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What Is a Wavelet?

o Let p = (¢1,...,0,)T and ¢ = (W1, ..., 0s)T in Lr(R).

@ A system is derived from ¢, v via dilates and integer shifts:
ASo(6;0) :={(- — k) : k€ Z}U
(W = D22 —k) : jENU{0}, k € Z}.

o {¢;1} is called an orthogonal wavelet in Ly(R) if ASo(¢; ) is
an orthonormal basis of L(R).

@ Wavelet representation:

F=> (f.¢(-—k)o(-— k) +ZZ WOk, € Ly(R),

keZ Jj=0 keZ

where (f, g) fR dx is the inner product. ﬁ

Bin Han (University of Alberta) Derivative-Orthogonal Multiwavelets Bernried 2 /46



Dilates and Shifts of a Wavelet

el 12128 g

it 10:16 1
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Riesz Wavelets in Sobolev Spaces

@ For 7 € R, the Sobolev space H"(R) consists of all tempered
distributions f satisfying

1B = 5 [ PP+ 6Py de < o
For me NU {0}, f € H"(R) if £, ..., f(M € L,(R).
@ For ¢ = (¢1,...,0,)" and @/} (@Dl,...,@D,)T, we define
ASG () ={o(- — k) : k e Z} U {2f(%—7)¢(2j .—k):ke Z}j’io

o {¢;1} is a Riesz wavelet in the Sobolev space H™(R) if
AS{(¢; 1) is Riesz basis for H™(IR): the linear span of ASj(¢; )
is dense in H™(IR) and there exist C;, G, > 0 such that

S S e

heAST (6i)) heASE (¢i1h) hEAST (i)
for all finitely supported sequences {cx}heass (4:v)-

5
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Derivative-Orthogonal Riesz Wavelets

@ Let m € NU {0} be a nonnegative integer.

o Let g =(¢1,...,0,)" and ¥ = (¢n,...,%,)" in H™(R).
@ We say that {¢; ¢} is an mth-order derivative-orthogonal Riesz
wavelet in the Sobolev space H™(R) if
© AS{(¢; %) is a Riesz wavelet in H™(R);
© The mth-order derivatives are orthogonal between levels:

(p(m) (M (. — k)) =0, VkezZ,
and _ )

<w(m)(21 . 7k)7w(m)(2/ - —k')) =0,
for all k, k' € Z,j,j' € Ng with j # /.

For m = 0, they are called semi-orthogonal (or pre-) wavelets and
well studied, e.g., [Chui-Wang,Jia-Micchelli,Shen-Riemanschneider]
through a simple orthogonalization procedure. <
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Why Derivative-Orthogonal Riesz Wavelets?

@ Differential equation with homogeneous boundary condition:
uCm(x) + au(x) = f(x), xel=1[0,1].
@ The Galerkin formulation of a weak solution u € H™(/) is
(=D)™(wW™ vy 4 o(u,v) = (f,v), veH(I).

@ Let S be a Riesz wavelet basis of H™(/) derived from mth-order
derivative-orthogonal wavelet {¢;v}. Then u =3}, . c,h and

Z ((—1)’"Ah,g + th,g> cn = (f,g), ges
hes
with A = ((h(™ g(m)), s and B = ((h,g))nges-
(1) The matrix A is sparse and is almost diagonal.

(2) The condition number of A dominates that of (—1)"A + aB
and is often very small (can be the optimal condition number 1‘
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Stable Integer Shifts of Vector Functions

o Let 9 = (¢1,...,6,)" in H"(R) be compactly supported.
@ We say that the integer shifts of ¢ are stable if

span{@(& +27k) : ke Z}=C', VEER
@ For f =(f,...,f,)T and g = (g1,...,8)", bracket product is
[F.21(8) =D F(¢ +2nk)g (E+2mk), €eR
keZ

