Optimal spline spaces of higher degree for L^2 *n*-widths

Michael Floater and Espen Sande

Department of Mathematics University of Oslo

Kolmogorov n-widths

Consider the set of functions

$$A^r := \{ u \in H^r(0,1) : \|u^{(r)}\| \le 1 \},\$$

with $\|\cdot\|$ the L^2 norm on (0,1).

Questions:

- 1. How well can we approximate functions in A^r by functions from an *n*-dimensional subspace X_n of $L^2(0,1)$?
- 2. Which spaces X_n are "optimal" for this?

For a given set of functions $A \subset L^2$ and an *n*-dimensional subspace $X_n \subset L^2$, let

$$E(A, X_n) = \sup_{u \in A} \inf_{v \in X_n} \|u - v\|$$

be the distance to A from X_n .

For a given set of functions $A \subset L^2$ and an *n*-dimensional subspace $X_n \subset L^2$, let

$$E(A, X_n) = \sup_{u \in A} \inf_{v \in X_n} ||u - v||$$

be the distance to A from X_n .

Then the Kolmogorov n-width of A is defined by

$$d_n(A) = \inf_{X_n} E(A, X_n).$$

For a given set of functions $A \subset L^2$ and an *n*-dimensional subspace $X_n \subset L^2$, let

$$E(A, X_n) = \sup_{u \in A} \inf_{v \in X_n} \|u - v\|$$

be the distance to A from X_n .

Then the Kolmogorov n-width of A is defined by

$$d_n(A) = \inf_{X_n} E(A, X_n).$$

A subspace X_n is called an optimal subspace for A provided that

$$d_n(A)=E(A,X_n).$$

Application

If $A = A^r$, $\|u - P_n u\| \le C \|u^{(r)}\|$, where P_n is the orthogonal projection of $L^2(0, 1)$ onto X_n and $C = E(A^r, X_n)$.

Application

. . .

If
$$A = A^r$$
,
 $\|u - P_n u\| \le C \|u^{(r)}\|$,
where P_n is the orthogonal projection of $L^2(0, 1)$ onto X_n and
 $C = E(A^r, X_n)$.

If X_n is an optimal subspace then $C = d_n(A^r)$, the best possible (least) constant.

Kolmogorov

Kolmogorov (1936) showed that

$$d_n(A^1)=\frac{1}{n\pi},$$

and that an optimal subspace is

$$X_n^0 = [1, \cos \pi x, \cos 2\pi x, \dots, \cos(n-1)\pi x].$$

Melkman and Micchelli

Melkman and Micchelli (1978) showed that A^1 has two further optimal subspaces, both of which are spaces of splines. For degree d and knot vector

$$0 = \tau_0 < \tau_1 < \dots < \tau_n < \tau_{n+1} = 1$$

let

$$S_{d,\tau} := \{ s \in C^{d-1}[0,1] : s |_{[\tau_j,\tau_{j+1}]} \in \Pi_d, j = 0, 1, \dots, n \}.$$

Melkman and Micchelli

Melkman and Micchelli (1978) showed that A^1 has two further optimal subspaces, both of which are spaces of splines. For degree d and knot vector

$$0 = \tau_0 < \tau_1 < \dots < \tau_n < \tau_{n+1} = 1$$

let

$$S_{d, au} := \{s \in C^{d-1}[0,1] : s|_{[au_j, au_{j+1}]} \in \Pi_d, j = 0, 1, \dots, n\}.$$

Let $\xi_j = j/n, j = 0, 1, \dots, n$. Then $X_n^1 = S_{0,\xi}$

is an optimal subspace for A^1 .

Melkman and Micchelli

Melkman and Micchelli (1978) showed that A^1 has two further optimal subspaces, both of which are spaces of splines. For degree d and knot vector

$$0 = \tau_0 < \tau_1 < \dots < \tau_n < \tau_{n+1} = 1$$

let

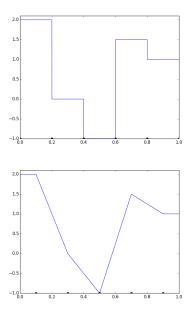
$$S_{d, au} := \{s \in C^{d-1}[0,1]: \ s|_{[au_j, au_{j+1}]} \in \Pi_d, \ j = 0, 1, \dots, n\}.$$

Let $\xi_j = j/n, \ j = 0, 1, \dots, n$. Then $X^1_n = S_{0,\xi}$

is an optimal subspace for A^1 . Further, let $\eta_j = (2j - 1)/(2n)$, j = 1, ..., n, and let $\eta_0 = 0$ and $\eta_{n+1} = 1$. Then

$$X_n^2 = \{s \in S_{1,\eta}: s'(0) = s'(1) = 0\}$$

is another optimal subspace for A^1 .



