nu}} := \left(\int_{H} \left(\int_{\mathbb{R}^{3}} \nu(h)^{p} |f(x,h)|^{p} \,\mathrm{d}x\right)^{q/p} \frac{\mathrm{d}h}{|\det(h)|}\right)^{1/q}$$

For a shearlet ψ define the coorbit space norm $\|f\|_{\operatorname{Co}(L^{p,q}_v)} := \|\mathcal{S}_{\psi}f\|_{L^{p,q}_v}$. The *coorbit space* $\operatorname{Co}(L^{p,q}_v(G))$ is given as completion of

$$\left\{f\in L^2(\mathbb{R}^d)\,:\,\mathcal{S}_\psi f\in L^{p,q}_v(G)
ight\}.$$

Features of coorbit theory

- Consistency: independence of ψ
- Discretization: $f = \sum_{i \in I} \lambda_i(f) \pi(g_i) \psi$

René Koch (RWTH Aachen)

・ロト ・四ト ・ヨト ・ヨ

For measurable, locally bounded, submultiplicative weight $v: H \to (0,\infty)$ and $p,q \in (1,\infty)$ define the weighted mixed $L^{p,q}$ -norm

$$\|f\|_{L^{p,q}_{\nu}} := \left(\int_{H} \left(\int_{\mathbb{R}^{3}} \nu(h)^{p} |f(x,h)|^{p} \,\mathrm{d}x\right)^{q/p} \frac{\mathrm{d}h}{|\det(h)|}\right)^{1/q}$$

For a shearlet ψ define the coorbit space norm $\|f\|_{\operatorname{Co}(L^{p,q}_v)} := \|\mathcal{S}_{\psi}f\|_{L^{p,q}_v}$. The *coorbit space* $\operatorname{Co}(L^{p,q}_v(G))$ is given as completion of

$$\left\{f\in L^2(\mathbb{R}^d)\,:\,\mathcal{S}_\psi f\in L^{p,q}_v(G)
ight\}.$$

Features of coorbit theory

- Consistency: independence of ψ
- Discretization: $f = \sum_{i \in I} \lambda_i(f) \pi(g_i) \psi$

Remark (Führ & Voigtlaender)

Different dilation groups can induce the same coorbit space.

Goal

Different shearlet groups induce different shearlet coorbit spaces!

In order to improve our understanding of the associated coorbit spaces

•
$$Co\left(L_v^{p,q}(\mathbb{R}^d \rtimes H_\lambda)\right)$$

•
$$Co\left(L_v^{p,q}(\mathbb{R}^d \rtimes H_\delta)\right)$$

the next aim is to identify them with certain decomposition spaces.

Remark (Führ & Voigtlaender)

Different dilation groups can induce the same coorbit space.

Goal

Different shearlet groups induce different shearlet coorbit spaces!

In order to improve our understanding of the associated coorbit spaces

- Co $(L_v^{p,q}(\mathbb{R}^d \rtimes H_\lambda))$
- $Co\left(L_v^{p,q}(\mathbb{R}^d \rtimes H_\delta)\right)$

the next aim is to identify them with certain decomposition spaces.

Remark (Führ & Voigtlaender)

Different dilation groups can induce the same coorbit space.

Goal

Different shearlet groups induce different shearlet coorbit spaces!

In order to improve our understanding of the associated coorbit spaces

- Co $(L_v^{p,q}(\mathbb{R}^d \rtimes H_\lambda))$
- $Co\left(L_{v}^{p,q}(\mathbb{R}^{d} \rtimes H_{\delta})\right)$

the next aim is to identify them with certain decomposition spaces.

Introduction: shearlet groups and associated coorbit spaces

2 Coorbit spaces as decomposition spaces

- 3 Rigidity of decomposition spaces and coarse geometry
- 4 Comparison of shearlet coorbit spaces

Let $p, q \in (1, \infty)$, $Q = (Q_i)_{i \in I}$ a covering of \mathcal{O} and $u : I \to \mathbb{R}^{>0}$ a discrete weight. Then define for a suitable partition of unity $(\varphi_i)_{i \in I}$ subordinate to Q the norm

$$\|f\|_{\mathcal{D}(\mathcal{Q},L^{p},\ell^{q}_{u})} = \left\| \left(u_{i} \cdot \|\mathcal{F}^{-1}(\varphi_{i}f)\|_{L^{p}} \right)_{i \in I} \right\|_{\ell^{q}}$$

and the space

$$\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u) = \left\{ f \in \mathcal{D}'(\mathcal{O}) : \|f\|_{\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u)} < \infty
ight\}$$

Dual action and dual orbit

Let $p, q \in (1, \infty)$, $Q = (Q_i)_{i \in I}$ a covering of \mathcal{O} and $u : I \to \mathbb{R}^{>0}$ a discrete weight. Then define for a suitable partition of unity $(\varphi_i)_{i \in I}$ subordinate to Q the norm

$$\|f\|_{\mathcal{D}(\mathcal{Q},L^{p},\ell^{q}_{u})} = \left\| \left(u_{i} \cdot \|\mathcal{F}^{-1}(\varphi_{i}f)\|_{L^{p}} \right)_{i \in I} \right\|_{\ell^{q}}$$

and the space

$$\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u) = \left\{ f \in \mathcal{D}'(\mathcal{O}) : \|f\|_{\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u)} < \infty
ight\}$$