@ The integer shifts of ¢ in H™(R) are stable «—-
[6,0](€) > 0forall EER «—
{é¢(- — k) : k € Z} is a Riesz sequence in H™(R).
@ Smoothness of a function is measured by

sm(¢) = sup{r €R : ¢ € H"(R)}. ©
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Semi-orthogonal (or Pre-) Wavelets

For m = 0, mth order derivative-orthogonal wavelets are called
semi-orthogonal (or pre-) wavelets and well studied, e.g.,
[Chui-Wang, Jia-Micchelli,Shen-Riemanschneider] through

@ ¢ € L(R) has compact support and satisfies

0(26) = 3(€)o(¢)
where 3(§) := ZkeZ a(k)e""‘5 is a 27-periodic trigonometric
polynomial and ¢(&) := [, ¢(x)e ™ dkx.
@ Assume the integer shlfts of gb are stable: [(b ¢]( ) > 0.
o Define 1(2¢) := e G({ + )[4, O](& + ™) (£)-
@ Then {¢;1} is a semi-orthogonal wavelet in L,(R), that is,
ASY(¢iv) = {o(- — k) = k€ ZYU{2P2p(2 - —k) : k€ L},

is almost an orthonormal basis for L,(R), except orthogonality ...
among the same scale level ;. L
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Sum Rules of a Filter

o A filter a € (Ip(Z))™" has order m sum rules if there exists a
matching filter v € (I(Z))**" such that ©(0) # 0 and

v(26)a(€) = v(&) + 6([¢]™),  v(26)a(§ +m) = o([E]™), € — 0.

o f(¢) =g(&) + O(I¢]™).& = 0« fU(0) = gV(0),0 < j < m.
@ sr(a) denotes the highest order of sum rules satisfied by a.

o For ¢(2€) = 3(£)$(€) with stable integer shifts, TFAE
o The filter a has order m sum rules (i.e., sr(a) > m).
o All the polynomials of degree < m are contained inside the
shift-invariant space

5i(¢) = {Z v(k)p(2 - —k) : all sequences v on Z}
keZ
@ The vector function ¢ has approximation order m:

inf f— < C27M||fllymmy,  f € HM(R). s
g651(¢)mL2(R)H Ellia) 1 ll1m ) (R) -
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Main Result: Existence

Theorem
Let ¢ = (¢1,...,¢,)" be a compactly supported refinable vector

~ ~

function in H™(R) with m € Ny such that ¢(2¢) = a(§)¢(&) for
some a € (Ip(Z))"™*". Then there exists a finitely supported high-pass
filter b € (I(Z))™" such that {¢; 4} with

U(€) = b(§/2)9(£/2)
is an mth-order derivative-orthogonal Riesz wavelet in the Sobolev
space H™(R)
© the integer shifts of ¢ are stable;
@ the filter a has at least order 2m sum rules (i.e., sr(a) = 2m).

The proof is quite complicated for r > 1 and m > 0. «a
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Main Result: Construction

Theorem

Let ¢ = (¢1,...,0,)" be a compactly supported refinable vector
function in H™(R) with m € Ny such that ¢(2¢) = a(§)¢(&) for
some a € (lo(Z))"™". Suppose that the integer shifts of ¢ are stable.

For any b € (b(Z))™", {6; 0} with B(€) = b(€/2)3(¢/2) is an

mth-order derivative-orthogonal Riesz wavelet in H™(R)

BE)[e™, pM(€)A(E)" + B(E + )60, $m](€ + m)AE + 1) =0,

det({3; b})(€) := det (Eﬁg zg i Z;D £0, VEeER

Moreover, AS{(¢; 1) is a Riesz basis in the Sobolev space H™(R) for
all T in the nonempty open interval (2m — sm(¢), sm(¢)).
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Construction for the Scalar Case r = 1

Theorem
Let m € Nq and a € Ip(Z) such that 3(€) = 272m(1 + e~€)2m3(¢)
with 3 € Ih(Z) and 3(0) = 1. Define ¢(¢) := [[;2, a(277€) and

