A Tale of Couples and Other Syzygies

Jesús Carnicer & Tomas Sauer*

Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung Fakultät für Informatik und Mathematik

> & FORWISS

Universität Passau

2nd IM-Workshop on Applied Approximation, Signals and Images, February 27 – March 3, 2017

Tomas Sauer (Uni Passau)

Definition

- **2** Total degree $\leq n$: $\Pi_n = \operatorname{span}_{\mathbb{K}} \{(\cdot)^{\alpha} : |\alpha| \leq n\}.$

Interpolation

• Interpolation at $X \subset \mathbb{K}^s$: given $y \in \mathbb{K}^X$ find f such that

$$f(X) = y$$
, i.e., $f(x) = y_x$, $x \in X$.

() *X* correct for subspace $P \subset \Pi$: there exists unique $f \in P$ such that

f(X) = y.

) X is *n*–correct if X is correct for Π_n .

Tomas Sauer (Uni Passau)

Definition

D *Polynomials*:
$$\Pi = \mathbb{K}[x] = \mathbb{K}[x_1, \dots, x_s] = \operatorname{span}_{\mathbb{K}} \{(\cdot)^{\alpha} : \alpha \in \mathbb{N}_0^s\}.$$

2 Total degree $\leq n$: $\Pi_n = \operatorname{span}_{\mathbb{K}} \{ (\cdot)^{\alpha} : |\alpha| \leq n \}.$

Interpolation

• Interpolation at $X \subset \mathbb{K}^s$: given $y \in \mathbb{K}^X$ find f such that

$$f(X) = y$$
, i.e., $f(x) = y_x$, $x \in X$.

) X correct for subspace $P \subset \Pi$: there exists unique $f \in P$ such that

f(X) = y.

) X is *n*–correct if X is correct for Π_n .

Tomas Sauer (Uni Passau)

Definition

• Polynomials:
$$\Pi = \mathbb{K}[x] = \mathbb{K}[x_1, \dots, x_s] = \operatorname{span}_{\mathbb{K}} \left\{ (\cdot)^{\alpha} : \alpha \in \mathbb{N}_0^s \right\}$$

2 Total degree $\leq n$: $\Pi_n = \operatorname{span}_{\mathbb{K}} \{(\cdot)^{\alpha} : |\alpha| \leq n\}.$

Interpolation

• Interpolation at $X \subset \mathbb{K}^s$: given $y \in \mathbb{K}^X$ find f such that

$$f(X) = y$$
, i.e., $f(x) = y_x$, $x \in X$.

) X correct for subspace $P \subset \Pi$: there exists unique $f \in P$ such that

f(X) = y.

) X is *n*–correct if X is correct for Π_n .

Tomas Sauer (Uni Passau)

Definition

• Polynomials:
$$\Pi = \mathbb{K}[x] = \mathbb{K}[x_1, \dots, x_s] = \operatorname{span}_{\mathbb{K}} \{(\cdot)^{\alpha} : \alpha \in \mathbb{N}_0^s\}$$

2 Total degree $\leq n$: $\Pi_n = \operatorname{span}_{\mathbb{K}} \{(\cdot)^{\alpha} : |\alpha| \leq n\}.$

Interpolation

■ Interpolation at $X \subset \mathbb{K}^s$: given $y \in \mathbb{K}^X$ find f such that

$$f(X) = y$$
, i.e., $f(x) = y_x$, $x \in X$.

) X correct for subspace $P \subset \Pi$: there exists *unique* $f \in P$ such that

f(X) = y.

X is *n*–correct if X is correct for Π_n .

Tomas Sauer (Uni Passau)

Definition

• Polynomials:
$$\Pi = \mathbb{K}[x] = \mathbb{K}[x_1, \dots, x_s] = \operatorname{span}_{\mathbb{K}} \left\{ (\cdot)^{\alpha} : \alpha \in \mathbb{N}_0^s \right\}$$

2 Total degree
$$\leq n$$
: $\Pi_n = \operatorname{span}_{\mathbb{K}} \{ (\cdot)^{\alpha} : |\alpha| \leq n \}.$

Interpolation

1 Interpolation at $X \subset \mathbb{K}^s$: given $y \in \mathbb{K}^X$ find f such that

$$f(X) = y$$
, i.e., $f(x) = y_x$, $x \in X$.

