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Kolmogorov n-widths

Consider the set of functions

Ar := {u ∈ H r (0, 1) : ‖u(r)‖ ≤ 1},

with ‖ · ‖ the L2 norm on (0, 1).

Questions:

1. How well can we approximate functions in Ar by functions
from an n-dimensional subspace Xn of L2(0, 1)?

2. Which spaces Xn are ”optimal” for this?



For a given set of functions A ⊂ L2 and an n-dimensional subspace
Xn ⊂ L2, let

E (A,Xn) = sup
u∈A

inf
v∈Xn

‖u − v‖

be the distance to A from Xn.

Then the Kolmogorov n-width of A is defined by

dn(A) = inf
Xn

E (A,Xn).

A subspace Xn is called an optimal subspace for A provided that

dn(A) = E (A,Xn).
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Application

If A = Ar ,
‖u − Pnu‖ ≤ C‖u(r)‖,

where Pn is the orthogonal projection of L2(0, 1) onto Xn and
C = E (Ar ,Xn).

If Xn is an optimal subspace then C = dn(Ar ), the best possible
(least) constant.
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Kolmogorov

Kolmogorov (1936) showed that

dn(A1) =
1

nπ
,

and that an optimal subspace is

X 0
n = [1, cosπx , cos 2πx , . . . , cos(n − 1)πx ].



Melkman and Micchelli
Melkman and Micchelli (1978) showed that A1 has two further
optimal subspaces, both of which are spaces of splines.
For degree d and knot vector

0 = τ0 < τ1 < · · · < τn < τn+1 = 1

let

Sd ,τ := {s ∈ Cd−1[0, 1] : s|[τj ,τj+1] ∈ Πd , j = 0, 1, . . . , n}.

Let ξj = j/n, j = 0, 1, . . . , n. Then

X 1
n = S0,ξ

is an optimal subspace for A1. Further, let ηj = (2j − 1)/(2n),
j = 1, . . . , n, and let η0 = 0 and ηn+1 = 1. Then

X 2
n = {s ∈ S1,η : s ′(0) = s ′(1) = 0}

is another optimal subspace for A1.
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Conjectures of Evans et al.

In

I J. A. Evans, Y. Bazilevs, I. Babuska, and T. J. R. Hughes
(2009), n-Widths, sup-infs, and optimality ratios for the
k-version of the isogeometric finite element method,

n-widths and optimal subspaces were studied in order to assess the
approximation properties of splines for use in finite element
methods.
Their numerical tests suggest that for (e.g.) A1, there may exist
optimal spline subspaces of degrees higher than 1.



Our results

For A1 the following spline spaces are optimal:

X 1
n = S0,ξ,

X 2
n = {s ∈ S1,η : s ′(0) = s ′(1) = 0},

X 3
n = {s ∈ S2,ξ : s ′(0) = s ′(1) = 0},

X 4
n = {s ∈ S3,η : s ′(0) = s ′(1) = 0, s ′′′(0) = s ′′′(1) = 0}

X 5
n = {s ∈ S4,ξ : s ′(0) = s ′(1) = 0, s ′′′(0) = s ′′′(1) = 0},

X 6
n = . . .

For Ar , there are optimal spline spaces of degrees
r − 1, 2r − 1, 3r − 1, . . ., but the knots are no longer uniform.



Kernels

The basic idea is to express Ar as

Ar =

{
r−1∑
i=0

aix
i + Kf (x) : ai ∈ R, ‖f ‖ ≤ 1

}

where

Kf (x) =
1

(r − 1)!

∫ x

0
(x − y)r−1f (y) dy =

∫ 1

0
K (x , y)f (y) dy ,

with

K (x , y) =
1

(r − 1)!
(x − y)r−1+ .

We then study properties of the kernel K (x , y).



Simplification
The analysis is easier for A of the form

A = {Kf : ‖f ‖ ≤ 1}. (1)

Example

A2
0 = {u ∈ H2(0, 1) : ‖u′′‖ ≤ 1, u(0) = u(1) = 0}

can be expressed as (1) with

Kf (x) =

∫ 1

0
K (x , y)f (y) dy ,

and

K (x , y) =

{
x(1− y) x ≤ y ,

y(1− x) x ≥ y ,

since K (x , y) is the Green’s function for the b.v.p.

−u′′ = f , u(0) = u(1) = 0.
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Eigenvalues and eigenfunctions

We denote by K ∗ the adjoint of the operator K , defined by

(f ,K ∗g) = (Kf , g),

where (·, ·) is the inner product in L2(0, 1).

The operator K ∗K ,
being symmetric and positive semi-definite, has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · ≥ 0,

and corresponding orthogonal eigenfunctions

K ∗Kφn = λnφn, n = 1, 2, . . . .