Dual action and dual orbit

Let $p, q \in (1, \infty)$, $Q = (Q_i)_{i \in I}$ a covering of \mathcal{O} and $u : I \to \mathbb{R}^{>0}$ a discrete weight. Then define for a suitable partition of unity $(\varphi_i)_{i \in I}$ subordinate to Q the norm

$$\|f\|_{\mathcal{D}(\mathcal{Q},L^{p},\ell^{q}_{u})}=\left\|\left(u_{i}\cdot\|\mathcal{F}^{-1}(\varphi_{i}f)\|_{L^{p}}\right)_{i\in I}\right\|_{\ell^{q}}$$

and the space

$$\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u) = \left\{ f \in \mathcal{D}'(\mathcal{O}) : \|f\|_{\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u)} < \infty
ight\}$$

Dual action and dual orbit

Let $p, q \in (1, \infty)$, $Q = (Q_i)_{i \in I}$ a covering of \mathcal{O} and $u : I \to \mathbb{R}^{>0}$ a discrete weight. Then define for a suitable partition of unity $(\varphi_i)_{i \in I}$ subordinate to Q the norm

$$\|f\|_{\mathcal{D}(\mathcal{Q},L^{p},\ell^{q}_{u})}=\left\|\left(u_{i}\cdot\|\mathcal{F}^{-1}(\varphi_{i}f)\|_{L^{p}}\right)_{i\in I}\right\|_{\ell^{q}}$$

and the space

$$\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u) = \left\{ f \in \mathcal{D}'(\mathcal{O}) : \|f\|_{\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u)} < \infty
ight\}$$

Dual action and dual orbit

Let $p, q \in (1, \infty)$, $Q = (Q_i)_{i \in I}$ a covering of \mathcal{O} and $u : I \to \mathbb{R}^{>0}$ a discrete weight. Then define for a suitable partition of unity $(\varphi_i)_{i \in I}$ subordinate to Q the norm

$$\|f\|_{\mathcal{D}(\mathcal{Q},L^{p},\ell^{q}_{u})}=\left\|\left(u_{i}\cdot\|\mathcal{F}^{-1}(\varphi_{i}f)\|_{L^{p}}\right)_{i\in I}\right\|_{\ell^{q}}$$

and the space

$$\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u) = \left\{ f \in \mathcal{D}'(\mathcal{O}) : \|f\|_{\mathcal{D}(\mathcal{Q}, L^p, \ell^q_u)} < \infty
ight\}$$

Dual action and dual orbit

The dual action is given by $H \times \mathbb{R}^d \to \mathbb{R}^d$, $(h,\xi) \mapsto h^{-t}\xi$ and for a shearlet group this action has a unique open dual orbit $H^{-t}\xi_0 = \mathcal{O} = \mathbb{R}^* \times \mathbb{R}^{d-1}$.

René Koch (RWTH Aachen)

The family $Q = (h_i^{-T}Q)_{i \in I}$ is a covering of \mathcal{O} induced by H if

- $Q \subset \mathcal{O}$ is open with $\overline{Q} \subset \mathcal{O}$ compact
- The set of elements $(h_i)_{i \in I}$ is well-spread in H, i.e.
 - $(h_i V)_{i \in I}$ is pairwise disjoint for a suitable unit neighborhood $V \subset H$
 - $(h_i U)_{i \in I}$ covers H for some relatively compact unit neighborhood $U \subset H$

• Q covers O

The family $Q = (h_i^{-T}Q)_{i \in I}$ is a covering of O induced by H if

- $Q \subset \mathcal{O}$ is open with $\overline{Q} \subset \mathcal{O}$ compact
- The set of elements $(h_i)_{i \in I}$ is well-spread in H, i.e.
 - $(h_i V)_{i \in I}$ is pairwise disjoint for a suitable unit neighborhood $V \subset H$
 - $(h_i U)_{i \in I}$ covers H for some relatively compact unit neighborhood $U \subset H$

• Q covers O

The family $Q = (h_i^{-T}Q)_{i \in I}$ is a covering of O induced by H if

- $Q \subset \mathcal{O}$ is open with $\overline{Q} \subset \mathcal{O}$ compact
- The set of elements $(h_i)_{i \in I}$ is well-spread in H, i.e.
 - (h_iV)_{i∈I} is pairwise disjoint for a suitable unit neighborhood V ⊂ H
 (h_iU)_{i∈I} covers H for some relatively compact unit neighborhood U ⊂ H

• Q covers O

The family $Q = (h_i^{-T}Q)_{i \in I}$ is a covering of O induced by H if

- $Q \subset \mathcal{O}$ is open with $\overline{Q} \subset \mathcal{O}$ compact
- The set of elements $(h_i)_{i \in I}$ is well-spread in H, i.e.
 - $(h_i V)_{i \in I}$ is pairwise disjoint for a suitable unit neighborhood $V \subset H$
 - $(h_i U)_{i \in I}$ covers H for some relatively compact unit neighborhood $U \subset H$

• Q covers O

The family $Q = (h_i^{-T}Q)_{i \in I}$ is a covering of \mathcal{O} induced by H if

- $Q \subset \mathcal{O}$ is open with $\overline{Q} \subset \mathcal{O}$ compact
- The set of elements $(h_i)_{i \in I}$ is well-spread in H, i.e.
 - $(h_i V)_{i \in I}$ is pairwise disjoint for a suitable unit neighborhood $V \subset H$
 - $(h_i U)_{i \in I}$ covers H for some relatively compact unit neighborhood $U \subset H$