2 X correct for subspace $P \subset \Pi$: there exists unique $f \in P$ such that

f(X) = y.

X is *n*–correct if X is correct for Π_n .

Tomas Sauer (Uni Passau)

Definition

• Polynomials:
$$\Pi = \mathbb{K}[x] = \mathbb{K}[x_1, \dots, x_s] = \operatorname{span}_{\mathbb{K}} \left\{ (\cdot)^{\alpha} : \alpha \in \mathbb{N}_0^s \right\}$$

2 Total degree $\leq n$: $\Pi_n = \operatorname{span}_{\mathbb{K}} \{(\cdot)^{\alpha} : |\alpha| \leq n\}.$

Interpolation

1 Interpolation at $X \subset \mathbb{K}^s$: given $y \in \mathbb{K}^X$ find f such that

$$f(X) = y$$
, i.e., $f(x) = y_x$, $x \in X$.

2 *X correct* for subspace $P \subset \Pi$: there exists *unique* $f \in P$ such that

f(X) = y.

3 X is *n*–correct if X is correct for Π_n .

Tomas Sauer (Uni Passau)

Definition

• Polynomials:
$$\Pi = \mathbb{K}[x] = \mathbb{K}[x_1, \dots, x_s] = \operatorname{span}_{\mathbb{K}} \left\{ (\cdot)^{\alpha} : \alpha \in \mathbb{N}_0^s \right\}$$

2 Total degree
$$\leq n$$
: $\Pi_n = \operatorname{span}_{\mathbb{K}} \{(\cdot)^{\alpha} : |\alpha| \leq n\}.$

Interpolation

1 Interpolation at $X \subset \mathbb{K}^s$: given $y \in \mathbb{K}^X$ find f such that

$$f(X) = y$$
, i.e., $f(x) = y_x$, $x \in X$.

2 *X correct* for subspace $P \subset \Pi$: there exists *unique* $f \in P$ such that

f(X) = y.

3 X is *n*–correct if X is correct for Π_n .

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- ③ *X* is *n*–correct if and only if there exist $l_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

n-correct sets: open and dense.

Problem

- Characterize *n*-correct subsets of K^s.
- Give *explicit* constructions for *n*-correct sets.
- Example: triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Tomas Sauer (Uni Passau)

Recall

• X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.

② Loss of Haar: " \Leftarrow " not true for s > 1.

ⓐ *X* is *n*–correct if and only if there exist $l_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

n-correct sets: open and dense.

Problem

- Characterize *n*-correct subsets of K^s.
- Give *explicit* constructions for *n*-correct sets.
- **O Example:** triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- ⓐ X is *n*–correct if and only if there exist $l_x \in \Pi_n$ such that

 $\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$

n-correct sets: open and dense.

Problem

- Characterize *n*-correct subsets of K^s.
- Give *explicit* constructions for *n*-correct sets.
- Example: triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- **◎** *X* is *n*–correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

n-correct sets: open and dense.

Problem

- Characterize *n*-correct subsets of K^s.
- Give *explicit* constructions for *n*–correct sets.
- **O Example: triangular grid** $X = {\alpha / n : |\alpha| \le n}$.

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- **◎** *X* is *n*–correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

Fundamental polynomials

n-correct sets: open and dense.

Problem

- Characterize *n*-correct subsets of K^s.
- Give *explicit* constructions for *n*-correct sets.
- **O Example:** triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- So *X* is *n*-correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

Fundamental polynomials

n-correct sets: *open and dense*.

Problem

- Characterize *n*-correct subsets of K^s.
- Give *explicit* constructions for *n*-correct sets.
- **D** Example: triangular grid $X = \{\alpha / n : |\alpha| \le n\}$.

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- So *X* is *n*-correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

Fundamental polynomials

n-correct sets: *open and dense*.

Problem

- Characterize *n*-correct subsets of K^s.
- Give *explicit* constructions for *n*-correct sets.
- **Example:** triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- Solution 2. Solut
- **◎** *X* is *n*–correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

Fundamental polynomials

In-correct sets: open and dense.

Problem

- 2 Give *explicit* constructions for *n*–correct sets.
- **Example:** triangular grid $X = \{\alpha / n : |\alpha| \le n\}$.

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- Solution 2. Solut
- **◎** *X* is *n*–correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

Fundamental polynomials

n-correct sets: *open and dense*.

