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Motivation 
• Improving machine learning algorithms using 

wavelets  

• Main tasks 
– Prediction (classification, regression)

– Feature importance 

– Model compression

• Domains 
– Image processing

– Computer Vision

– Ranking 

– NLP

– Other 



Example: Wine quality data set 
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Why Random
Forest

• Evaluate 179  classifiers arising from 17  families (discriminant  analysis,  
Bayesian, neural networks, support vector machines, decision trees, rule-
based classifiers, boosting, bagging, stacking, random forests and other 
ensembles, generalized linear models, nearest- neighbors, partial least 
squares and principal component regression, logistic and multinomial 
regression, multiple adaptive regression splines and other methods) 

• Using open source models the are implemented in Weka, R, C and Matlab

• Use 121 data sets, which represent the whole UCI data base (excluding the 
large-scale problems)



In the functional setting we are given a function

In applications, point values (or even “density”)

We apply recursive subdivision of the data
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Decision Trees



Decision Trees

Invoking a partition for each node        recursively, with low order 
Local Polynomials          to minimize:
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- Impact of dimensionality 
- Curse of dimensionality (more samples are required for high 

dimensional data)
- Computational Complexity (Approximation with lower degree 

of polynomials) 
- Restricted subdivisions (e.g. main axis only)

- Greedy nature of decision trees 
- Stopping criteria and Pruning (over-fitting)
- Sensitivity to noise
- Generalization error

Some considerations for decision trees  



Geometric Wavelets (Dekel and Leviatan, 2005)

Let         be a child of        in a tree

The Geometric Wavelet associated with 

To enable the 
Sorting:
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With norms

Or in the 
discrete case



Geometric Wavelets
Adaptive  M-term geometric wavelet 
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Classical Wavelets properties

• Details between low and high resolutions

• Multi-resolution representation

• Enables sparse representation for appropriate data.

• Vanishing moments

• M- term representation (using wavelets norm)

• Correspondence with smoothness space 

Distinctive properties

• Adaptive partitions creates non linearity (the decomposition depends on 
the function)

• No ortho basis 
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4096-term
Bi-orthogonal

Wavelets
Approximation

PSNR=29.22



2048-term
Geometric
Wavelets

Approximation
PSNR=31.32



Random forests

• ‘Best’ decision tree: NP-hard problem!

• Goal: overcome the ‘greedy nature’ of a single tree.

• ‘Over each random subset we create a tree 

• Diversity

– Bagging’: For each j, we select a random subset        
consisting of 80% of the input data points.

– For each tree Randomized attributes

– Some methods cerates random splits.  
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Source: Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
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Convergence of forest

• Leo Breiman, “random forests”, 2001:
• For a large number of trees, it follows from the Strong Law 

of Large Numbers that as the number of trees increases, for 
almost surely, the generalization error of               converges 

• This is the reason that random forests do not overfit as more 

trees are added.
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Wavelet decomposition of a random 
forest

Create a wavelet decomposition of each tree in the random forest

A wavelet representation of the entire random forest

Order the wavelet components of the random forest by

The M-term approximation of a random forest is



Wavelet decomposition of a random 
forest



Jackson-type estimate
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Jackson-type estimate



Measuring the smoothness 

Example 1/ 2 



Variable importance 



Applications and empirical 
results



16 trees - 21734 significant wavelets 



Task 

regressio

n (R) 

classificat

ion (C)

Pruning Min-D [59]
Pruning Mean-D 

[59]

Wavelets – 90% error 

saturation 

#trees #nodes #trees #nodes #trees

#predicti

on 

nodes

#overall  

nodes

C Record linkage 1 123 1 123 1 3 6 0.99

R CT Slice* 2 77042 2 76396 2 4212 5141 0.51

C Titanic 3 711 10 2248 1 19 34 0.42

C Balanced scale 1 185 1 185 1 40 55 0.34

R Concrete 19 2297 8 966 3 54 64 0.32

C Magic Gamma 9 26793 5 14961 3 823 1657 0.25

R Airfoil 5 4533 3 7487 3 1734 1929 0.23

R California Housing 4 65436 9 149863 4 5469 7292 0.2

C EEG 7 17845 11 28355 6 9489 12808 0.15

R Parkinson 18 103822 19 110187 12 19110 20947 0.11

R Wine quality 14 39350 13 36439 12 21615 29089 0.07

R Year Prediction 21
1065779

9
24

1220158

8
19 9296363

930028

4
0.02



Compression 



Compression 



Variable importance



Overcoming mislabeling in prediction 



Thank you