• Q covers O

The family $Q = (h_i^{-T}Q)_{i \in I}$ is a covering of O induced by H if

- $Q \subset \mathcal{O}$ is open with $\overline{Q} \subset \mathcal{O}$ compact
- The set of elements $(h_i)_{i \in I}$ is well-spread in H, i.e.
 - $(h_i V)_{i \in I}$ is pairwise disjoint for a suitable unit neighborhood $V \subset H$
 - $(h_i U)_{i \in I}$ covers H for some relatively compact unit neighborhood $U \subset H$
- $\bullet \,\, \mathcal{Q} \,\, \text{covers} \,\, \mathcal{O}$
Definition (induced covering)

The family $Q = (h_i^{-T}Q)_{i \in I}$ is a covering of \mathcal{O} induced by H if

- $Q \subset \mathcal{O}$ is open with $\overline{Q} \subset \mathcal{O}$ compact
- The set of elements $(h_i)_{i \in I}$ is well-spread in H, i.e.
 - $(h_i V)_{i \in I}$ is pairwise disjoint for a suitable unit neighborhood $V \subset H$
 - $(h_i U)_{i \in I}$ covers H for some relatively compact unit neighborhood $U \subset H$

• $\mathcal Q$ covers $\mathcal O$

Intuition: This covering *determines* the coorbit/decomposition space associated to it.

Let $\mathcal Q$ be a covering induced by H and define the discrete weight $u=(u_i)_{i\in I}$ by

$$u_i := |\det(h_i)|^{\frac{1}{2} - \frac{1}{q}} v(h_i)$$
 for $i \in I$.

Theorem (Führ & Voigtlaender 2014)

The Fourier transform

$$\mathcal{F}: \mathrm{Co}(L^{p,q}_{\nu}(G)) \to \mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{u})$$

is an isomorphism of Banach spaces.

Let \mathcal{Q} be a covering induced by H and define the discrete weight $u = (u_i)_{i \in I}$ by

$$u_i := |\det(h_i)|^{\frac{1}{2} - \frac{1}{q}} v(h_i) \text{ for } i \in I.$$

Theorem (Führ & Voigtlaender 2014)

The Fourier transform

$$\mathcal{F}: \mathrm{Co}(L^{p,q}_{v}(G)) \to \mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{u})$$

is an isomorphism of Banach spaces.

Introduction: shearlet groups and associated coorbit spaces

2 Coorbit spaces as decomposition spaces

3 Rigidity of decomposition spaces and coarse geometry

4 Comparison of shearlet coorbit spaces

Rigidity of decomposition spaces

Let $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be two induced coverings (potentially induced by different groups!).

Definition (intersection sets)

Define the intersection sets of Q and P for $i \in I$ and $j \in J$ by

 $I_j:=\{i\in I\,:\, Q_i\cap P_j
eq \emptyset\}$ and $J_i:=\{j\in J\,:\, Q_i\cap P_j
eq \emptyset\}$.

Definition (weak equivalence)

We call the coverings $\mathcal Q$ and $\mathcal P$ weakly equivalent if

$$\sup_{j\in J} |I_j| < \infty$$
 and $\sup_{i\in I} |J_i| < \infty$

Let $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be two induced coverings (potentially induced by different groups!).

Definition (intersection sets)

Define the intersection sets of Q and \mathcal{P} for $i \in I$ and $j \in J$ by

 $I_j := \{i \in I : Q_i \cap P_j \neq \emptyset\} \text{ and } J_i := \{j \in J : Q_i \cap P_j \neq \emptyset\}.$

Definition (weak equivalence)

We call the coverings $\mathcal Q$ and $\mathcal P$ weakly equivalent if

$$\sup_{j\in J} |I_j| < \infty ext{ and } \sup_{i\in I} |J_i| < \infty.$$

Let $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be two induced coverings (potentially induced by different groups!).

Definition (intersection sets)

Define the intersection sets of Q and \mathcal{P} for $i \in I$ and $j \in J$ by

 $I_j := \{i \in I : Q_i \cap P_j \neq \emptyset\} \text{ and } J_i := \{j \in J : Q_i \cap P_j \neq \emptyset\}.$

Definition (weak equivalence)

We call the coverings $\mathcal Q$ and $\mathcal P$ weakly equivalent if

$$\sup_{j\in J} |I_j| < \infty \text{ and } \sup_{i\in I} |J_i| < \infty.$$

< ロト < 同ト < ヨト < ヨト

Let $\mathcal{Q} = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be induced coverings,

 $p_1,p_2,q_1,q_2\in(1,\infty)$ and $u=(u_i)_{i\in I},u'=(u'_i)_{j\in J}$ discrete weights. If

$$\mathcal{D}\left(\mathcal{Q}, L^{p_1}, \ell^{q_1}_u\right) = \mathcal{D}\left(\mathcal{P}, L^{p_2}, \ell^{q_2}_{u'}\right),$$

then

•
$$p_1 = p_2$$
 and $q_1 = q_2$,

in the case $(p_1, q_1) \neq (2, 2)$ the coverings \mathcal{Q}, \mathcal{P} are weakly equivalent.