Problem

Ocharacterize *n*-correct subsets of K^s. "Not on variety."

2 Give *explicit* constructions for *n*–correct sets.

Example: triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Tomas Sauer (Uni Passau)

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- **◎** *X* is *n*–correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

Fundamental polynomials

n-correct sets: *open and dense*.

Problem

- Characterize *n*-correct subsets of K^s. "Not on variety."
- Q Give *explicit* constructions for *n*-correct sets.

Example: triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Recall

- X is *n*-correct \Rightarrow #X = dim $\Pi_n = \binom{n+s}{s}$.
- 2 Loss of Haar: " \Leftarrow " not true for s > 1.
- **◎** *X* is *n*–correct if and only if there exist $\ell_x \in \Pi_n$ such that

$$\ell_x(x') = \delta_{x,x'}, \qquad x, x' \in X.$$

Fundamental polynomials

n-correct sets: *open and dense*.

Problem

- Characterize *n*-correct subsets of K^s. "Not on variety."
- Q Give *explicit* constructions for *n*-correct sets.
- So **Example:** triangular grid $X = \{\alpha/n : |\alpha| \le n\}$.

Inductive construction in 2d: Berzolari [1914], Radon [1948] • Let X_{n-1} be (n-1)-correct set. • Pick line $L = \{x : \ell(x) = 0\}, \ell \in \Pi_1$. • Choose x_0, \ldots, x_n on $L \setminus X_{n-1}$. • Set $X_n = X_{n-1} \cup \{x_0, \ldots, x_n\}$.

L. Berzolari, Sulla determinazione di una curva o di una superficie algebrica e su algune questioni di postulazione, Lomb. Ist. Rend. 47 (1914), 556–564.
I. Radon, Zur mechanischen Kubatur. Monatshefte der Math. Physik 52 (1948), 286–300.

$$\ell_{n,x} = \begin{cases} \ell/\ell(x) \cdot \ell_{n-1,x}, & x \in X_{n-1} \\ p_j - \sum_{x \in X_{n-1}} p_j(x) \ell \ell_{n,x}, & x = x_j \in X_n \setminus X_{n-1}, \end{cases} \quad p_j := \prod_{k \neq i} \frac{v^T(\cdot - x_k)}{v^T(x_j - x_k)}.$$

Tomas Sauer (Uni Passau)

L. Berzolari, Sulla determinazione di una curva o di una superficie algebrica e su algune questioni di postulazione, Lomb. Ist. Rend. 47 (1914), 556–564.
I. Radon, Zur mechanischen Kubatur. Monatshefte der Math. Physik 52 (1948), 286–300.

$$\ell_{n,x} = \begin{cases} \ell/\ell(x) \cdot \ell_{n-1,x}, & x \in X_{n-1} \\ p_j - \sum_{x \in X_{n-1}} p_j(x) \ell \ell_{n,x}, & x = x_j \in X_n \setminus X_{n-1}, \end{cases} \qquad p_j := \prod_{k \neq j} \frac{v^T(\cdot - x_k)}{v^T(x_j - x_k)}.$$

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 4 / 23

Inductive construction in 2d: Berzolari [1914], Radon [1948] Let X_{n-1} be (n-1)-correct set. Pick line $L = \{x : \ell(x) = 0\}, \ell \in \Pi_1$. Choose x_0, \ldots, x_n on $L \setminus X_{n-1}$. Set $X_n = X_{n-1} \cup \{x_0, \ldots, x_n\}$.

L. Berzolari, Sulla determinazione di una curva o di una superficie algebrica e su algune questioni di postulazione, Lomb. Ist. Rend. 47 (1914), 556–564.
I. Radon, Zur mechanischen Kubatur. Monatshefte der Math. Physik 52 (1948), 286–300.

$$\ell_{n,x} = \begin{cases} \ell/\ell(x) \cdot \ell_{n-1,x}, & x \in X_{n-1} \\ p_j - \sum_{x \in X_{n-1}} p_j(x) \ell \ell_{n,x}, & x = x_j \in X_n \setminus X_{n-1}, \end{cases} \qquad p_j := \prod_{k \neq j} \frac{v^T(\cdot - x_k)}{v^T(x_j - x_k)}.$$

Tomas Sauer (Uni Passau)

Inductive construction in 2d: Berzolari [1914], Radon [1948]

