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Prony's Problem

Consider an exponential sum

f (x) =
M∑
j=1

cje
2πiyjx .

Y f = {yj ∈ [0, 1) : j = 1, . . . ,M} are the frequencies of f

cj 6= 0 the corresponding coe�cients

M is called order of f

Prony's Problem

Given 2M samples f (k), k = 0, . . . 2M − 1, determine f 's
frequencies and their coe�cients.

Often, 2N samples are given, N ≥ M and M is unkown.
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Sparse Model

Let

S =


M∑
j=1

cje
2πiyjx : cj ∈ C, yj ∈ [0, 1), M ∈ N


and the sampling operator

PN : S → C2N+1, PN(f ) = (f (k))|k|≤N .

We denote the (unknown) ground truth by f̃ . The inverse problem

Find f ∈ S with PN(f ) = PN(f̃ )

has in�nitely many solutions (for every N).

Model assumption: f̃ is the sparsest solution (always true if

N ≥ M).

Warning: S is not even a normed space!
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Compressed Sensing

Want: Stable recovery guarantees! Quite similar to compressed

sensing, so let us recall some ideas...

Reminder: Let x̃ ∈ RN be an s-sparse vector. Consider

A : RN → RM , x 7→ Ax = Ax

Now assume that N � M. Then

Find x ∈ RN with Ax = Ax̃

has in�nitely many solutions. But for special A we can recover x̃!

De�nition: A is said to have the restricted isometric property of

order 2s, if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1+ δ)‖x‖22

for all 2s-sparse x ∈ RN and a constant δ < 1.
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Compressed Sensing: Stability

Now assume that x̃ is s-sparse and that A satis�es the RIP of order

2s. Let x be s-sparse and

Ax = Ax̃ + ε.

Then, because x − x̃ is 2s-sparse,

‖x − x̃‖22 ≤
‖ε‖22
1− δ

.

Conclusion: Every solution to the noisy problem satisfying our

model assumption is close to the ground truth!

If

xmin, x̃min >
‖ε‖2√
1− δ

we have supp x = supp x̃ and the error is due to solving an

overdetermined linear system with a perturbed rhs.
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RIP of PN

Question: Does our sampling operator PN satis�es some kind of

RIP?

Let f ∈ S be given by

f (x) =
M∑
j=1

cje
2πiyj ·x .

Assume that |yj − yk |T ≥ q. Here, we consider the wrap-around

distance

|y − z |T := min
k∈Z
|y − z − k|

Example:

|0.7− 0.1|T = 0.4

We denote by qf the largest q for which |yj − yk |T ≥ q and use the

notation

Sq = {f ∈ S : qf ≥ q}.
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RIP of PN

Question: Does our sampling operator PN satis�es some kind of

RIP?

Let f ∈ S be given by

f (x) =
M∑
j=1

cje
2πiyj ·x .

Assume that |yj − yk |T ≥ q. Then, if N is su�ciently large,

(1− δ)‖c‖22 ≤ ‖PN(f )‖22 ≤ (1+ δ)‖c‖22.

The model assumption of q-separated frequencies + this property

does not give rise to a stability guarantee!

Problem: f , f̃ q-separated does not say anything about the

separation of f − f̃ .

In this talk, we overcome this di�culty and prove stability.
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Stable Reconstruction

Consider

S =


M∑
j=1

cje
2πiyj ·x : cj ∈ C, yj ∈ [0, 1), M ∈ N


and the sampling operator

PN : S → C2N+1, PN(f ) = (f (k))|k|≤N .

Want: If f , g ∈ S satisfy

‖PN(f − g)‖2 � 1 ⇒ f , g are similar.

Here, similar should imply

dH(Y
f ,Y g ) = max{max

y∈Y f
min
y ′∈Y g

|y − y ′|T, max
y ′∈Y g

min
y∈Y f

|y − y ′|T} � 1.
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Limits of Reconstruction

Several problems arise:

‖PN(εe2πiyjx)‖22 .N ε2,

hence ‖PN(f − g)‖2 has to be small compared to the smallest

coe�cient of f , g . Modulus of smallest coe�cient: cmin.

‖PN(e2πi(yj+ε)x − e2πiyjx)‖22 = ON(ε
2) for ε→ 0,

thus �clustered� frequencies are problematic. Actually, a much

stronger result holds, which con�rms the need for separation.

Theorem (Moitra, 2015, Informal)

If N < (1− ε)/q, then two exponential sums f , g ∈ Sq with k
frequencies exists, where we need a noise level smaller than 2−Ω(εk)

to distinguish them.

Further, this result holds even true if we assume that we measure

f (k) + ηk where ηk are independent Gaussian random variables.