Conjectures of Evans et al.

In

► J. A. Evans, Y. Bazilevs, I. Babuska, and T. J. R. Hughes (2009), *n*-Widths, sup-infs, and optimality ratios for the *k*-version of the isogeometric finite element method,

n-widths and optimal subspaces were studied in order to assess the approximation properties of splines for use in finite element methods.

Their numerical tests suggest that for (e.g.) A^1 , there may exist optimal spline subspaces of degrees higher than 1.

Our results

For A^1 the following spline spaces are optimal:

$$\begin{split} X_n^1 &= S_{0,\xi}, \\ X_n^2 &= \{s \in S_{1,\eta} : s'(0) = s'(1) = 0\}, \\ X_n^3 &= \{s \in S_{2,\xi} : s'(0) = s'(1) = 0\}, \\ X_n^4 &= \{s \in S_{3,\eta} : s'(0) = s'(1) = 0, \ s'''(0) = s'''(1) = 0\}, \\ X_n^5 &= \{s \in S_{4,\xi} : s'(0) = s'(1) = 0, \ s'''(0) = s'''(1) = 0\}, \\ X_n^6 &= \dots \end{split}$$

For A^r , there are optimal spline spaces of degrees $r - 1, 2r - 1, 3r - 1, \ldots$, but the knots are no longer uniform.

Kernels

The basic idea is to express A^r as

$$\mathcal{A}^r = \left\{ \sum_{i=0}^{r-1} a_i x^i + \mathcal{K}f(x): \quad a_i \in \mathbb{R}, \quad \|f\| \leq 1
ight\}$$

where

$$Kf(x) = \frac{1}{(r-1)!} \int_0^x (x-y)^{r-1} f(y) \, dy = \int_0^1 K(x,y) f(y) \, dy,$$

with

$$K(x,y) = \frac{1}{(r-1)!}(x-y)_+^{r-1}.$$

We then study properties of the kernel K(x, y).

Simplification

The analysis is easier for A of the form

$$A = \{Kf : ||f|| \le 1\}.$$
 (1)

Simplification

The analysis is easier for A of the form

$$A = \{ Kf : \|f\| \le 1 \}.$$
 (1)

Example

 $A_0^2 = \{ u \in H^2(0,1) : \|u''\| \le 1, u(0) = u(1) = 0 \}$

can be expressed as (1) with

$$\mathcal{K}f(x) = \int_0^1 \mathcal{K}(x,y)f(y)\,dy,$$

and

$$\mathcal{K}(x,y) = egin{cases} x(1-y) & x \leq y, \ y(1-x) & x \geq y, \end{cases}$$

since K(x, y) is the Green's function for the b.v.p.

$$-u'' = f$$
, $u(0) = u(1) = 0$.

Eigenvalues and eigenfunctions

We denote by K^* the adjoint of the operator K, defined by

 $(f, K^*g) = (Kf, g),$

where (\cdot, \cdot) is the inner product in $L^2(0, 1)$.

Eigenvalues and eigenfunctions

We denote by K^* the adjoint of the operator K, defined by

$$(f, K^*g) = (Kf, g),$$

where (\cdot, \cdot) is the inner product in $L^2(0, 1)$. The operator K^*K , being symmetric and positive semi-definite, has eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq \cdots \geq 0,$$

and corresponding orthogonal eigenfunctions

$$K^*K\phi_n = \lambda_n\phi_n, \qquad n = 1, 2, \dots$$

If we further define $\psi_n = K \phi_n$, then

$$KK^*\psi_n = \lambda_n\psi_n, \qquad n = 1, 2, \dots,$$

and the ψ_n are also orthogonal.