(&) =172, 3(279€) with 3(¢) := 27™(1 + e~*)"3(¢). Suppose
that ¢ € H™(R) and the integer shifts of ¢ are stable. Then for

b e Ih(Z), {¢;v} with w( ) = b(§/2) (§/2) is an mth-order

derivative-orthogonal Riesz wavelet in H™(R)

b(e) = M VEF (e + m)[d, D)€ + m)B(2€) /2(26),

where 0 € Ip(Z) satistying (&) # 0 V&€ € R and ¢ € h(Z) is

e(26) = ged (316, 31(€), 3 + m)[5,dl(€ + 7))
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Example of Refinable Functions: B-Splines

@ For n € N, the B-spline function B, of order n is defined to be

1
Bl = X(0,1]7 Bn = anl * Bl = / anl(' — t)dt
0

@ B,=B,(n—") (symmetry), sm(B,) =n—1/2and B, is a
piecewise polynomial: B, | k+1) € Pn_yq for all k € Z.

0 By =2y a(k)Ba(2 - —k), i.e., By(26) = 3(£)Ba(£) with
aA(¢):=2""(1+e )" with sr(a)=n.

@ A compactly supported mth-order derivative-orthogonal Riesz
wavelet {B,; ¢} in H™(R) can be derived from B, <

n > max(m+1,2m).
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Example from B-Spline B,: m=1

{1 1 1} {1}
a= PRSI ) b= " .
4°2° 4 [1.1] 2 [L.1]

sr(a) =2 and ¢ = By(- — 1) is the centered piecewise linear spline B,
of order 2 satisfying 5(2{) = 3(5)5(&). The wavelet function

) = ¢(2x). Then {¢; ¢} is a first-order derivative-orthogonal Riesz
wavelet in H1(R), which is closely linked to finite element methods.
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Example from B-Spline By: m =2

1 1311 1 1
A= NT A 1e ’ b= __,1,——
16°4 8 4 16 [-2,2] 4 4J 102

sr(a) = 4 and ¢ = By(- — 2) is the centered B-spline B, of order 4
satisfying 5(25) = 3(5)5(5). The wavelet function

¥ = ¢(2x) — 2p(2x+1) — 2p(2x — 1). Then {¢; 1)} is a second-order
derivative-orthogonal Riesz wavelet in H*(R), which is used in
[Jia-Zhao, Math. Comp., (2011)] for 2D biharmonic equations.

0.8
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Hermite Cubic Splines

The Hermite cubic splines are given by

(1 —x)%(1+2x), xc]o0,1], (1-x)%x, xe€][0,1],
P1=1¢ (1+x)%(1-2x), xe€[-1,0), ¢2=1%(1+x)%x, x¢€[-1,0),
0, otherwise, 0, otherwise.

Then ¢ = (¢1,2)" in H?(R) satisfies the refinement equation
$(2€) = 3(€)H(€) with the filter a € (Ip(Z))>*2:

13 1 o] [ _3

_ 4 8 2 4 8

7Y 1l |g 0|1 _ '
16 16 4 16 16] J [—11]

The filter a has order 4 sum rules with sr(a) = 4 and ¢ has the
Hermite interpolation property with sm(¢) = 5/2:

o1(k) = 0(k),  ¢1(k) =0, (k) =0, (k) =0(k), VkeZ,
where §(0) = 1 and §(k) = 0 for k # 0.
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Example from Hermite Cubic Splines: m =1

5 1 0 3] =5 11J_ 4y

Then {¢; v} with 9(€) := b(£/2)d(£/2) is a first-order
derivative-orthogonal Riesz wavelet in H'(IR), which is used in
[Jia-Liu, Adv. Comput. Math., (2006)] for Sturm-Liouville equations.