L. Berzolari, Sulla determinazione di una curva o di una superficie algebrica e su algune questioni di postulazione, Lomb. Ist. Rend. 47 (1914), 556–564.
I. Radon, Zur mechanischen Kubatur. Monatshefte der Math. Physik 52 (1948), 286–300.

$$\ell_{n,x} = \begin{cases} \ell/\ell(x) \cdot \ell_{n-1,x}, & x \in X_{n-1} \\ p_j - \sum_{x \in X_{n-1}} p_j(x) \ell \ell_{n,x}, & x = x_j \in X_n \setminus X_{n-1}, \end{cases} \quad p_j := \prod_{k \neq j} \frac{v^T(\cdot - x_k)}{v^T(x_j - x_k)}.$$

Tomas Sauer (Uni Passau)

L. Berzolari, Sulla determinazione di una curva o di una superficie algebrica e su algune questioni di postulazione, Lomb. Ist. Rend. 47 (1914), 556–564.
I. Radon, Zur mechanischen Kubatur. Monatshefte der Math. Physik 52 (1948), 286–300.

$$\ell_{n,x} = \begin{cases} \ell/\ell(x) \cdot \ell_{n-1,x}, & x \in X_{n-1} \\ p_j - \sum_{x \in X_{n-1}} p_j(x) \ell \ell_{n,x}, & x = x_j \in X_n \setminus X_{n-1}, \end{cases} \quad p_j := \prod_{k \neq j} \frac{v^T(\cdot - x_k)}{v^T(x_j - x_k)}.$$

Tomas Sauer (Uni Passau)

Inductive construction in 2d: Berzolari [1914], Radon [1948]

- Let X_{n-1} be (n − 1)-correct set.
 Pick line L = {x : ℓ(x) = 0}, ℓ ∈ Π₁.
- Solution Choose x_0, \ldots, x_n on $L \setminus X_{n-1}$.

9 Set
$$X_n = X_{n-1} \cup \{x_0, \ldots, x_n\}.$$

Theorem

If X_{n-1} is (n-1)-correct, then X_n is *n*-correct.

$$\ell_{n,x} = \begin{cases} \ell/\ell(x) \cdot \ell_{n-1,x}, & x \in X_{n-1} \\ p_j - \sum_{x \in X_{n-1}} p_j(x) \ell \ell_{n,x}, & x = x_j \in X_n \setminus X_{n-1}, \end{cases} \quad p_j := \prod_{k \neq i} \frac{v^T(\cdot - x_k)}{v^T(x_j - x_k)}.$$

Tomas Sauer (Uni Passau)

Inductive construction in 2d: Berzolari [1914], Radon [1948]

Let X_{n-1} be (n − 1)-correct set.
Pick line L = {x : ℓ(x) = 0}, ℓ ∈ Π₁.
Choose x₀,..., x_n on L \ X_{n-1}.
Set X_n = X_{n-1} ∪ {x₀,..., x_n}.

Theorem

If X_{n-1} is (n-1)-correct, then X_n is *n*-correct.

$$\ell_{n,x} = \begin{cases} \ell/\ell(x) \cdot \ell_{n-1,x}, & x \in X_{n-1} \\ p_j - \sum_{x \in X_{n-1}} p_j(x) \ell \ell_{n,x}, & x = x_j \in X_n \setminus X_{n-1}, \end{cases} \quad p_j := \prod_{k \neq j} \frac{v^T(\cdot - x_k)}{v^T(x_j - x_k)}.$$

Tomas Sauer (Uni Passau)

K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977), 735–743.

Definition

X satisfies *Geometric Characaterization* (GC_n) if for any $x \in X$ there are lines $L_{x,1}, \ldots, L_{x,n}$ such that

Theorem

Tomas Sauer (Uni Passau)

K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977), 735–743.

Definition

X satisfies *Geometric Characaterization* (GC_n) if for any $x \in X$ there are lines $L_{x,1}, \ldots, L_{x,n}$ such that

Theorem

 GC_n is *n*–correct.

Tomas Sauer (Uni Passau)

K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977), 735–743.

Definition

X satisfies *Geometric Characaterization* (GC_n) if for any $x \in X$ there are lines $L_{x,1}, \ldots, L_{x,n}$ such that

$$x \notin L_{x,1} \cup \cdots \cup L_{x,n}$$

Theorem

 GC_n is *n*–correct.