Introduction Prony and the RIP Numerical Experiments

Limits of Reconstruction

Several problems arise:

‖PN(εe2πiyjx)‖22 .N ε2,

hence ‖PN(f − g)‖2 has to be small compared to the smallest

coe�cient of f , g . Modulus of smallest coe�cient: cmin.

‖PN(e2πi(yj+ε)x − e2πiyjx)‖22 = ON(ε
2) for ε→ 0,

thus �clustered� frequencies are problematic.

Actually, a much

stronger result holds, which con�rms the need for separation.

Theorem (Moitra, 2015, Informal)

If N < (1− ε)/q, then two exponential sums f , g ∈ Sq with k
frequencies exists, where we need a noise level smaller than 2−Ω(εk)

to distinguish them.

Further, this result holds even true if we assume that we measure

f (k) + ηk where ηk are independent Gaussian random variables.



Introduction Prony and the RIP Numerical Experiments

Limits of Reconstruction

Several problems arise:

‖PN(εe2πiyjx)‖22 .N ε2,

hence ‖PN(f − g)‖2 has to be small compared to the smallest

coe�cient of f , g . Modulus of smallest coe�cient: cmin.

‖PN(e2πi(yj+ε)x − e2πiyjx)‖22 = ON(ε
2) for ε→ 0,

thus �clustered� frequencies are problematic. Actually, a much

stronger result holds, which con�rms the need for separation.

Theorem (Moitra, 2015, Informal)

If N < (1− ε)/q, then two exponential sums f , g ∈ Sq with k
frequencies exists, where we need a noise level smaller than 2−Ω(εk)

to distinguish them.

Further, this result holds even true if we assume that we measure

f (k) + ηk where ηk are independent Gaussian random variables.



Introduction Prony and the RIP Numerical Experiments

Main Theorem

Main Question

Given f , g ∈ Sq with ‖PN(f − g)‖22 � 1 and cmin & 1, are their

frequencies Y f and Y g close?

Theorem (D., Iske 2017)

Let f , g ∈ S2q be given, where 1/q ≤ N. If

‖PN(f − g)‖22 =
N∑

k=−N
|f (k)− g(k)|2 < Nc2min

we have that for any y ∈ Y f only one n(y) ∈ Y g with

|y − n(y)|T < q exists and

4N4c2min‖(d(y ,Y g ))y‖3`3(Y f ) +
N

2

∑
y∈Y f

|cy − cn(y)|2 ≤ ‖PN(f − g)‖22.
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Discussion

The condition

N∑
k=−N

|f (k)− g(k)|2 < Nc2min

is, up to a constant, an optimal, necessary condition. Indeed,

for g(x) = f (x) + cmine
2πixy , we obtain

N∑
k=−N

|f (k)− g(k)|2 = (2N + 1)c2min.

If we have only f n(k) = f (k) + noise(k), we can estimate

‖PN(f − g)‖22 by ‖PN(f n − g)‖22+ some noise term,

depending on the noise model.

What about the rate given?
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Optimal Rates

4N4c2min‖(d(y ,Y g ))y‖3`3(Y f ) +
N

2

∑
y∈Y f

|cy − cn(y)|2 ≤ ‖PN(f − g)‖22.

The rate in c is optimal:

N∑
k=−N

∣∣∣ce2πiyk − (c + c2)e
2πiyk

∣∣∣2 = (2N + 1)|c2|2.

Corollary (D., Iske 2018)

Let f , g ∈ S2q be given, where 2/q ≤ N.

If ‖PN(f − g)‖22 ≤ c2minN/8 we have

πN3‖(d(y ,Y g ))y‖2`2(Y f ) ≤ ‖PN(f − g)‖22
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Numerical Example

We give a simple numerical example, where we choose

|Y f | = 9, qf ≈ 0.1, cy = 1 ∀y ∈ Y f .

We take noisy samples, apply ESPRIT and obtain an exponential

sum f e .
Then we compare

`2-Data Error :

(
N∑

k=−N
|f (k)− f e(k)|2

)1/2

`2-Frequency Error :
(∑
y∈Y f e

(d(y ,Y f ))2
)1/2

Error Indicator : 4N4c2min‖(d(y ,Y g ))y‖3`3(Y f ) +
N

2

∑
y∈Y f

|cy − cn(y)|2

Replacing f (k) by f (k) + noise(k) chances almost nothing.
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Observed Rate
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Error Indicator
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2nd Example

Now we pick a function f ∈ Sq, perturb its frequencies, calculate

least-squares coe�cient and compare `2-error and our estimate.
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Conclusion

Prony's problem is a sparse reconstruction problem

Using a 'well-separated frequency' prior, we have an analog to

the Restricted Isometric Property

This gives rise to conditional well-posedness and a-posteriori

error estimates

The given estimates are asymptotically optimal

In higher dimensions, a similar result holds true, however more

technical and not optimal

Thank you for your attention!
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