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Basic Reconstruction Problem

Problem formulation:

Let Q C R? be given. Reconstruct a bivariate function f = f(x, y) with f € L}(Q)
on its domain £ from given Radon data

{Rf(t,0) |t R, 0€[0,nm)},

where the Radon transform Rf of f € L1(R?) is defined as

RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}
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Basic Reconstruction Problem

Problem formulation:

Let Q C R? be given. Reconstruct a bivariate function f = f(x, y) with f € L}(Q)
on its domain £ from given Radon data

{Rf(t,0) |t R, 0€[0,nm)},

where the Radon transform Rf of f € L1(R?) is defined as

RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}

Y

ng = (cos(6), sin(0))

N (tcos(6), tsin(6))

A

z

{zcos(0) + ysin(0) =t}
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Basic Reconstruction Problem

Problem formulation:

Let Q C R? be given. Reconstruct a bivariate function f = f(x, y) with f € L}(Q)
on its domain £ from given Radon data

{Rf(t,0) |t R, 0€[0,nm)},

where the Radon transform Rf of f € L1(R?) is defined as

RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}

|

(a) Phantom (b) Radon transform

Fig.: The Shepp-Logan phantom
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Basic Reconstruction Problem

Problem formulation:
Let Q C R? be given. Reconstruct a bivariate function f = f(x, y) with f € L}(Q)
on its domain £ from given Radon data

{Rf(t,0) | teR, 0€]0,m)},
where the Radon transform Rf of f € L1(R?) is defined as
RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}

Analytical solution:
The inversion of R involves the back projection Bh of h € L}(R x [0, 7)),

Bh(x,y) = % /O h(x cos(8) + ysin(6),6) 6 for (x,y) € R?,
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Basic Reconstruction Problem

Problem formulation:
Let Q C R? be given. Reconstruct a bivariate function f = f(x, y) with f € L}(Q)
on its domain £ from given Radon data

{Rf(t,0) |t R, 0€[0,nm)},

where the Radon transform Rf of f € L1(R?) is defined as

RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}

Analytical solution:
The inversion of R involves the back projection Bh of h € L}(R x [0, 7)),

1 ™
Bh(x,y) = — / h(x cos(8) + ysin(6),6) 6 for (x,y) € R?,
T Jo
and is given, for f € L1(R?) N C(R?), by the filtered back projection formula

fxy) = %B(f“[IS\f(Rf)(Sv9)])(X,Y) V(x,y) € R%
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A; : R — R,
AL(S) = |S|IW(S/t) forSeR

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A; : R — R,
AL(S) = |S|IW(S/t) forSeR

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].

(a) Ram-Lak (b) Shepp-Logan (c) Cosine

Fig.: Window functions of typical low-pass filters
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A; : R — R,
AL(S) = |S|IW(S/t) forSeR

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].

Approximate reconstruction formula:

Applying the low-pass filter A; yields an approximate FBP reconstruction f; given
by

fi(x,y) = %B(]:_l[AL(S)]:(Rf)(S,9)])(x,y) for (x,y) € R
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A; : R — R,
AL(S) = |S|IW(S/t) forSeR

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].
Approximate reconstruction formula:
Applying the low-pass filter A; yields an approximate FBP reconstruction f; given
by
1
filx,y) =5 B(FALS)F(RF)(S,0)])(x,y) for (x,y) € R

Proposition

Let f € LY(R?) and W € L>(R) be even with supp(W) C [-1,1]. Then, for all
L > 0, the approximate FBP reconstruction f, is defined almost everywhere on R?
and can be rewritten as 1

fi= 5 B(F ALxRS). O
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Approximate Reconstruction

For all L > 0, the approximate FBP reconstruction f, satisfies f, € L?(R?) and
fL = f * KL

with the convolution kernel K; : R2 — R given by

1
Ki(xy) =3 B(F*AL)(x,y) for(x,y) € R%. O
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Approximate Reconstruction

Proposition
For all L > 0, the approximate FBP reconstruction f, satisfies f, € L?(R?) and
fL = f * KL

with the convolution kernel K; : R2 — R given by

1
Ki(xy) =3 B(F*AL)(x,y) for(x,y) € R%. O

We define the bivariate window function W, : R2 — R as
witey) = w() for oy e w2
where we let

r(x,y) = v/x2+y2 for (x,y) € R%

Matthias Beckmann (Uni HH) Error analysis for filtered back projection reconstructions in fractional Sobolev spaces



