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Introduction
®000

Interpolation Matrix |

Let
¢:RY R
be a positive definite function and
(Xj,¥j)j=1,..N € RY x R x; pairwise distinct.

Wishing to interpolate (xj, y;), i.e. finding ¢; € R with

N
Fxi) =D GO(xk — %j) = yi
j=1

we have to solve a linear system.
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Interpolation Matrix |l

Namely this one:
¢(X1 — Xl) . ¢(X1 — XN) (o] n
Ac = : : N B
Plxy —x1) ... P(xy—xn)/) \cn YN
For this purpose, the condition number of A is of some interest.

Amax(A) A

Amin(A) A

k= k(A) =
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Interpolation Matrix |l

Namely this one:
¢(X1 — Xl) . ¢(X1 — XN) (o] n
Ac = : : N B
Plxy —x1) ... P(xy—xn)/) \cn YN
For this purpose, the condition number of A is of some interest.

Amax(A) A

Amin(A) A

k= k(A) =

To avoid technical details, we will focus in this talk on

d(x) = e FlxIE,
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Known Results

Smallest eigenvalue: Narcowich and Ward, Schaback proved an
estimate like:

Bound on A (Narcowich, Ward 92)

Let g = 1/2 minj7,gk ij - XkHZ- Then

A>g MY inf D(x)
lIx[l2<2M

for M > 6.38d/q.
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Known Results

Smallest eigenvalue: Narcowich and Ward, Schaback proved an
estimate like:

Bound on A (Narcowich, Ward 92)

Let g = 1/2 minj7,gk ij - XkHZ- Then

A>g MY inf D(x)
lIxll2<2M

for M > 6.38d/q.

4

Note that the lower bound is uniform over the family of g-separated
point sets X:

inf  AAx) =g MY inf  d(x).
Xq—sI:parated (Ax) Za Hx||I2n§2M ()

In particular, it is independent of | X].
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Known Results

Smallest eigenvalue: Narcowich and Ward, Schaback proved an
estimate like:

Bound on A (Narcowich, Ward 92)

Let g = 1/2 minj7,gk ij - XkHZ- Then

A>g MY inf D(x)
lIx[l2<2M

for M > 6.38d/q.

We obtain for g =1/2

2>y B—d/2e—160d2/6.
But numerical experiments (Boyd, Gildersleeve 2011) and
theoretical results for gridded data (Baxter 1994) give

A ~y ﬂfd/2efd7r2/(4,3)
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Known Results

Largest eigenvalue: In Wendland it is simply estimated by
Gerschgorin circles (if possible):

A< ®(0 +maxZ|¢ —xi)] < Nb(0) = N.
k#j

If ® decays quickly, a more careful evaluation of this sum gives
(Narcowich et al. 1993)

AN<1+3d> (n+2)7 e/,
n=1
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[eJele] )

Known Results

Largest eigenvalue: In Wendland it is simply estimated by
Gerschgorin circles (if possible):

A< ®(0 +maxZ|¢ —xi)] < Nb(0) = N.
k#j

If ® decays quickly, a more careful evaluation of this sum gives
(Narcowich et al. 1993)

[o¢]
AN<1+3d> (n+2)7 e/,
n=1
For gridded data an optimal upper bound is known:

A< B9 Z e ImkIZ/8
kezd
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Exponential Sums

Link to exponential sums:

Amin = min ¢’ Ac
llell2=1

c'Ac = Z cjckCD(xj —Xk) = Z Cjck(27r)_d/ ei(xj—xk)~xé‘)(x) dx
Jk Jok R
2

=(2m)” d/ Zce”‘!x ®(x) dx

> (27)” dx'enqu) X /B Zce’xfx dx
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Exponential Sums

Link to exponential sums:

Amin = min ¢’ Ac

llcll2=1
c'Ac = Z cjckCD(xj —Xk) = Z Cjck(27r)_d/ ei(xj—xk)~xé‘)(x) dx
Jk Jok R

2

=(2m)” d/ Zce”‘!x ®(x) dx

> (27)” dx'enqu) X /B Zce’xfx dx

This estimate seems to be rather crude! How much do we loose?



Estimating Exponential Sums
ce00

How good is this estimate?
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How good is this estimate?