Let $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be induced coverings, $p_1, p_2, q_1, q_2 \in (1, \infty)$ and $u = (u_i)_{i \in I}, u' = (u'_j)_{j \in J}$ discrete weights. If

$$\mathcal{D}\left(\mathcal{Q}, L^{p_1}, \ell^{q_1}_u\right) = \mathcal{D}\left(\mathcal{P}, L^{p_2}, \ell^{q_2}_{u'}\right),$$

then

•
$$p_1 = p_2$$
 and $q_1 = q_2$,

(2) in the case $(p_1, q_1) \neq (2, 2)$ the coverings \mathcal{Q}, \mathcal{P} are weakly equivalent.

Let $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be induced coverings, $p_1, p_2, q_1, q_2 \in (1, \infty)$ and $u = (u_i)_{i \in I}, u' = (u'_j)_{j \in J}$ discrete weights. If

$$\mathcal{D}\left(\mathcal{Q}, L^{p_1}, \ell^{q_1}_u\right) = \mathcal{D}\left(\mathcal{P}, L^{p_2}, \ell^{q_2}_{u'}\right),$$

then

•
$$p_1 = p_2$$
 and $q_1 = q_2$,

In the case $(p_1, q_1) \neq (2, 2)$ the coverings \mathcal{Q}, \mathcal{P} are weakly equivalent.

Let $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be induced coverings, $p_1, p_2, q_1, q_2 \in (1, \infty)$ and $u = (u_i)_{i \in I}, u' = (u'_j)_{j \in J}$ discrete weights. If

$$\mathcal{D}\left(\mathcal{Q}, L^{p_1}, \ell^{q_1}_u\right) = \mathcal{D}\left(\mathcal{P}, L^{p_2}, \ell^{q_2}_{u'}\right),$$

then

1
$$p_1 = p_2$$
 and $q_1 = q_2$,

② in the case $(p_1,q_1)
eq (2,2)$ the coverings \mathcal{Q},\mathcal{P} are weakly equivalent.

Let $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ be induced coverings, $p_1, p_2, q_1, q_2 \in (1, \infty)$ and $u = (u_i)_{i \in I}, u' = (u'_j)_{j \in J}$ discrete weights. If

$$\mathcal{D}\left(\mathcal{Q}, L^{p_1}, \ell^{q_1}_u\right) = \mathcal{D}\left(\mathcal{P}, L^{p_2}, \ell^{q_2}_{u'}\right),$$

then

1
$$p_1 = p_2$$
 and $q_1 = q_2$,

in the case $(p_1, q_1) \neq (2, 2)$ the coverings \mathcal{Q}, \mathcal{P} are weakly equivalent.

• Study of metric spaces from a large scale point of view.

- Induced coverings can be used to define a metric on their associated orbits.
- For a metric space (X, d) define the *bounded coarse structure* on X as the family of sets

$$\mathcal{C} := \left\{ A \subseteq X \times X : \sup_{(x,y) \in A} d(x,y) < \infty \right\}.$$

- Study of metric spaces from a *large scale point of view*.
- Induced coverings can be used to define a metric on their associated orbits.
- For a metric space (X, d) define the *bounded coarse structure* on X as the family of sets

$$\mathcal{C} := \left\{ A \subseteq X \times X : \sup_{(x,y) \in A} d(x,y) < \infty \right\}.$$

- Study of metric spaces from a *large scale point of view*.
- Induced coverings can be used to define a metric on their associated orbits.
- For a metric space (X, d) define the *bounded coarse structure* on X as the family of sets

$$\mathcal{C} := \left\{ A \subseteq X \times X : \sup_{(x,y) \in A} d(x,y) < \infty \right\}.$$

- Study of metric spaces from a *large scale point of view*.
- Induced coverings can be used to define a metric on their associated orbits.
- For a metric space (X, d) define the *bounded coarse structure* on X as the family of sets

$$\mathcal{C} := \left\{ A \subseteq X \times X : \sup_{(x,y) \in A} d(x,y) < \infty \right\}.$$

Definition (quasi-isometry)

Let $(X, d_X), (Y, d_Y)$ be metric spaces. We call a map $f : X \to Y$ quasi-isometric (embedding) if there exist c, d, C, D > 0 such that

$$cd_X(x,x') - d \leq d_Y(f(x),f(x')) \leq Cd_X(x,x') + D$$

holds for all $x, x' \in X$.

coarse equivalence

Let $(X, d_X), (Y, d_Y)$ be metric spaces. Then X and Y are *coarsely* equivalent if there exist quasi-isometric maps $f : X \to Y, g : Y \to X$ such that

$$\sup_{x\in X} d_X\Big((g\circ f)(x),x)\Big) < \infty \quad \text{and} \quad \sup_{y\in Y} d_Y\Big((f\circ g)(y),y)\Big) < \infty.$$

Example: $(\mathbb{R}, |\cdot|)$ is coarsely equivalent to $(\mathbb{Z}, |\cdot|)_{\mathbb{L}}$

Definition (quasi-isometry)

Let $(X, d_X), (Y, d_Y)$ be metric spaces. We call a map $f : X \to Y$ quasi-isometric (embedding) if there exist c, d, C, D > 0 such that

$$cd_X(x,x') - d \leq d_Y(f(x),f(x')) \leq Cd_X(x,x') + D$$

holds for all $x, x' \in X$.