Bin Han (University of Alberta)
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Example from Hermite Cubic Splines: m = 2

0 2 [1,1]

Then {¢; ¥} with ¢» = ¢(2-) is a second-order derivative-orthogonal
Riesz wavelet in H?(R).
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Example from Hermite Quadratic Splines: m =1
1 17 L o] [L1 _1
_ 4 2 2 4 2
(I e |
4 16 8 [-1,1]

(RN

6

Then sr(a) = 3, sm(¢) = 2.5 and {¢; ¢} is a first-order
derivative-orthogonal Riesz wavelet in H}(R).

~
>

Ve
—
.
———
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Example from Hermite Linear Splines: m =1

4 [0,0]
Then sr(a) = 2, sm(¢) = 1.5 and {¢; v} is a first-order
derivative-orthogonal Riesz wavelet in H1(R).

12 12
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Wavelets on [0, 1] with Very Simple Structure

® Let n > 1 be the scale/resolution level.

o Let g1 = ¢M(2), 80 = ¢1(2- —1),83 = $2(2- —1), 82 = $7(2).

@ Forl <j<n, the boundary wavelets at level j are given by
o1 = PPN, gy = DURTMgR( 2)
with only one boundary wavelet at each endpoint:

¢L € {¢1|[o,1]7 ¢2|[0,1]}7 ¢R € {451(' - 1)‘[0,1]7452(' - 1)‘[0,1]}7
Wt € (o), Volio R e {r(- — Do, 2(- — Doy}

@ For k=1,...,2 — 1, the inner wavelets at level j are
82i+(2k—1) = DM (Ve—k),  gorpan 1= DMV k).

o Normalize {gi}2"; so that [|g\™|| @ = 1 for k=1,..., 21 g

Bin Han (University of Alberta) Derivative-Orthogonal Multiwavelets Bernried 21 / 46



Example: 1D Sturm-Liouville Equations

@ Consider the following differential equation:

—u"+au="f on (0,1),

u'(0) = 100(1 — e 1), w(1) =200e~! — 100,
where a = 5 and f(x) = —100e™ — 500(1 — e ™) — 500e~x.
The exact solution is u(x) = 100(1 — e™*) — 100e™'x.

@ lts corresponding Galerkin formulation is

2n+1

Z ka gj7 >7 j:]-a"'72n+1

with the coefhaent matrix A; x == (gj, 8,) + a(&j, 8«)-
@ According to boundary conditions, the boundary elements are

ot = balj0.1); oF = 01(- — ),
W= o, PR =y (- — 1.
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Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from
Hermite quadratic splines with m = 1.

Level Size Iteration K llenll o leall,  log, Hﬁ:ﬁ‘)”
niltz

5 128 15 3.2106 4.2213e-07 1.8141e-07 —

6 256 15 3.2106 5.2757e-08 2.2607e-08 3.0044
7 512 15 3.2106 6.5944e-09 2.8215e-09 3.0022
8 1024 15 3.2106 8.2365e-10 3.5242e-10 3.0011
9 2048 16 3.2106 1.1561e-10 4.6097e-11 2.9346

Table : Size of linear system, conjugate gradient iterations, condition
number x of the coefficient matrices A, errors, and convergence rates.
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Example: 1D Sturm-Liouville Equations

@ Consider the following differential equation:
{ —u"=f on (0,1),
J'(0) =0, u(l)=0,

where f(x) = xIn(x 4+ 1). The exact solution is u(x) =

(5x3 —12x2 —12x+19—241In(2) —6(x —2)(x+1)?In(x+1))/36.
@ Its corresponding Galerkin formulation is

on+1

Z ka gj) >7 j:17"'a2n+1

with the coefhaent matrix A; x == (gj, &)
@ According to boundary conditions, the boundary elements are
ot =il 9% = da(- = Dl
Vh=dly, 9% =1 = 1o
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Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from
Hermite linear splines with m = 1.

