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Prony's Problem

Consider an exponential sum
M
_ L A2miyjx
f(x) = E cje "I,
j=1

o Yi={y€[0,1) : j=1,...,M} are the frequencies of f
@ ¢j # 0 the corresponding coefficients
@ M is called order of £
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Prony's Problem

Consider an exponential sum
M
_ L A2miyjx
f(x) = E cje "I,
j=1

o Yi={y€[0,1) : j=1,...,M} are the frequencies of f
@ ¢j # 0 the corresponding coefficients
@ M is called order of £

Prony’s Problem

Given 2M samples f(k), k =0,...2M — 1, determine f's
frequencies and their coefficients.

Often, 2N samples are given, N > M and M is unkown.
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Sparse Model

Let
M .
S=Y ge¥™* : geC, yel0,1), MeEN
j=1

and the sampling operator
Prn S — CNVHL Py (f) = (F(K))k<n-

We denote the (unknown) ground truth by f. The inverse problem

Find f € S with Py(f) = Pn(F)

has infinitely many solutions (for every N).

Model assumption: f is the sparsest solution (always true if
N> M).

Warning: S is not even a normed space!
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Compressed Sensing

Want: Stable recovery guarantees! Quite similar to compressed
sensing, so let us recall some ideas...

Reminder: Let ¥ € RN be an s-sparse vector. Consider
ARV S RM x i Ax = Ax
Now assume that N > M. Then
Find x € RV with Ax = A%

has infinitely many solutions. But for special A we can recover X!
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Compressed Sensing

Want: Stable recovery guarantees! Quite similar to compressed
sensing, so let us recall some ideas...

Reminder: Let X € RN be an s-sparse vector. Consider
ARV S RM x5 Ax = Ax
Now assume that N > M. Then
Find x € RV with Ax = A%

has infinitely many solutions. But for special A we can recover X!

Example: We pick z, ..., zy pairwise distinct and
) |
A= .. c C2s><N
zl25 . z,%f

If x # y are s-sparse, A(x — y) # 0. But this is not very stable.
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Compressed Sensing

Want: Stable recovery guarantees! Quite similar to compressed
sensing, so let us recall some ideas...

Reminder: Let ¥ € RN be an s-sparse vector. Consider
ARV S RM x i Ax = Ax
Now assume that N > M. Then
Find x € RV with Ax = A%

has infinitely many solutions. But for special A we can recover X!

Definition: A is said to have the restricted isometric property of
order 2s, if

(1= 0)Ix[13 < [1Ax]I3 < (1 +8)lx]13

for all 2s-sparse x € RN and a constant § < 1.
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Compressed Sensing: Stability

Now assume that X is s-sparse and that A satisfies the RIP of order
2s. Let x be s-sparse and

Ax = AX + <.
Then, because x — X is 2s-sparse,

lel13
1-6

Conclusion: Every solution to the noisy problem satisfying our
model assumption is close to the ground truth!

Ix = %13 <
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Compressed Sensing: Stability

Now assume that X is s-sparse and that A satisfies the RIP of order
2s. Let x be s-sparse and

Ax = AX + <.
Then, because x — X is 2s-sparse,

lel13
1-6

Conclusion: Every solution to the noisy problem satisfying our
model assumption is close to the ground truth!

If

Ix = %13 <

lell2
1-6

Xminy Xmin >

we have supp x = supp X and the error is due to solving an
overdetermined linear system with a perturbed rhs.
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RIP of Py

Question: Does our sampling operator Py satisfies some kind of
RIP?
Let f € S be given by

M
f(X) _ Z Cje27riyj-x.
j=1
Assume that |y; — yk|T > q. Here, we consider the wrap-around
distance
—Z|lr:=min|ly —z—k
y =zl := miny
Example:

0.7 - 0.1|p = 0.4

We denote by gr the largest g for which |y; — yk|t > q and use the
notation

g ={feS : qgr > q}.
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RIP of Py

Question: Does our sampling operator Py satisfies some kind of
RIP?
Let f € S be given by

M .
f(x) = Z cje?™ix,
j=1

Assume that |y; — yk|T > q. Then, if N is sufficiently large,

(L= 0)lell3 < IPu(FIIF < (1 +)ell3.
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RIP of Py

Question: Does our sampling operator Py satisfies some kind of
RIP?
Let f € S be given by

M .
f(x) = Z cje?™ix,
j=1

Assume that |y; — yk|T > q. Then, if N is sufficiently large,

(1 =d)ell3 < IPu(DIE < (1 +8)llcll3-
The model assumption of g-separated frequencies + this property
does not give rise to a stability guarantee!

Problem: f,f q-separated does not say anything about the
separation of f — f.

In this talk, we overcome this difficulty and prove stability.
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Stable Reconstruction

Consider
M .
chez’”yf'x :¢eC, y€[0,1), MeN

and the sampling operator

Prn S — CNHL Py (f) = (F(K))jk<n-
Want: If f, g € S satisfy

IPn(f —g)llo <1 = f,g aresimilar.
Here, similar should imply

du(Y', Y€)= L
( )= max{max min |y - Y'lr, Jnax, min ly - Y}t <
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Limits of Reconstruction

Several problems arise:
IPn(ee®™) |13 S €2,

hence ||Pn(f — g)||2 has to be small compared to the smallest
coefficient of f, g. Modulus of smallest coefficient: cmjn.
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IPn(ee®™) |13 S €2,

hence ||Pn(f — g)||2 has to be small compared to the smallest
coefficient of f, g. Modulus of smallest coefficient: cmjn.