2 2

ix;-x > XX
/ Jz::cei x) dx XlengMd)( )/B ZcJeJ dx

M J 1
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Localization Estimates

Now we estimate

2 2

N N
[ gema| axz [ o[> e o
B R =

M| j=1

where supp U c By, ¥ < 1.
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Localization Estimates

Now we estimate

2 2

N N
[ gema| axz [ o[> e o
B R =

M| j=1

where supp U C By, W < 1. Now as before

2
N
/Rd W(x) Z ce™*| dx = Z ciekW(x; —xx) = ¢ Bc
Jj=1 J-k

Then use Gerschgorin for B. Hope: B is more diagonally dominant
than A.
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Localization Estimates

Now we estimate
2 2

N N
[ gema| axz [ o[> e o
B R =

M| j=1

where supp U C By, W < 1. Now as before

2
N
/Rd W(x) Z ce™*| dx = Z ciekW(x; —xx) = ¢ Bc
Jj=1 J-k

Then use Gerschgorin for B. Hope: B is more diagonally dominant
than A.

In fact, only ¥ < XB,, is necessary. Then it is possible that B is a
diagonal matrix.
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Results of Komornik and Loreti

Lower Bounds (Komornik and Loreti, 05)

Let X C RY be a finite set with

Goo > 1/2min |ly — X[|oo-
x£y

If M > mv/d/(2qs), then
2

N
/ > ge | dx > kola, M)lel3
B

M| j=1

Here we can choose

w2d w2d
keolg M) =1 — —— dg-d.
(9. M) < 4M2q§o>
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Bounds for \

Recall
c"Ac = cickP(x; — xk)
- JCk AR k
Jk
2

> (27r)_dx|€néch> X /M Zlc e™i*| dx
J

Applying the derived bound gives

Improved Bounds for A

Let X have a oco-separation radius of at least go,. Then

P m2d n2d
> - | —q_
A2 xleng,v, *() <1 4/\/]2ng> 42d Too

for all M > 7v/d /(2g00).
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The Gaussians

For our prototypical example ®3(x) = e BIxl3 we have that

R T d/2 )
b (w) = <6> e IwI3/(45).

We again rescale X and /3 such that ¢ = 1/2 and obtain
2>y B—d/2e—7r2(d+1)/(4/3)

A2q. B—d/2e—(7r\/g+€)2/(4ﬂ).

Recall the optimal bound on regular grids:

A ~d B—d/2e—d7r2/(4,6’)
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Bounds on A

For the lower bound, we were able to use an estimate in Fourier
space to obtain a better estimate. Is this here possible as well?

2

c"Ac = (27)” / Zce”‘JX ®(x) dx
=1

We have to find reasonable upper bounds for integrals over
exponential sums.



Bounds for A and A
®000

Bounds on A

For the lower bound, we were able to use an estimate in Fourier
space to obtain a better estimate. Is this here possible as well?

2

c"Ac = (27)” / Zce”‘JX ®(x) dx
=1

We have to find reasonable upper bounds for integrals over
exponential sums.

Upper Bound of Selberg Type

Let X C RY be a finite family of points with co-separation radius
- Then

2

d
P o] o= () et
o0
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Fourier-based Upper Bound

Upper Bounds for A (D., Iske 2016)

Let & : RY — R be a function with ®(x) = ¢(||x||2) positive and
decreasing. Then for X with oco-separation radius g, and any
M > 0 we obtain

d
/ E cje™i™ x) dx < 2 <I\/I + q7T> d(Mk).
j=1 >

Proof: For any k € Z, let
Qk = {Mk-l- M(al,...ad)T ‘ Qa;j € [0,1)}.

Then R, = UQ, and we can cover RY with blocks such that 29
have minimal norm element M| k||2. Use the preceding lemma for
each tile.
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Gaussians

For our example, the Gaussians, we obtain
AN llklI3/
/\§4d<> e IImkllz/5,
5) 2
keZ20
Baxter proved for X C Z9 that the best upper bound is given by

T d/2 2
A< </3> ORI

kezd

Thus up to a constant we generalized this result to arbitrary grids.
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Gaussians

For our example, the Gaussians, we obtain
AN llklI3/
/\§4d<> e IImkllz/5,
5) 2
keZ20
Baxter proved for X C Z9 that the best upper bound is given by

T d/2 2
A< </3> ORI

kezd
Thus up to a constant we generalized this result to arbitrary grids.

For the condition number we obtain for co-separation

< 49 Z e lImkl3/8 e(W\/E+E)2/4ﬁ(_‘(57d)—1.
kezd,

K =

>| >



Thank you
for your attention!
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