coarse equivalence

Let $(X, d_X), (Y, d_Y)$ be metric spaces. Then X and Y are *coarsely* equivalent if there exist quasi-isometric maps $f : X \to Y$, $g : Y \to X$ such that

$$\sup_{x\in X} d_X\Big((g\circ f)(x),x)\Big) < \infty \quad \text{and} \quad \sup_{y\in Y} d_Y\Big((f\circ g)(y),y)\Big) < \infty.$$

Example: $(\mathbb{R},|\cdot|)$ is coarsely equivalent to $(\mathbb{Z},|\cdot|)$

René Koch (RWTH Aachen)

Analysis of Shearlet Coorbit Spaces

Definition (quasi-isometry)

Let $(X, d_X), (Y, d_Y)$ be metric spaces. We call a map $f : X \to Y$ quasi-isometric (embedding) if there exist c, d, C, D > 0 such that

$$cd_X(x,x') - d \leq d_Y(f(x),f(x')) \leq Cd_X(x,x') + D$$

holds for all $x, x' \in X$.

coarse equivalence

Let $(X, d_X), (Y, d_Y)$ be metric spaces. Then X and Y are *coarsely* equivalent if there exist quasi-isometric maps $f : X \to Y$, $g : Y \to X$ such that

$$\sup_{x\in X} d_X\Big((g\circ f)(x),x)\Big) < \infty \quad \text{and} \quad \sup_{y\in Y} d_Y\Big((f\circ g)(y),y)\Big) < \infty.$$

Example: $(\mathbb{R}, |\cdot|)$ is coarsely equivalent to $(\mathbb{Z}, |\cdot|)$.

Coarse geometry

Definition (induced metric on dual orbit)

For an induced covering $Q = (Q_i)_{i \in I}$ of an orbit $\mathcal{O} \subseteq \mathbb{R}^n$ consisting of relatively compact, open and connected sets, define a metric d_Q on \mathcal{O} by

$$d_{\mathcal{Q}}(x,y) := \begin{cases} \inf \left\{ n \in \mathbb{N} : \begin{array}{l} \exists Q_{i_1}, \dots, Q_{i_n} \in \mathcal{Q} \text{ s.t. } x \in Q_{i_1}, \\ y \in Q_{i_n}, Q_{i_j} \cap Q_{i_{j+1}} \neq \emptyset \end{array} \right\}, & \text{for } x \neq y \\ 0, & \text{for } x = y. \end{cases}$$

Definition (induced metric on the group)

For a group $H \leq \operatorname{GL}(d, \mathbb{R})$ and a relatively compact, symmetric, connected neighborhood of the identity $W \subset H$, define a metric d_W on H by

$$d_W(g,h) := \begin{cases} \inf \left\{ n \in \mathbb{N} : g^{-1}h \in W^n \right\}, & \text{for } g \neq h \\ 0, & \text{for } g = h \end{cases}$$

René Koch (RWTH Aachen)

Coarse geometry

Definition (induced metric on dual orbit)

For an induced covering $Q = (Q_i)_{i \in I}$ of an orbit $\mathcal{O} \subseteq \mathbb{R}^n$ consisting of relatively compact, open and connected sets, define a metric d_Q on \mathcal{O} by

$$d_{\mathcal{Q}}(x,y) := \begin{cases} \inf \left\{ n \in \mathbb{N} : \begin{array}{l} \exists Q_{i_1}, \dots, Q_{i_n} \in \mathcal{Q} \text{ s.t. } x \in Q_{i_1}, \\ y \in Q_{i_n}, Q_{i_j} \cap Q_{i_{j+1}} \neq \emptyset \end{array} \right\}, & \text{for } x \neq y \\ 0, & \text{for } x = y. \end{cases}$$

Definition (induced metric on the group)

For a group $H \leq \operatorname{GL}(d, \mathbb{R})$ and a relatively compact, symmetric, connected neighborhood of the identity $W \subset H$, define a metric d_W on H by

$$d_W(g,h) := egin{cases} \inf \left\{ n \in \mathbb{N} : \ g^{-1}h \in W^n
ight\}, & ext{ for } g
eq h \ 0, & ext{ for } g = h \end{cases}$$

Theorem (Führ & K. 2017)

Let Q, P be induced coverings of an orbit O consisting of open connected sets. Then the following statements are equivalent

- $\textcircled{0} \ \mathcal{Q} \text{ and } \mathcal{P} \text{ are weakly equivalent.}$
- ② id : $(\mathcal{O}, d_{\mathcal{Q}}) \rightarrow (\mathcal{O}, d_{\mathcal{P}})$ is a quasi-isometry.

Theorem (Führ & K. 2017)

If $H \leq \operatorname{GL}(d, \mathbb{R})$ is an admissible group with dual orbit $\mathcal{O} \subset \mathbb{R}^d$ and $\xi \in \mathcal{O}$ such that $H_{\xi} \subset H_0$, where $H_{\xi} = \{h \in H : h^{-t}\xi = \xi\}$ and H_0 is the connected component of E, then the orbit map

$$p_{\xi}: (H, d_W) \to (\mathcal{O}, d_Q), \ h \mapsto h^{-t} \xi$$

is a quasi-isometry.