n-width and first optimal subspace

By 'duality'

$$\inf_{v\in X_n}\|u-v\|=\sup_{\nu\perp X_n}\frac{(u,v)}{\|v\|},$$

which leads to

$$E(A, X_n) = \sup_{\substack{\|v\| \leq 1\\ v \perp X_n}} (KK^*v, v)^{1/2}.$$

n-width and first optimal subspace

By 'duality'

$$\inf_{\mathbf{v}\in X_n}\|u-\mathbf{v}\|=\sup_{\mathbf{v}\perp X_n}\frac{(u,\mathbf{v})}{\|\mathbf{v}\|},$$

which leads to

$$E(A, X_n) = \sup_{\substack{||v|| \leq 1 \ v \perp X_n}} (KK^*v, v)^{1/2}.$$

Taking the infimum of this over all *n*-dimensional subspaces X_n one obtains (Pinkus (1985)):

Theorem

$$d_n(A) = \lambda_{n+1}^{1/2}$$
 and $X_n^0 = [\psi_1, \dots, \psi_n]$ is an optimal subspace for A.

Totally positive kernels

The kernel K(x, y) is totally positive if

$$K\begin{pmatrix} x_1,\ldots,x_n\\ y_1,\ldots,y_n \end{pmatrix} = \det(K(x_i,y_j))_{i,j=1}^n \ge 0,$$

for all $0 \le x_1 < x_2 < \cdots < x_n \le 1$, $0 \le y_1 < y_2 < \cdots < y_n \le 1$ and $n = 1, 2, \ldots$

Totally positive kernels

The kernel K(x, y) is totally positive if

$$K\begin{pmatrix} x_1,\ldots,x_n\\ y_1,\ldots,y_n \end{pmatrix} = \det(K(x_i,y_j))_{i,j=1}^n \ge 0,$$

for all $0 \le x_1 < x_2 < \cdots < x_n \le 1$, $0 \le y_1 < y_2 < \cdots < y_n \le 1$ and $n = 1, 2, \ldots$ We will call K(x, y) nondegenerate if

$$\dim[K(\cdot, y_1), \dots, K(\cdot, y_n)] = \dim[K(x_1, \cdot), \dots, K(x_n, \cdot)] = n,$$

for all $0 < x_1 < x_2 < \dots < x_n < 1, \ 0 < y_1 < y_2 < \dots < y_n < 1$
and $n = 1, 2, \dots$

If K is NTP (nondegenerate totally positive) then, by a theorem of Kellogg (1918), $\lambda_1 > \lambda_2 > \cdots > \lambda_n > \cdots > 0$, and the eigenfunctions ϕ_{n+1} and ψ_{n+1} have exactly n simple zeros in (0, 1),

$$\phi_{n+1}(\xi_j) = \psi_{n+1}(\eta_j) = 0, \quad j = 1, 2, \dots, n,$$
$$0 < \xi_1 < \xi_2 < \dots < \xi_n < 1, \qquad 0 < \eta_1 < \eta_2 < \dots < \eta_n < 1.$$

Optimal subspaces of Melkman and Micchelli

Melkman and Micchelli (1978) showed

Theorem If K(x, y) is an NTP kernel, then

$$X_n^1 = [K(\cdot,\xi_1),\ldots,K(\cdot,\xi_n)]$$

and

$$X_n^2 = [(KK^*)(\cdot,\eta_1),\ldots,(KK^*)(\cdot,\eta_n)]$$

are also optimal subspaces for A.

Further optimal subspaces

Let

$$A^* := \{ K^* f : \|f\| \le 1 \}.$$

Our idea is:

Lemma

For any n-dimensional subspace X_n ,

 $E(A, K(X_n)) \leq E(A^*, X_n).$

Further optimal subspaces

Let

$$A^* := \{ K^* f : \|f\| \le 1 \}.$$

Our idea is:

Lemma

For any n-dimensional subspace X_n ,

$$E(A, K(X_n)) \leq E(A^*, X_n).$$

Proof:

$$E(A, K(X_n)) \leq \sup_{\|f\| \leq 1} \|(K - KP_n)f\|$$

= $\sup_{\|f\| \leq 1} \|(K^* - P_nK^*)f\| = E(A^*, X_n).$

Since $d_n(A^*) = d_n(A)$, it follows that if X_n is optimal for A^* then $K(X_n)$ is optimal for A.