Approximate Reconstruction

Proposition
For all L > 0, the approximate FBP reconstruction f, satisfies f, € L?(R?) and
fL = f * KL

with the convolution kernel K; : R2 — R given by

1
Kiloy) =5 B(F*AL)(x,y) for(x,y) € R%. O

We define the bivariate window function W, : R2 — R as

Wi(x,y) = W(M> for (x,y) € R?,

L
where we let
r(x,y) = v/x2+y2 for (x,y) € R%
Proposition
For all L > 0, the convolution kernel K satisfies K| € Co(R?) N L2(R?) and
FKi(x,y) = Wi(x,y) for almost all (x,y) € R?. O
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
e = f— f[_

depending on the window function W and the bandwidth L > 0.
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
€ = f— f[_
depending on the window function W and the bandwidth L > 0.

Previous work:

@ Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
€ = f— f[_
depending on the window function W and the bandwidth L > 0.

Previous work:

@ Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
@ LP-error estimates in terms of LP-moduli of continuity by [Madych, 1990]
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
€ = f— f[_
depending on the window function W and the bandwidth L > 0.
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@ Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
@ LP-error estimates in terms of LP-moduli of continuity by [Madych, 1990]
o L2-error estimates in fractional Sobolev spaces by [Beckmann & lIske, 2016]
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
€ = f— f[_
depending on the window function W and the bandwidth L > 0.

Previous work:

@ Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
@ LP-error estimates in terms of LP-moduli of continuity by [Madych, 1990]
o L2-error estimates in fractional Sobolev spaces by [Beckmann & lIske, 2016]
In this talk:
@ Sobolev error estimates for target functions f from fractional Sobolev spaces,
ie.,

fe H*(R?) = {g € S'(R?) | ||g[la <0} fora >0,

where
1

||g||§¢:m (1+r(X7y)2)a|]:g(X7y)|2 d(X7y)
R2
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
€ = f— f[_
depending on the window function W and the bandwidth L > 0.

Previous work:
@ Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
@ LP-error estimates in terms of LP-moduli of continuity by [Madych, 1990]
o L2-error estimates in fractional Sobolev spaces by [Beckmann & lIske, 2016]
In this talk:

@ Sobolev error estimates for target functions f from fractional Sobolev spaces,
i.e.,

fe H*(R?) = {g € S'(R?) | ||g[la <0} fora >0,
where

1 o
lelle = 7 | (1+r(x )" [Felxy)P d(x,y)
]RZ

e Convergence rates (L — o0) in terms of bandwidth L and smoothness o
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H?-Error Analysis

Theorem (H?-error estimate)

Let f € LY(R?) N H¥(R?) for some a > 0 and let W € L*®(R) be even with
supp(W) € [-1,1]. Then, for 0 < o < «, the H?-norm of the FBP reconstruction
error eg = f — f is bounded above by

1 o—
lecllo < (92w (L) + L7 )|l

where

q)%W(L) = sup (1 — W(S))2

~———*  forlL >0. O
Se[-1,1] (1+L2582)" ort=
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H?-Error Analysis

Theorem (H?-error estimate)

Let f € LY(R?) N H¥(R?) for some a > 0 and let W € L*®(R) be even with
supp(W) € [-1,1]. Then, for 0 < o < «, the H?-norm of the FBP reconstruction
error eg = f — f is bounded above by

L g—Q
lecllo < (92w (L) + L7 )|l

where 1 WS
o, w(l)= sup (1 - W(s))

~———*  forlL >0. O
sel-1,1) (1+L252)7 o=

Theorem (Convergence of ®., )

Let the window function W be continuous on [—1,1] and satisfy W(0) = 1. Then,
for all v > 0,

(1- W(s))’

(L) = 56[0 1] (1+ 1252)7 -
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H?-Convergence of the FBP Reconstruction

Corollary (H?-convergence of the FBP reconstruction)

Let f € LY(R?) N HY(R?) for some o > 0 and W € C([-1,1]) with W(0) = 1.
Then, for 0 < o < «, the H?-norm of the FBP reconstruction error e = f — f;

satisfies

llecllo = o(1) for L — oo. O
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H?-Convergence of the FBP Reconstruction

Corollary (H?-convergence of the FBP reconstruction)