Theorem (Führ & K. 2017)

Let Q, P be induced coverings of an orbit O consisting of open connected sets. Then the following statements are equivalent

- $\textcircled{O} \ \mathcal{Q} \ \text{and} \ \mathcal{P} \ \text{are weakly equivalent.}$
- ② id : $(\mathcal{O}, d_{\mathcal{Q}}) \rightarrow (\mathcal{O}, d_{\mathcal{P}})$ is a quasi-isometry.

Theorem (Führ & K. 2017)

If $H \leq \operatorname{GL}(d, \mathbb{R})$ is an admissible group with dual orbit $\mathcal{O} \subset \mathbb{R}^d$ and $\xi \in \mathcal{O}$ such that $H_{\xi} \subset H_0$, where $H_{\xi} = \{h \in H : h^{-t}\xi = \xi\}$ and H_0 is the connected component of E, then the orbit map

$$p_{\xi}: (H, d_W) \to (\mathcal{O}, d_Q), \ h \mapsto h^{-t} \xi$$

is a quasi-isometry.

Introduction: shearlet groups and associated coorbit spaces

2 Coorbit spaces as decomposition spaces

3 Rigidity of decomposition spaces and coarse geometry

4 Comparison of shearlet coorbit spaces

Standard shearlet group

$$H_{\lambda} := \left\{ \pm egin{pmatrix} a & 0 & 0 \ 0 & a^{\lambda_1} & 0 \ 0 & 0 & a^{\lambda_2} \end{pmatrix} egin{pmatrix} 1 & b_1 & b_2 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \middle| egin{pmatrix} a > 0, \ b_1, b_2 \in \mathbb{R} \ b_1, b_2 \in \mathbb{R} \end{pmatrix}
ight\} < \mathrm{GL}(3,\mathbb{R})$$

for $\lambda := (\lambda_1, \lambda_2) \in \mathbb{R}^2$.

- E

Shearlet groups are admissible with $H_{\xi} = \{E\}$ for $\xi = e_1$. We get the following commutative diagram:

with
$$\varphi_{\xi}^{\lambda,\lambda'} := \left[p_{\xi}^{\lambda'}\right]^{-1} \circ \text{ id } \circ p_{\xi}^{\lambda}.$$

Lemma (Führ & K. 2017)

The following statements are equivalent

•
$$\varphi_{\xi}^{\lambda,\lambda'}$$
 is a quasi-isometry.

• id : $(\mathcal{O}, d_{\mathcal{Q}_{\lambda}}) \rightarrow (\mathcal{O}, d_{\mathcal{Q}_{\lambda'}})$ is a quasi-isometry.

Shearlet groups are admissible with $H_{\xi} = \{E\}$ for $\xi = e_1$. We get the following commutative diagram:

$$\begin{array}{c} (\mathcal{O}, d_{\mathcal{Q}_{\lambda}}) \xrightarrow{\mathrm{id}} (\mathcal{O}, d_{\mathcal{Q}_{\lambda'}}) \\ \downarrow^{p_{\xi}^{\lambda}} & \downarrow^{\left[p_{\xi}^{\lambda'}\right]^{-1}} \\ (H_{\lambda}, d_{W_{\lambda}}) \xrightarrow{\varphi_{\xi}^{\lambda,\lambda'}} (H_{\lambda'}, d_{W_{\lambda'}}) \end{array}$$

with
$$\varphi_{\xi}^{\lambda,\lambda'} := \left[p_{\xi}^{\lambda'} \right]^{-1} \circ \text{ id } \circ p_{\xi}^{\lambda}.$$

Lemma (Führ & K. 2017)

The following statements are equivalent

•
$$\varphi_{\varepsilon}^{\lambda,\lambda'}$$
 is a quasi-isometry.

• id : $(\mathcal{O}, d_{\mathcal{Q}_{\lambda}}) \rightarrow (\mathcal{O}, d_{\mathcal{Q}_{\lambda'}})$ is a quasi-isometry.

Shearlet groups are admissible with $H_{\xi} = \{E\}$ for $\xi = e_1$. We get the following commutative diagram:

$$\begin{array}{c} (\mathcal{O}, d_{\mathcal{Q}_{\lambda}}) \xrightarrow{\mathrm{id}} (\mathcal{O}, d_{\mathcal{Q}_{\lambda'}}) \\ \downarrow^{p_{\xi}^{\lambda}} & \downarrow^{\left[p_{\xi}^{\lambda'}\right]^{-1}} \\ (H_{\lambda}, d_{W_{\lambda}}) \xrightarrow{\varphi_{\xi}^{\lambda,\lambda'}} (H_{\lambda'}, d_{W_{\lambda'}}) \end{array}$$

with
$$\varphi_{\xi}^{\lambda,\lambda'} := \left[p_{\xi}^{\lambda'} \right]^{-1} \circ \text{ id } \circ p_{\xi}^{\lambda}.$$

Lemma (Führ & K. 2017)

The following statements are equivalent

•
$$\varphi_{\xi}^{\lambda,\lambda'}$$
 is a quasi-isometry.

• $\mathrm{id}: (\mathcal{O}, d_{\mathcal{Q}_{\lambda}}) \rightarrow (\mathcal{O}, d_{\mathcal{Q}_{\lambda'}})$ is a quasi-isometry.