V

m
Ten1llL,

Level Size «x  |en]lL. llenll L, log, Tl
8 1024 1 1.4640e-07 4.1807e-08 1.9971
9 2048 1 3.6662e-08 1.0462e-08 1.9986
10 4096 1 9.1733e-09 2.6168e-09 1.9995
11 8192 1 2.2943e-09 6.5284e-10 2.0029
12 16384 1 5.7369e-10 1.5988e-10 2.0298

Table : Size of linear system, no iteration is needed, condition number /-cfi

of the matrices A (A is the identity matrix), errors, and convergence rates.
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Example: 1D Biharmonic Equations

@ Consider the following differential equation

u® —au=rf on (0,1),
u(0)=0, J(0)=0, u(l)=0

where o = 11 and f(x) = —47* cos(2mx)
The exact solution is u(x)

— L1(1 — cos(2x)).

= 1(1 — cos(27x)).
@ Its corresponding Galerkin formulation is
on+2

ZB kCk =

gja >a ./ - ]-a c e
with the coefhaent matrix B

22 )

= (&', 8¢) + o{g), &)
@ According to boundary conditions, the boundary elements are

ot =10,
Ph=10,
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Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived
from Hermite cubic splines with m = 2.

Level Size lteration & llenll i leal,  log, ”igﬁ‘jj lealn logs ”ﬁlﬁﬁl‘:l

2 14 4 1.0225 2.2655e-04 1.1050e-04 — 3.0679e-03 —

3 30 4 1.0225 1.5147e-05 6.9610e-06 3.9886 3.8598e-04 2.9907
4 62 4 1.0225 9.6244e-07 4.3628e-07 3.9971 4.8325e-05 2.9977
5 126 4 1.0225 6.0411e-08 2.7653e-08 3.9993 6.0431e-06 2.9994
6 254 4 1.0225 3.9699e-09 2.1493e-09 4.0000 7.5554e-07 2.9999
7 510 4 1.0225 1.1049e-09 6.8832e-10 4.0650 9.4808e-08 3.0000

Table : Size of linear system, conjugate gradient iteration, condition
number x of the matrices B, errors, and convergence rates.
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Example: 1D Biharmonic Equations

@ Consider the following differential equation:

u® =f on (0,1),

u(0) =16, J'(0)=-64, wu(l)=0, J(1)=0,
where f(x) = 24(15x*> — 50x + 41). The exact solution is
u(x) = (x —2)*(x — 1)%.

@ lts corresponding Galerkin formulation is

2n+2

Z wCk = (g, F)—u(0)x23 ()8 &)~ (0)x23()(g], &4 )

Wlth the coefficient matrix B;x := (g, gx)-
@ According to boundary conditions, the boundary elements are

o = ¢, " = dalp.,
Yt =, YR =1,
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Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived
from Hermite cubic splines with m = 2.

Level Size r el llenlle  loga [oil  fleall  log, il
5 126 1 1.5129e-07 5.5402e-08 — 1.2283e-05 —
6 254 1 9.5006e-09 3.4413e-09 4.0089 1.5354e-06 3.0000
7 510 1 5.9521e-10 2.1642e-10 3.9910 1.9193e-07 3.0000
8 1022 1 3.7247e-11 1.3528e-11 3.9998 2.4004e-08 2.9992
9 2046 1 2.3306e-12 8.4696e-13 3.9975 3.1070e-09 2.9497

Table : Size of linear system, no iteration is needed, condition number k.
of the matrices B (B is the identity matrix), errors, and convergence rates.
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General Construction of Wavelets on [0, 1]

Theorem
Letcb {6',..., 0", W ={y',... v}, and &= {$', ..., "},

= {{', ..., 0} be sets of compactly supported functions in L,(R):
gbf(c;ZS V=€t (- )=€ld" with ¢ €Z, € e {-1,1},
Wil — ) = et Py — ) =€Vt with ¢ €Z,€) e {—1,1}.

Fore € {—1,1} and c € Z, define T := [5,5 + 1]. For j € N,

dﬁ, — |2 — 271, d;f’g — |27 -2,
oﬁz = odd(2c — ¢), o}fz = odd(2c — ¢),
where odd(m) := 1 if m is odd and odd(m) := 0 if m is even. Let xz
denote the characteristic function of the interval Z.