Let f € LY(R?) N HY(R?) for some o > 0 and W € C([-1,1]) with W(0) = 1.
Then, for 0 < o < «, the H?-norm of the FBP reconstruction error e = f — f;
satisfies

llecllo = o(1) for L — oo. O

Let S¥ ;€ [0,1] denote the smallest maximizer of the function ®, w ., defined
as

_1-w())y
CD%W’[_(S) = (1 m L252)’Y for S e [0, ].]
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H?-Convergence of the FBP Reconstruction

Corollary (H?-convergence of the FBP reconstruction)

Let f € LY(R?) N H*(R?) for some a > 0 and W € C([-1,1]) with W(0) = 1.
Then, for 0 < o < «, the H?-norm of the FBP reconstruction error e = f — f;

satisfies
llecllo = o(1) for L — oo. O

Let S¥ ;€ [0,1] denote the smallest maximizer of the function ®, w ., defined
as

_1-w())y
CD%W,[_(S) = (1 m L252)’Y for S e [0, ].]

Sk _ . w.L is uniformly bounded away from 0, i.e., there exists a constant c,—o,w > 0
such that

a—oW.L > Ca—ow YL>0.
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H?-Convergence of the FBP Reconstruction

Corollary (H?-convergence of the FBP reconstruction)

Let f € LY(R?) N H*(R?) for some a > 0 and W € C([-1,1]) with W(0) = 1.
Then, for 0 < o < «, the H?-norm of the FBP reconstruction error e = f — f;

satisfies
llecllo = o(1) for L — oo. O

Let S¥ ;€ [0,1] denote the smallest maximizer of the function ®, w ., defined
as

_1-w())y
CD%W,[_(S) = (1 m L2S2)’Y for S e [0, ].]

S:_ . w1 is uniformly bounded away from 0, i.e., there exists a constant ¢4, > 0
such that

a—oW.L > Ca—ow YL>0.

Under the above assumption follows that

b o, W(L) < Ca Uo 3\) ||1 - W”io,[fl,l] L2(U_a) = O(L2(U—0¢)) for L — oo.
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Order of Convergence

Theorem (Rate of convergence)

Let f € LY(R?) N HY(R?) for some o > 0 and W € C([-1,1]) with W(0) = 1.
Further, let the above assumption be satisfied. Then, for 0 < o < «, the H?-norm
of the FBP reconstruction error e, = f — f| is bounded above by

letllo < (€275 1 = Wilse o+ 1) £27% [l

In particular,
lleclle = O(L°=%) for L — oo,

i.e., the decay rate is determined by the difference between the smoothness « of the
target function f and the order o of the Sobolev norm in which the reconstruction
error e; is measured. O

4
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Order of Convergence

Theorem (Rate of convergence)

Let f € LY} (R?) N HY(R?) for some o > 0 and W € C([-1,1]) with W(0) = 1
Further, let the above assumption be satisfied. Then, for 0 < o < «, the H?-norm
of the FBP reconstruction error e, = f — f| is bounded above by

lecllo < (€228 1L = Wil foa + 1) L7l

In particular,
lleclle = O(L°=%) for L — oo,

i.e., the decay rate is determined by the difference between the smoothness « of the
target function f and the order o of the Sobolev norm in which the reconstruction
error e; is measured. O

Example:
Let the window function W € C([—1, 1]) satisfy

W(S)=1 VS e (—¢e)

with some 0 < € < 1. Then, the above assumption is fulfilled with co—ow = €.
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Numerical Observations

We investigate the behaviour of S7 |, ; and &, (L) numerically for the following
low-pass filters:

@ Shepp-Logan filter: W(s) = smc(%s) “Xi=1,11(5),

o Cosine filter: W(S) = COS(NTS) X-1,1(5),

e Hamming filter (for 8 € [5,1]): W(S) = (8 + (1 — B8) cos(S)) - X[-1,11(5).
o Gaussian filter (for 8 > 1): W(s) = eXP(—(“S/5)2) 'X[_1,1](5)-
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Numerical Observations

We investigate the behaviour of S7 |, ; and &, (L) numerically for the following
low-pass filters:

@ Shepp-Logan filter: W(S)

o Cosine filter: W(S) = cos(%
o Hamming filter (for 8 € [3,1]): W(S) (1 )COS(ﬂ'S)) X[=1,1(5),
e Gaussian filter (for 3 > 1): W(S) = exp(—(75/58)?) - X[=1,11(5)-