• Determine sequences $(h_n)_{n \in \mathbb{N}}$, $(h'_n)_{n \in \mathbb{N}}$ in H_{λ} such that

 $d_{W_{\lambda}}(h_n, h'_n) \leq K$

for some K > 0 and all $n \in \mathbb{N}$, but

$$d_{W_{\lambda'}}\left(\varphi_{\xi}^{\lambda,\lambda'}(h_n),\varphi_{\xi}^{\lambda,\lambda'}(h'_n)\right)\xrightarrow{n\to\infty}\infty.$$

- \bullet This implies that $\varphi_{\xi}^{\lambda,\lambda'}$ is not a quasi-isometry.
- The coverings \mathcal{Q}_{λ} and $\mathcal{Q}_{\lambda'}$ are not weakly equivalent.
- The associated decomposition spaces don't coincide.

Main point

• Determine sequences $(h_n)_{n\in\mathbb{N}}$, $(h'_n)_{n\in\mathbb{N}}$ in H_λ such that

 $d_{W_{\lambda}}(h_n,h'_n) \leq K$

for some K > 0 and all $n \in \mathbb{N}$, but

$$d_{W_{\lambda'}}\left(\varphi_{\xi}^{\lambda,\lambda'}(h_n),\varphi_{\xi}^{\lambda,\lambda'}(h'_n)\right)\xrightarrow{n\to\infty}\infty.$$

 \bullet This implies that $\varphi_{\xi}^{\lambda,\lambda'}$ is not a quasi-isometry.

- The coverings \mathcal{Q}_{λ} and $\mathcal{Q}_{\lambda'}$ are not weakly equivalent.
- The associated decomposition spaces don't coincide.

Main point

• Determine sequences $(h_n)_{n\in\mathbb{N}}$, $(h'_n)_{n\in\mathbb{N}}$ in H_λ such that

$$d_{W_{\lambda}}(h_n, h'_n) \leq K$$

for some K > 0 and all $n \in \mathbb{N}$, but

$$d_{W_{\lambda'}}\left(\varphi_{\xi}^{\lambda,\lambda'}(h_n),\varphi_{\xi}^{\lambda,\lambda'}(h'_n)\right)\xrightarrow{n\to\infty}\infty.$$

 \bullet This implies that $\varphi_{\xi}^{\lambda,\lambda'}$ is not a quasi-isometry.

- The coverings \mathcal{Q}_{λ} and $\mathcal{Q}_{\lambda'}$ are not weakly equivalent.
- The associated decomposition spaces don't coincide.

Main point

• Determine sequences $(h_n)_{n\in\mathbb{N}}$, $(h'_n)_{n\in\mathbb{N}}$ in H_λ such that

$$d_{W_{\lambda}}(h_n, h'_n) \leq K$$

for some K > 0 and all $n \in \mathbb{N}$, but

$$d_{W_{\lambda'}}\left(\varphi_{\xi}^{\lambda,\lambda'}(h_n),\varphi_{\xi}^{\lambda,\lambda'}(h'_n)\right)\xrightarrow{n\to\infty}\infty.$$

- This implies that $\varphi_{\xi}^{\lambda,\lambda'}$ is not a quasi-isometry.
- The coverings \mathcal{Q}_{λ} and $\mathcal{Q}_{\lambda'}$ are not weakly equivalent.
- The associated decomposition spaces don't coincide.

Main point

• Determine sequences $(h_n)_{n\in\mathbb{N}}$, $(h'_n)_{n\in\mathbb{N}}$ in H_λ such that

$$d_{W_{\lambda}}(h_n, h'_n) \leq K$$

for some K > 0 and all $n \in \mathbb{N}$, but

$$d_{W_{\lambda'}}\left(\varphi_{\xi}^{\lambda,\lambda'}(h_n),\varphi_{\xi}^{\lambda,\lambda'}(h'_n)\right)\xrightarrow{n\to\infty}\infty.$$

- This implies that $\varphi_{\xi}^{\lambda,\lambda'}$ is not a quasi-isometry.
- The coverings \mathcal{Q}_{λ} and $\mathcal{Q}_{\lambda'}$ are not weakly equivalent.

• The associated decomposition spaces don't coincide.

Main point

• Determine sequences $(h_n)_{n\in\mathbb{N}}$, $(h'_n)_{n\in\mathbb{N}}$ in H_λ such that

$$d_{W_{\lambda}}(h_n, h'_n) \leq K$$

for some K > 0 and all $n \in \mathbb{N}$, but

$$d_{W_{\lambda'}}\left(\varphi_{\xi}^{\lambda,\lambda'}(h_n),\varphi_{\xi}^{\lambda,\lambda'}(h'_n)\right)\xrightarrow{n\to\infty}\infty.$$

- This implies that $\varphi_{\xi}^{\lambda,\lambda'}$ is not a quasi-isometry.
- The coverings \mathcal{Q}_{λ} and $\mathcal{Q}_{\lambda'}$ are not weakly equivalent.
- The associated decomposition spaces don't coincide.

Main point

• Determine sequences $(h_n)_{n\in\mathbb{N}}$, $(h'_n)_{n\in\mathbb{N}}$ in H_λ such that

$$d_{W_{\lambda}}(h_n, h'_n) \leq K$$

for some K > 0 and all $n \in \mathbb{N}$, but

$$d_{W_{\lambda'}}\left(\varphi_{\xi}^{\lambda,\lambda'}(h_n),\varphi_{\xi}^{\lambda,\lambda'}(h'_n)\right)\xrightarrow{n\to\infty}\infty.$$

- This implies that $\varphi_{\xi}^{\lambda,\lambda'}$ is not a quasi-isometry.
- The coverings \mathcal{Q}_{λ} and $\mathcal{Q}_{\lambda'}$ are not weakly equivalent.
- The associated decomposition spaces don't coincide.