[P (2T 0itelx — 2m%X) 13 = Op(e?) for e — 0,

thus "clustered” frequencies are problematic.
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Limits of Reconstruction

Several problems arise:
IPn(ee®™) |13 S €2,

hence ||Pn(f — g)||2 has to be small compared to the smallest
coefficient of f, g. Modulus of smallest coefficient: cmjn.

[P (2T 0itelx — 2m%X) 13 = Op(e?) for e — 0,

thus "clustered” frequencies are problematic. Actually, a much
stronger result holds, which confirms the need for separation.

Theorem (Moitra, 2015, Informal)

If N < (1—¢)/q, then two exponential sums f, g € Sq with k
frequencies exists, where we need a noise level smaller than 27(k)
to distinguish them.

Further, this result holds even true if we assume that we measure
f(k) + ni where 7y are independent Gaussian random variables.
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Main Theorem

Main Question

Given f,g € Sy with |Pn(f — g)||I3 < 1 and cmin > 1, are their
frequencies Y and Y% close?

Theorem (D., Iske 2017)
Let f, g € Saq be given, where 1/q < N. If

|Pn(f — g) % Z (k) — 2 < Ncmm
k=—N

we have that for any y € Y only one n(y) € Y& with
ly — n(y)|r < q exists and

N
ANl (A, YD by + 5 O Loy — ca P < Pl — &)
yeyYf
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Discussion

@ The condition

N

Z ‘f(k)_g(k” <Ncmln

k=—N

is, up to a constant, an optimal, necessary condition. Indeed,
for g(x) = f(x) + cmin€®™™, we obtain

Z |F(K) = g(k)I* = (2N + 1)cp.-

k=—N
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Discussion

@ The condition

N

Z ‘f(k)_g(k” <Ncmln

k=—N

is, up to a constant, an optimal, necessary condition. Indeed,
for g(x) = f(x) + cmin€®™™, we obtain

Z |F(k) — g(K)[? = (2N + 1)
k=—N

o If we have only f"(k) = f(k) + noise(k), we can estimate
IPn(f —g)lI3 by |Pn(f" — g)||5+ some noise term,
depending on the noise model.

@ What about the rate given?
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Optimal Rates

N
aN* il (d(ys YE) I35y +§Z ¢y — ni)|? < IIPu(F — g)II5-
yeyf

The rate in ¢ is optimal:

N
. .12
3 ‘ce%'«vk —(c+C2)e27”yk‘ = (2N +1)|c[%.
k=—N
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Optimal Rates

N
ANl Yy Iy + 3 3 ley — cainl? < [Pu(F — £)13
yeyf

The rate in d(y, Y¥) not:

N
§ ‘e27nyk _ e27r/(y+€)k ~ N3&2

k=—N

‘ 2
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Optimal Rates

N
ANl Yy Iy + 3 3 ley — cainl? < [Pu(F — £)13
yeyf

The rate in d(y, Y¥) not:

N
. . 2
§ ‘e27nyk _ eZm(y—s—s)k‘ ~ N3&2
k=—N

Corollary (D., Iske 2018)

Let f, g € Syq be given, where 2/q < N.
If |Pn(f — &)l < cinN/8 we have

TN3(I(d(y, Y&yl gy ry < IPn(F — )13
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Numerical Example

We give a simple numerical example, where we choose
Y =9, qr ~ 0.1, ¢ =1VyevYh

We take noisy samples, apply ESPRIT and obtain an exponential
sum f€.
Then we compare

N 1/2
¢?-Data Error : ( Z |f(k) — fe(k)|2>

1/2
¢>-Frequency Error : ( Z (d(y, Yf))2)
yeyre

. N
Error Indicator:  4N*cZi[I(d(y, Y&))y 35y r) +EZ ¢y — Cagy)?
yeyf

Replacing f(k) by f(k) + noise(k) chances almost nothing.
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Observed Rate

=

o
b
T

12 Frequency Error
N
o
&
T

10°F

107
10° 10 10° 102 10! 10° 10t 10?

12 Data Error

Blue: N =10, Red: N =100
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Error Indicato

Error Indicator (Frequency+Coefficients)

Cnef i e il e e e il e v e il e
10° 10° 10 102 10° 102 10°
17 Data Error
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Numerical Experiments
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Error Indicator (Frequency+Coefficients)

109 10 107 10° 102 10°
17 Data Error
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2nd Example

Now we pick a function f € S, perturb its frequencies, calculate
least-squares coefficient and compare ¢?-error and our estimate.

) I
10 109 109 10 102 10° 10
17 Data Error
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Conclusion

@ Prony’s problem is a sparse reconstruction problem

@ Using a 'well-separated frequency’ prior, we have an analog to
the Restricted Isometric Property

@ This gives rise to conditional well-posedness and a-posteriori
error estimates

@ The given estimates are asymptotically optimal

@ In higher dimensions, a similar result holds true, however more
technical and not optimal
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Conclusion

@ Prony’s problem is a sparse reconstruction problem

@ Using a 'well-separated frequency’ prior, we have an analog to
the Restricted Isometric Property

@ This gives rise to conditional well-posedness and a-posteriori
error estimates

@ The given estimates are asymptotically optimal

@ In higher dimensions, a similar result holds true, however more
technical and not optimal

Thank you for your attention!
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