Tomas Sauer (Uni Passau)

K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977), 735–743.

Definition

X satisfies *Geometric Characaterization* (GC_n) if for any $x \in X$ there are lines $L_{x,1}, \ldots, L_{x,n}$ such that

$$\begin{array}{rcl} x & \notin & L_{x,1} \cup \dots \cup L_{x,n} \\ X \setminus \{x\} & \subset & L_{x,1} \cup \dots \cup L_{x,n} \end{array}$$

Theorem

 GC_n is *n*–correct.

Tomas Sauer (Uni Passau)

K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977), 735–743.

Definition

X satisfies *Geometric Characaterization* (GC_n) if for any $x \in X$ there are lines $L_{x,1}, \ldots, L_{x,n}$ such that

$$\begin{array}{rcl} x & \notin & L_{x,1} \cup \dots \cup L_{x,n} \\ X \setminus \{x\} & \subset & L_{x,1} \cup \dots \cup L_{x,n} \end{array}$$

Theorem

 GC_n is *n*-correct.

Tomas Sauer (Uni Passau)

K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977), 735–743.

Definition

X satisfies *Geometric Characaterization* (GC_n) if for any $x \in X$ there are lines $L_{x,1}, \ldots, L_{x,n}$ such that

$$\begin{array}{ccc} x & \notin & L_{x,1} \cup \cdots \cup L_{x,n} \\ X \setminus \{x\} & \subset & L_{x,1} \cup \cdots \cup L_{x,n} \end{array} \right\} \qquad \Rightarrow \qquad \ell_x = \prod_{j=1} \frac{\ell_{x,j}}{\ell_{x,y}(x)}$$

Theorem

 GC_n is *n*-correct.

Tomas Sauer (Uni Passau)

K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Num. Anal. 14 (1977), 735–743.

Definition

X satisfies *Geometric Characaterization* (GC_n) if for any $x \in X$ there are lines $L_{x,1}, \ldots, L_{x,n}$ such that

$$\left.\begin{array}{ccc} x & \not\in & L_{x,1} \cup \dots \cup L_{x,n} \\ X \setminus \{x\} & \subset & L_{x,1} \cup \dots \cup L_{x,n} \end{array}\right\} \qquad \Rightarrow \qquad \ell_x = \prod_{i=1} \frac{\ell_{x,j}}{\ell_{x,y}(x)}$$

Theorem

 GC_n is *n*-correct. Fundamental polynomials are factorizable.

Tomas Sauer (Uni Passau)

Chung & Yao II

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- It is a set in contrast to "open and dense".

Example: natural lattice

• H_0, \ldots, H_{s+n} hyperplanes in *general position*. • Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points X

Further extensions: intersection of lines

- rincipal lattices.
- Reversible sets ...
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Chung & Yao II

Remarks

• Factorizable polynomials are rare.

- Lattice structures, grids.
- "Thin sets" in contrast to "open and dense".

Example: natural lattice

*H*₀,...,*H*_{s+n} hyperplanes in *general position*.
 Any s of the intersect in one point ⇒ (^{n+s}) points X

Further extensions: intersection of lines

- Incipal lattices.
- Reversible sets . . .
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Chung & Yao II

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
 - "Thin sets" in contrast to "open and dense".

Example: natural lattice

• H_0, \ldots, H_{s+n} hyperplanes in *general position*. • Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{2}$ points 2

Further extensions: intersection of lines

- rincipal lattices.
- Reversible sets ...
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- If this sets in contrast to "open and dense".

Example: natural lattice

• H_0, \ldots, H_{s+n} hyperplanes in *general position*. • Any *s* of the intersect in one point \Rightarrow (^{*n*+*s*}) points λ

Further extensions: intersection of lines

- Incipal lattices.
- Reversible sets ...
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- "Thin sets" in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- If s of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points X.

Further extensions: intersection of lines

- **rincipal lattices**.
- Reversible sets ...
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- If this sets in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- 3 Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points *X*.

Further extensions: intersection of lines

- rincipal lattices.
- Reversible sets ...
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- If this sets in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- **2** Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points X.

Further extensions: intersection of lines

- rincipal lattices.
- Reversible sets ...
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- In this sets in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- **2** Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points *X*.

Further extensions: intersection of lines

- rincipal lattices.
- 2 Reversible sets ...
- Itermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- If this sets in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- 2 Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points X.