For v < 2, we observe that the above assumption
ElCrY,W >0VL>0: S’T,W,L 2 Cy.w

is fulfilled and
o, w(l)=0(L72) for L — oo.
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Numerical Observations

We investigate the behaviour of S7 |, ; and &, (L) numerically for the following
low-pass filters:

@ Shepp-Logan filter: W(S) =sinc(%2) - Xj-1,11(S),
o Cosine filter: W(S) = cos(%2) - Xi-1,1)(5),
e Hamming filter (for 8 € [5,1]): W(S) = (8 + (1 — B8) cos(S)) - X[-1,11(5).

o Gaussian filter (for 3 > 1): W(S) = exp(—(75/58)?) - X[=1,11(5)-

For v < 2, we observe that the above assumption
ElCrY,W >0VL>0: S’T,W,L 2 Cy.w

is fulfilled and
o, w(l)=0(L72) for L — oo.

For v > 2, we have

Sswae—0 for L— 00
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Numerical Observations

We investigate the behaviour of S7 |, ; and &, (L) numerically for the following
low-pass filters:

@ Shepp-Logan filter: W(S) =sinc(%2) - Xj-1,11(S),

@ Cosine filter: W(S) = cos(%2) - X[-1.1(5).

o Hamming filter (for 8 € [3,1]): W(S) (1= B)cos(nS)) - Xj—1,15(5),
o Gaussian filter (for 3 > 1): W(S) = exp(—(75/58)?) - X[=1,11(5)-

For v < 2, we observe that the above assumption
ElC»Y,W >0VL>0: S’T,W,L 2 Cy.w

is fulfilled and
o, w(l)=0(L72) for L — oo.

For v > 2, we have

Sswae—0 for L— 00

and the convergence rate of ., |y stagnates at

o, w(l)=0(L"*) for L— oco.
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Numerical Observations

—— 0y
—

10° 10° 10°
> < L

10 10 10

108 107 10

10* 10° 10° 10" 10° 10° 10* 10° 10°
L L 2

(d) v=25 (e)y=3 (f)y=4

Fig.: Decay rate of ®, w for the Shepp-Logan filter
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H-Error Analysis for CX-Windows

Theorem (Convergence rate of ¢, for Ck-windows)

Let the window function W be k-times continuously differentiable on [-1,1], k > 2,
with '
W(0) =1, WwW0)=0 V1<j<k-1

and let v > 0 be given. Then, we have

k 3 ”W ” oo,[— 11]L—2'y forv < k
%W(L) < &
Gog

|| W) ||OO[ 11]L*2k for v > k

with the strictly monotonically decreasing constant
k N2 /v — k\/
k= |—— — for v > k.
S (’y = k) ( ¥ ) iU

In particular,

O, w(L) = O(L2mn o) for L — o0, 0
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H-Error Analysis for CX-Windows

Corollary (H?-error estimate for C*-windows)

Let f € Ll(]R2) OHQ(RQ) for some o> 0 and W € Ck([_L 1])' k = 2, with
wo)=1, WW0)=0 VIi<j<k-1.

Then, for 0 < o < «, the H? -norm of the FBP reconstruction error e, = f — f, is
bounded above by

(B IW O oy + 1) L7 [ fora—o<k
<% | W(k)”oo,[—l,l] L~k + La*a) Iflla fora—o>k

with the strictly monotonically decreasing constant

k K2 oo — o — k\ (@792
Ca—o,k:< k) (a g ) fora — o > k.

o — 0 — a—0

lecllo <

In particular,

||eL||o§ (CH W(k)”oo,[—l,l] L~ min{k,a—o}+La—a) Hf”a _ O(L_ min{k,a—a}>. N
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Numerical Results

We investigate the behaviour of ®., v numerically for the generalized Gaussian filter
AL(S) = [SIW(%/1)
with the window function

W(S) = exp ((”';)3 for S € [~1,1]

for ke Nand g > 1.
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Numerical Results

We investigate the behaviour of ®., v numerically for the generalized Gaussian filter
AL(S) = [SIW(%/1)
with the window function

W(S) = exp ((”';)3 for S € [~1,1]

fork e Nand 5 > 1.
o If k is even, W satisfies W € C¥([-1,1]) and

Wo)=1, WO0)=0vi<j<k-1, wh(0)= —k!(7>k £0.
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Numerical Results