If we further define ψn = Kφn, then

KK ∗ψn = λnψn, n = 1, 2, . . . ,

and the ψn are also orthogonal.
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n-width and first optimal subspace

By ‘duality’

inf
v∈Xn

‖u − v‖ = sup
v⊥Xn

(u, v)

‖v‖
,

which leads to

E (A,Xn) = sup
‖v‖≤1
v⊥Xn

(KK ∗v , v)1/2.

Taking the infimum of this over all n-dimensional subspaces Xn

one obtains (Pinkus (1985)):

Theorem
dn(A) = λ

1/2
n+1 and X 0

n = [ψ1, . . . , ψn] is an optimal subspace for A.
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Totally positive kernels

The kernel K (x , y) is totally positive if

K

(
x1, . . . , xn
y1, . . . , yn

)
= det(K (xi , yj))ni ,j=1 ≥ 0,

for all 0 ≤ x1 < x2 < · · · < xn ≤ 1, 0 ≤ y1 < y2 < · · · < yn ≤ 1
and n = 1, 2, . . ..

We will call K (x , y) nondegenerate if

dim[K (·, y1), . . . ,K (·, yn)] = dim[K (x1, ·), . . . ,K (xn, ·)] = n,

for all 0 < x1 < x2 < · · · < xn < 1, 0 < y1 < y2 < · · · < yn < 1
and n = 1, 2, . . ..
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If K is NTP (nondegenerate totally positive) then, by a theorem of
Kellogg (1918), λ1 > λ2 > · · · > λn > · · · > 0, and the
eigenfunctions φn+1 and ψn+1 have exactly n simple zeros in (0, 1),

φn+1(ξj) = ψn+1(ηj) = 0, j = 1, 2, . . . , n,

0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 < · · · < ηn < 1.



Optimal subspaces of Melkman and Micchelli

Melkman and Micchelli (1978) showed

Theorem
If K (x , y) is an NTP kernel, then

X 1
n = [K (·, ξ1), . . . ,K (·, ξn)]

and
X 2
n = [(KK ∗)(·, η1), . . . , (KK ∗)(·, ηn)]

are also optimal subspaces for A.



Further optimal subspaces

Let
A∗ := {K ∗f : ‖f ‖ ≤ 1}.

Our idea is:

Lemma
For any n-dimensional subspace Xn,

E (A,K (Xn)) ≤ E (A∗,Xn).

Proof:

E (A,K (Xn)) ≤ sup
‖f ‖≤1

‖(K − KPn)f ‖

= sup
‖f ‖≤1

‖(K ∗ − PnK ∗)f ‖ = E (A∗,Xn).

Since dn(A∗) = dn(A), it follows that if Xn is optimal for A∗ then
K (Xn) is optimal for A.
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Example. Since X 1
n is optimal for A, by reversing the roles of K

and K ∗,
(X 1

n )∗ := [K ∗(η1, ·), . . . ,K ∗(ηn, ·)]

is optimal for A∗. So by the lemma, K ((X 1
n )∗) = X 2

n is optimal
for A.

Applying the lemma twice gives

E (A,KK ∗(Xn)) ≤ E (A,Xn),

and so if Xn is optimal for A, KK ∗(Xn) is also optimal for A.
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Applying either the lemma recursively, or the double step
recursively, we obtain

Theorem
If K is NTP, then for l = 1, 2, 3, . . .,

(KK ∗)l(X 1
n ) = [(KK ∗)lK (·, ξ1), . . . , (KK ∗)lK (·, ξn)]

and

(KK ∗)l(X 2
n ) = [(KK ∗)l+1(·, η1), . . . , (KK ∗)l+1(·, ηn)]

are optimal subspaces for the n-width of A.



Back to H r

Recall that A2
0 = {Kf : ‖f ‖ ≤ 1}, where

K (x , y) =

{
x(1− y) x ≤ y ;

y(1− x) x ≥ y ,

Then K ∗K = KK ∗ has eigenvalues 1/(kπ)4 and eigenfunctions
sin kπx , k = 1, 2, . . ., and so ξj = ηj = j/(n + 1), j = 1, . . . , n.

So

X 1
n = {s ∈ S1,ξ : s(0) = s(1) = 0}

X 2
n = {s ∈ S3,ξ : s(0) = s(1) = 0, s ′′(0) = s ′′(1) = 0}

X 3
n = ...
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}

where

K (x , y) =
1

(r − 1)!
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To obtain the n-width and optimal subspaces we must first define

Kr = (I − Qr )K ,

where Qr is the orthogonal projection onto

Πr = [x i : i = 0, 1, . . . r − 1].

Then we work with the eigenvalues and eigenfunctions of K ∗r Kr

and KrK ∗r ...
Although Kr is not totally positive, K ∗r Kr is.
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