Bin Han (University of Alberta)

Derivative-Orthogonal Multiwavelets

Bernried 30 / 46



General Construction of Wavelets on [0, 1]...

Theorem
For j € No := N U {0}, define W to be
{Fee@l Ixz + k=dfy+1,....df,+ 2}, 0¥, =1,

{Fc,e(%-;k)Xz D k= dwg +1,. d]{} +2/ -1}, Ofg =0, ezb = —¢,
{Fee@l Ixz « k=dfp+1,...,d%+2 -1}

U{%FC’E(¢2J;¢1;{}Z)XI’ \/iFC76(¢§J,%1{)[+2J)XI}’ O}{Jé = 0, Ezb — E’
where Fe () =3, (F(- — 2k) + ef (c + 2k — -)), and define V¥,
o, &F similarly. For J € No, define
oz, 3~: (~U2=1¢€) UUOOJ(UZ 1‘“6) %N)J = (U/?:l@‘) UUOOJ(Ue 1\“6)
If ({®; V}, {®;V}) is a biorthogonal wavelet in Ly(R), then

(%,,%,) is a pair of biorthogonal bases for Ly(Z) for all J € No.
Moreover, 3, and A, are Riesz bases for L(T).
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Wavelets on [0, 1] with Simple Structure

Let ¢, &, 1, ¢ be compactly supported vector functions in L,(IR)
with symmetry and all the symmetry centers satisfy

Cf):...zcg):c;b:..-:csdjzo.

In addition we assume that

all the elements/entries in ¢ and 1 vanish outside [—1,1].

Take ¢ = 0. Since d¢ —dw = 0, K—o E—O \U‘] becomes

{wgk:kzl,...ﬂj—l}, ezjz—e,
{¢21 -k tk=1,... 52J - 1} U {\/ing;()X[O,l]) \/Eng;QjX[O,l]}) 62[1 =€

(i) If e =—1 and all entries in ¢, 1) are continuous, then
h(0) = h(1) = 0 for all h € A, (Dirichlet boundary condition).
(i) If e =1 and all entries in ¢, are in €}(R), then
H(0) = W (1) =0 for all h € %, (von Neumann boundary). &

Bin Han (University of Alberta)

Derivative-Orthogonal Multiwavelets

Bernried 32 /46



Tight Framelet from Hermite Linear Splines

A tight framelet {¢; ¢} is given by

-~ ~

0(26) =3()0(6),  1(26) = b()a(¢)
through a tight framelet filter bank {a; b}:

{[l ﬁ] [
2= 4 14
V71|
8 4

N

1 -1 9 Y7
1 14 2 14
b= 1 V7 0 Y7 _1 VT
8§ 28|’ |’ 8 ﬁ%
0 0 0 0 0 14 [-1,1]

Then {¢;1} generates a tight frame in Lo(R) and has symmetry
property. i‘z
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Tight Framelet in L([0, 1]) from Linear Splines

1
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Tight Framelet from Hermite Quadratic Splines

A tight framelet {¢; ¢} is given by

-~ ~ -~ -~ ~

$(26) =a(§)e(€),  »(28) = b(§)e(¢)

through a tight framelet filter bank {a; b}:

1 V7

4 28
V71 ’
8 8 [-11]
1

4

1 -1 0 Va7
4 28 2 28
b=<{ |1 7 0 Y7 _1 V7
8 56 |’ 4 | 8 \?3_1
00 0 0 0 1y

Then {¢; 1)} generates a tight frame in [>(R) and has symmetry .
property. ‘ﬁ‘
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Tight Framelet in L([0, 1]) from Quadratic Splines
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Riesz Wavelet from Hermite Cubic Splines

A Riesz wavelet {¢; 1} is given by

-~

~

$(26) = 3(€)(€),  D(2€) = b(£)(¢€)

through a filter bank {a; b} (part of a biorthogonal wavelet filter
bank ({a; b}, {3; b}):

i }[171]