Example. Since X_n^1 is optimal for A, by reversing the roles of K and K^* ,

$$(X_n^1)^* := [K^*(\eta_1, \cdot), \ldots, K^*(\eta_n, \cdot)]$$

is optimal for A^* . So by the lemma, $K((X_n^1)^*) = X_n^2$ is optimal for A.

Example. Since X_n^1 is optimal for A, by reversing the roles of K and K^* ,

$$(X_n^1)^* := [K^*(\eta_1, \cdot), \ldots, K^*(\eta_n, \cdot)]$$

is optimal for A^* . So by the lemma, $K((X_n^1)^*) = X_n^2$ is optimal for A.

Applying the lemma twice gives

$$E(A, KK^*(X_n)) \leq E(A, X_n),$$

and so if X_n is optimal for A, $KK^*(X_n)$ is also optimal for A.

Applying either the lemma recursively, or the double step recursively, we obtain

Theorem If K is NTP, then for $I = 1, 2, 3, \ldots$,

$$(KK^*)^{\prime}(X_n^1) = [(KK^*)^{\prime}K(\cdot,\xi_1),\ldots,(KK^*)^{\prime}K(\cdot,\xi_n)]$$

and

$$(KK^*)^{l}(X_n^2) = [(KK^*)^{l+1}(\cdot,\eta_1),\ldots,(KK^*)^{l+1}(\cdot,\eta_n)]$$

are optimal subspaces for the n-width of A.

Back to H^r

Recall that $A_0^2 = \{Kf : ||f|| \le 1\}$, where

$$\mathcal{K}(x,y) = egin{cases} x(1-y) & x \leq y; \ y(1-x) & x \geq y, \end{cases}$$

Then $K^*K = KK^*$ has eigenvalues $1/(k\pi)^4$ and eigenfunctions sin $k\pi x$, k = 1, 2, ..., and so $\xi_j = \eta_j = j/(n+1)$, j = 1, ..., n.

Back to H^r

Recall that $A_0^2 = \{Kf : ||f|| \le 1\}$, where

$$\mathcal{K}(x,y) = egin{cases} x(1-y) & x \leq y; \ y(1-x) & x \geq y, \end{cases}$$

Then $K^*K = KK^*$ has eigenvalues $1/(k\pi)^4$ and eigenfunctions sin $k\pi x$, k = 1, 2, ..., and so $\xi_j = \eta_j = j/(n+1)$, j = 1, ..., n. So

$$\begin{aligned} X_n^1 &= \{ s \in S_{1,\boldsymbol{\xi}} : \quad s(0) = s(1) = 0 \} \\ X_n^2 &= \{ s \in S_{3,\boldsymbol{\xi}} : \quad s(0) = s(1) = 0, \ s''(0) = s''(1) = 0 \} \\ X_n^3 &= \dots \end{aligned}$$

Recall that

$$\mathcal{A}^r = \left\{ \sum_{i=0}^{r-1} \mathbf{a}_i x^i + \mathcal{K} f(x) : \mathbf{a}_i \in \mathbb{R}, \|f\| \leq 1
ight\}$$

where

$$K(x,y) = \frac{1}{(r-1)!}(x-y)_+^{r-1}.$$

Recall that

$$\mathcal{A}^r = \left\{ \sum_{i=0}^{r-1} \mathbf{a}_i x^i + \mathcal{K} f(x) : \mathbf{a}_i \in \mathbb{R}, \|f\| \leq 1
ight\}$$

where

$$K(x,y) = \frac{1}{(r-1)!}(x-y)_+^{r-1}.$$

To obtain the *n*-width and optimal subspaces we must first define

$$K_r = (I - Q_r)K,$$

where Q_r is the orthogonal projection onto

$$\Pi_r = [x^i : i = 0, 1, \dots, r-1].$$

Then we work with the eigenvalues and eigenfunctions of $K_r^*K_r$ and $K_rK_r^*...$ Although K_r is not totally positive, $K_r^*K_r$ is.

References

- J. A. Evans, Y. Bazilevs, I. Babuska, and T. J. R. Hughes (2009), n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method,
- M. S. Floater, E. Sande (2017), Optimal spline spaces of higher degree for L² n-widths,
- ► A. Kolmogorov (1936), Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse,
- A. A. Melkman and C. A. Micchelli (1978), Spline spaces are optimal for L² n-width,
- ► A. Pinkus (1985), *n*-Widths in approximation theory,