Main point

Different shearlet groups lead to substantially different coverings of the dual orbit through the dual action. We can show this **without** actually computing any covering.

René Koch (RWTH Aachen)

Analysis of Shearlet Coorbit Spaces

Bernried 2018 26 / 29

Assume $\lambda_1 < \lambda'_1$ and let

$$W_\lambda' := \left\{ egin{array}{cc|c} a & ab_1 & ab_2 \ 0 & a^{\lambda_1} & 0 \ 0 & 0 & a^{\lambda_2} \end{array}
ight| egin{array}{cc|c} 2/3 \leq a \leq 4/3 \ -1 \leq b_i \leq 1 \end{array}
ight\},$$

then set $W_{\lambda} := W'_{\lambda} \cup (W'_{\lambda})^{-1}$. Furthermore, define $a_n := n$ for $n \in \mathbb{N}$, b := 1, b' := 2 and

$$h_n := \begin{pmatrix} a_n & a_n b & 0 \\ 0 & a_n^{\lambda_1} & 0 \\ 0 & 0 & a_n^{\lambda_2} \end{pmatrix}, \quad h'_n := \begin{pmatrix} a_n & a_n b' & 0 \\ 0 & a_n^{\lambda_1} & 0 \\ 0 & 0 & a_n^{\lambda_2} \end{pmatrix}$$
Assume $\lambda_1 < \lambda'_1$ and let

$$W_\lambda' := \left\{ \left. egin{pmatrix} a & ab_1 & ab_2 \ 0 & a^{\lambda_1} & 0 \ 0 & 0 & a^{\lambda_2} \end{pmatrix}
ight| egin{array}{c} 2/3 \leq a \leq 4/3 \ -1 \leq b_i \leq 1 \ -1 \leq b_i \leq 1 \end{array}
ight\},$$

then set $W_{\lambda} := W'_{\lambda} \cup (W'_{\lambda})^{-1}$. Furthermore, define $a_n := n$ for $n \in \mathbb{N}$, b := 1, b' := 2 and

$$h_n := \begin{pmatrix} a_n & a_n b & 0 \\ 0 & a_n^{\lambda_1} & 0 \\ 0 & 0 & a_n^{\lambda_2} \end{pmatrix}, \quad h'_n := \begin{pmatrix} a_n & a_n b' & 0 \\ 0 & a_n^{\lambda_1} & 0 \\ 0 & 0 & a_n^{\lambda_2} \end{pmatrix}.$$

Then we get

$$h_n^{-1}h'_n = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \in W_\lambda \Longrightarrow d_{W_\lambda}(h_n, h'_n) = 1,$$

and

$$A_n := \left[\varphi_{\xi}^{\lambda,\lambda'}(h_n)\right]^{-1} \varphi_{\xi}^{\lambda,\lambda'}(h'_n) = \begin{pmatrix} 1 & a_n^{\lambda'_1 - \lambda_1} & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Since $\left|a_{n}^{\lambda'_{1}-\lambda_{1}}\right| \xrightarrow{n \to \infty} \infty$, the sequence $(A_{n})_{n \in \mathbb{N}}$ is not contained in any relatively compact set.

Then we get

$$h_n^{-1}h'_n = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \in W_\lambda \Longrightarrow d_{W_\lambda}(h_n, h'_n) = 1,$$

and

$$A_n := \left[\varphi_{\xi}^{\lambda,\lambda'}(h_n)\right]^{-1} \varphi_{\xi}^{\lambda,\lambda'}(h'_n) = \begin{pmatrix} 1 & a_n^{\lambda'_1-\lambda_1} & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Since $\left|a_n^{\lambda_1'-\lambda_1}\right| \xrightarrow{n \to \infty} \infty$, the sequence $(A_n)_{n \in \mathbb{N}}$ is not contained in any relatively compact set.

Then we get

$$h_n^{-1}h'_n = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \in W_\lambda \Longrightarrow d_{W_\lambda}(h_n, h'_n) = 1,$$

and

$$A_n := \left[\varphi_{\xi}^{\lambda,\lambda'}(h_n)\right]^{-1} \varphi_{\xi}^{\lambda,\lambda'}(h'_n) = \begin{pmatrix} 1 & a_n^{\lambda'_1-\lambda_1} & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Since $|a_n^{\lambda_1'-\lambda_1}| \xrightarrow{n \to \infty} \infty$, the sequence $(A_n)_{n \in \mathbb{N}}$ is not contained in any relatively compact set.

References

- G. Alberti, S. Dahlke, F. de Mari, E. de Vito, H. Führ (2016) Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings
- S. Dahlke, G. Kutyniok, G. Steidl, G. Teschke (2009) Shearlet Coorbit Spaces and associated Banach frames
- J. Roe (2003)

Lectures on Coarse Geometry

H. Führ, F. Voigtlaender (2014)

Wavelet Coorbit Spaces viewed as Decomposition Spaces

H. Führ and RK (2017)

Analysis of shearlet coorbit spaces in dimension three (SampTA2017)

F. Voigtlaender (2016)

Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces

F. Voigtlaender (2016)

Embeddings of decomposition spaces