1 23 1 1 23 ]

o L9l |’ 3¢’ |_-L 9L !
16 176 44 [7171]

16 176 |

5‘|»—A olw

Then {¢;1} generates a Riesz wavelet in Ly(R) and has symmetry
property. f
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Riesz Wavelet in Ly([0, 1]) from Cubic Splines

Bin Han (University of Alberta) Derivative-Orthogonal Multiwavelets Bernried 38 / 46



Riesz Wavelet from B, Spline

A Riesz wavelet {¢; 1} is given by

-~ ~

$(26) = 3(€)(€),  D(2€) = b(£)(¢€)

through a filter bank {a; b} (part of a biorthogonal wavelet filter
bank ({a; b}, {3; b}):

NN IEINE
0 0o|’]0
[ 1 1
1 _1 0
bz{f; 12]’[_1
|3 2 3

Then {¢;1} generates a Riesz wavelet in Ly(R) and has symmetry
property. ‘&
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Riesz Wavelet in Ly([0,1]) from B, Spline
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Orthogonal Multiwavelet

An orthogonal wavelet {¢; 1} (Gernimo-Hardin-Massopust) is given
by

~ ~

0(26) =3(©)0(6).  ¥(26) = b()o(¢)
through a filter bank {a; b} (part of a biorthogonal wavelet filter
bank ({a; b}, {3; b}):

3 ap 0l {o o 0 0
I |l _alv|ez q]7|az 3|2 g )

_v2 _3 w2 4 w2 3 V2
b — 20 10 20 20 10 20
1 V2 |’ °o o |’lLe _32|"|_1 ¢ :
10 [0,3]

10 10 10 10 10
Then {¢; 1} generates an orthogonal wavelet in Ly(R) and has .
symmetry property. <

Bin Han (University of Alberta) Derivative-Orthogonal Multiwavelets Bernried 41 / 46



Orthogonal Multiwavelet in Ly([0, 1])
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Orthogonal Multiwavelet

An orthogonal wavelet {¢; 1} is given by

-~ ~

$(26) = 3(€)(€),  D(2€) = b(£)(¢€)

through a filter bank {a; b} (part of a biorthogonal wavelet filter

bank ({a; b}, {3; b}):
}[171]7

_ }[1,1]

Then {¢; 1} generates an orthogonal wavelet in L,(R) and has
symmetry property.

=

T
—
oo|§4>|
®im Al °°|3J>

— O NI
O NI

| |
4>|§ o B

1
| —
Ol= N

Bin Han (University of Alberta) Derivative-Orthogonal Multiwavelets Bernried



Orthogonal Multiwavelet in Ly([0, 1])
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Summary and Conclusion

o Established existence and construction of mth-order
derivative-orthogonal Riesz wavelets in H"(R), m € NU {0}.

@ The constructed derivative-orthogonal Riesz wavelets in H™(RR)
from Hermite cubic splines have very short support making the
construction of wavelets on [0, 1] very simple.

@ The condition numbers of the stiffness matrices are often very
small (even the optimal condition number one).

@ These derivative-orthogonal Riesz wavelets in H™(R) are of
particular interest for high dimension problems on [0, 1]9.

@ General method for constructing wavelets on [0, 1].

@ E-mail: bhanQualberta.ca
URL: http://www.ualberta.ca/~bhan

Thank You!
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This talk is based on the following papers:

@ B. Han and M. Michelle, Derivative-orthogonal Riesz wavelets in
Sobolev spaces with applications to differential equations,
Applied and Computational Harmonic Analysis, published online,
(2017).

@ B. Han and M. Michelle, Construction of wavelets and framelets
on a bounded interval, Analysis and Applications, in press,
(2018).

and Section 7.5 in the following book:
@ B. Han, Framelets and Wavelets: Algorithms, Analysis, and

Applications, Applied and Numerical Harmonic Analysis,
Birkhauser/Springer, Cham, (2017), 724 pages
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