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Point subdivision schemes

Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.
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Point subdivision schemes

Chaikin’s algorithm in more detail:

Input: δ

First step: Sδ

Second step: S2δLimit: S∞δ = B2

(Sδ)2i = 3
4δi + 1

4δi+1

(Sδ)2i+1 = 1
4δi + 3

4δi+1

S is a subdivision operator

The iterates Snδ describe the
refined data

Snδ → S∞δ = B2 as n→∞

In this example the limit is C 1

δ0

δ−1 δ1

Sδ0

Sδ1
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Point subdivision schemes
Start from input data p, a subdivision operator can be defined by two rules:

(Sp)2i =
∑
j∈Z

a−2jpi+j ,

(Sp)2i+1 =
∑
j∈Z

a−2j+1pi+j

The sequence a is called mask, ai 6= 0 for only finitely many i

The limit S∞p is at least C 0, we are interested in higher regularity

Use the symbol: a(z) =
∑

j∈Z ajz
j .

For example, Chaikin’s algorithm:

a(z) = 1
4z
−2 + 3

4z
−1 + 3

4 + 1
4z .
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Smoothing of point subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1

⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of point subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z
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Smoothing of point subdivision schemes

The mask of the Lane-Riesenfeld algorithm for degree k B-Splines:

ak(z) =
(z + 1)k+1

(2z)k

Apply subdivision operator Sk to 2D input data δ = (i , δi ,0)i∈Z:

S∞1 δ S∞2 δ S∞3 δ

a1(z) = (z+1)2

2z a2(z) = z+1
2z a1(z) a3(z) = z+1

2z a2(z)

C 0 C 1 C 2
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Hermite subdivision schemes

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2
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Smoothing of Hermite subdivision schemes

The spectral condition implies the existence of the Taylor scheme S∗ with
respect to the Taylor operator:( ∆ −1

0 1

)
S =

1

2
S∗
( ∆ −1

0 1

)

Theorem (Merrien and Sauer, 2012)

If the Taylor scheme S∗ is C
`, then the Hermite scheme S is C `+1.

Theorem (Dyn and M, 2017)

Any ∗ Hermite scheme S which is C ` can be transformed to a new Hermite
scheme of regularity C `+1 by manipulating symbols.

Advantage: Procedure can be iterated.

Disadvantage: Makes support larger by a maximum of 5.
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Smoothing of Hermite subdivision schemes

Theorem (Dyn and M, 2017)

Any ∗ Hermite scheme S which is C ` can be transformed to a new Hermite
scheme of regularity C `+1 by manipulating symbols.

Matrix-valued symbol A(z)
↓

Compute Taylor scheme S∗ with TS = S∗T ,
matrix-valued symbol A∗(z)

↓
Change to eigenbasis of A∗(1) transforms A∗(z) to J(z)

↓

Compute

(
J11(z)(z−1 + 1) J12(z)/(z−1 − 1)
J21(z)(z−2 − 1) J22(z)

)
↓

Undo change of basis, invert Taylor factorization
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Examples
We smoothen an interpolatory C 1 Hermite scheme by J.-L. Merrien.

C 1 Hermite limit

S∞δ

C 2 Hermite limit

S∞δ

S∞′δ S∞′δ
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Examples
We smoothen a C 2 Hermite scheme constructed by a de Rham transform.

C 2 Hermite limit

S∞δ

C 3 Hermite limit

S∞δ

S∞′′δ S∞′′δ
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Conclusion

We can smoothen Hermite schemes in a manner similar to point
subdivision schemes, by manipulating symbols.

Our procedure is able to construct arbitrarily regular Hermite
schemes.

Thank you!

D  O  C  T  O  R  A  L       P  R  O  G  R  A  M

D I S C R E T E      M A T H E M A T I C S

T U   &   K F U   G R A Z  •  M U   L E O B E N
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Smoothing of Hermite schemes

For example, if S has the mask
(

a b
c d

)
and b(1) = 0, then the mask of the

new Hermite scheme S is given by

a(z) = (z+1)
2z

(
(z−2 − 2)b(z) + a(z)

)
,

b(z) = 1
2

zb(z)

(1− z)
,

c(z) = 1
2(z−2 − 1)

(
c(z)− a(z)(z−1 − 2)

+ d(z)(z−2 − 2)− b(z)(z−1 − 2)(z−2 − 2)
)
,

d(z) = 1
2(d(z)− (z−1 − 2)b(z)).
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