107 107 107
10 10 10
10" 10° 10° 10" 10° 10° 10* 10° 10°
L L L
(@)v=2 (b)v=3 (c)y=4
—— 0y
—
107 107" 107
I I w
107 107 107
107 10 107
10* 10° 10° 10" 10° 10° 10* 10° 10°
L L 2
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Numerical Results

We investigate the behaviour of ®., v numerically for the generalized Gaussian filter
AL(S) = [SIW(%/1)

with the window function

W(S) = exp ((”';)k> for S € [~1,1]

for ke Nand g > 1.
o If k is even, W satisfies W € C¥([-1,1]) and

Wo)=1, WO0)=0vi<j<k-1, wh(0)= —k!(7>k £0.

o If k is odd, W satisfies W € C*~1([~1,1]) with
Wwo)=1, WwY0)=0vV1<j<k-1,

but W(k=1) is not differentiable at zero.
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Numerical Results
We investigate the behaviour of ®., v numerically for the generalized Gaussian filter

Ac(S) = [SIW (/)

with the window function
k
W(S) = exp (”';) for S € [~1,1]

for ke Nand g > 1.

wis)

(c) 2nd Derivative

(a) Window (b) 1st Derivative
Fig.: Window function of the generalized Gaussian filter with k =3 and 8 = 4
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Numerical Results

107 10 107
L L J
10 10 10
107 107 107
10" 10° 10° 10" 10° 10° 10* 10° 10°
L L L

—— 0
10° 10° 10° —L
107 107 10
L L L
10 10 10
107 10 107
10* 10° 10° 10" 10° 10° 10* 10° 10°
L L L

(d) v =35 (=4 () =6
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H?-Error Analysis for Lipschitz-Windows

Theorem (Convergence rate of ®, y for Lipschitz-windows)

Let the window function W satisfy wb) ¢ AC([-1,1]) forall 0 < j < k — 1 and
W(0) =1, W(0)=0 V1<j<k-—1.

Further, let W*=1) pe Lipschitz-continuous on [—1,1]. Then, for v > 0 we have

”W( || [11]L for v < k

&, w(l) <

||OO[ L 2k for vy > k

with the strictly monotonically decreasing constant
k N2 /v — k\/?
Cy k= (7) (7) for v > k.
! v~k 2!
In particular,
O (L) = (’)(L_z"‘i"{k”}) for L —» oc. O
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H?-Error Analysis for Lipschitz-Windows

Corollary (H?-error estimate for Lipschitz-windows)

Let f € LY(R?)NH*(R?) for o > 0 and let W) € AC([-1,1]) forall0 < j < k—1
with .
W(0) =1, WW0)=0 V1<j<k—1.

Further, let Wk=1) be Lipschitz-continuous on [—1,1]. Then, for 0 < o < «, the

H?-norm of the FBP reconstruction error e, = f — f; is bounded above by
(% [ W(k)||oo,[—1,1] 4 1) L7 [|f]| o fora —o < k
HeLHcr < S ) i o
(=6 WO oo oy L+ L7 [fla fora—o >k

with the strictly monotonically decreasing constant

k K2 oy — o — Kk (@=9)2
Ca—o—,kZ( k) (a 7 ) fora — o > k.

o — 0 — a—0o

In particular,

||eL||0'§ (CH W(k)”oo,[—l,l] L~ min{k,afa}+l_afa) Hf”a _ O<L7 min{k,afzr}). N
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Asymptotic H?-Error Analysis

Theorem (Asymptotic H?-error estimate)

Let f € LY(R?) N H*(R?) for a > 0 and let W € L°°(R) be k-times differentiable
at the origin, k > 2, with

W(0) =1, WwW(©0)=0 V1<j<k-—1

Then, for 0 < o < «, the H? -norm of the FBP reconstruction error e, = f — f, is
bounded above by

ol (S IW® )] +1) L7~ f]l0 + o(L7) fora—o < k
€Ll S
(2 ook IWRQ)| L%+ L772) [flla + o(L™) fora—o >k

with the strictly monotonically decreasing constant

k K2 rop — o — k(@792
ca_mk:( k) (a 7 ) fora — o > k.

o — 0 — a—0

In particular,

||eL||a < (C‘W(k)(O)‘ L~ min{k,a—oc} + La—a)Hf”a + O(L_ min{k,a—o}). N
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Thank you for your attention!
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