Further extensions: intersection of lines

- Principal lattices.
- 2 Reversible sets ...
- Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- If this sets in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- 2 Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points X.

Further extensions: intersection of lines

- Generalized principal lattices.
- 2 Reversible sets ...
- Hermite interpolation by multiple lines.

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- If this sets in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- 2 Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points X.

Further extensions: intersection of lines

- Generalized principal lattices.
- 2 Reversible sets ...

Hermite interpolation by multiple lines.

Tomas Sauer (Uni Passau)

Remarks

- Factorizable polynomials are rare.
- 2 Lattice structures, grids.
- In this sets in contrast to "open and dense".

Example: natural lattice

- H_0, \ldots, H_{s+n} hyperplanes in *general position*.
- **2** Any *s* of the intersect in one point $\Rightarrow \binom{n+s}{s}$ points *X*.

Further extensions: intersection of lines

- Generalized principal lattices.
- 2 Reversible sets ...
- Itermite interpolation by multiple lines.

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. **39** (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set $\Rightarrow n + 1$ points of X are on a line.
- Any GC_n set is obtained by the Berzolari–Radon construction.
- Trivial for n = 1.
- Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. 39 (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- In Newton approach by degree.

Conjeture

- X a GC_n set $\Rightarrow n + 1$ points of X are on a line.
- Any GC_n set is obtained by the Berzolari–Radon construction.
- Trivial for n = 1.
- Solution Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in R^k, Numer. Math. 39 (1982), 1–14.

Gasca & Maeztu

Interpolation on lattices.

Newton approach by degree.

Conjeture

- X a GC_n set $\Rightarrow n + 1$ points of X are on a line.
- Any GC_n set is obtained by the Berzolari–Radon construction.
- Trivial for n = 1.
- Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. 39 (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set $\Rightarrow n + 1$ points of X are on a line.
- Any GC_n set is obtained by the Berzolari–Radon construction.
- Trivial for n = 1.
- Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. **39** (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- 1 X a GC_n set $\Rightarrow n + 1$ points of X are on a line.
- Any GC_n set is obtained by the Berzolari–Radon construction.

• Trivial for n = 1.

Easy for n = 2, combinatoric for n = 3

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. 39 (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set \Rightarrow n + 1 points of X are on a line.
- Any GC_n set is obtained by the Berzolari–Radon construction.

• Trivial for n = 1. • Easy for n = 2 combinatoric for n = 2

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. 39 (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set \Rightarrow n + 1 points of X are on a *maximal* line.
- Any GC_n set is obtained by the Berzolari–Radon construction.

• Trivial for n = 1. • Fasy for n = 2 combinatoric for n = 3

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. 39 (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set \Rightarrow n + 1 points of X are on a *maximal* line.
- ² Any *GC_n* set is obtained by the Berzolari–Radon construction.

Trivial for n = 1. Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. 39 (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set \Rightarrow n + 1 points of X are on a *maximal* line.
- **2** Any *GC_n* set is obtained by the Berzolari–Radon construction.

• Trivial for
$$n = 1$$
.

2 Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. **39** (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set \Rightarrow n + 1 points of X are on a *maximal* line.
- Solution: Any *GC_n* set is obtained by the Berzolari–Radon construction.
- Trivial for n = 1.
- 2 Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^k , Numer. Math. **39** (1982), 1–14.

Gasca & Maeztu

- Interpolation on lattices.
- Newton approach by degree.

Conjeture

- X a GC_n set \Rightarrow n + 1 points of X are on a *maximal* line.
- Solution: Any *GC_n* set is obtained by the Berzolari–Radon construction.
- **1** Trivial for n = 1.
- Easy for n = 2, combinatoric for n = 3.

Tomas Sauer (Uni Passau)

Conjecture

Any GC_n set is obtained by the Berzolari–Radon construction.

Known?

- n = 4
- **2** n = 5
- If there is one line, there are three lines.
- Proofs are *combinatorial*, not really geometric.
- More work available.
- Generalization to s > 2?

J. R. Busch, A note on Lagrange interpolation in \mathbb{R}^2 , Rev. Union Matem. Argent. **36** (1990), 33–38.

J. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Rev. R. Acad. Cien. Serie A. Mat. **95** (2001), 145–153. H. Hakopian, K. Jetter, and G. Zimmermann, A new proof of the Gasca-Maeztu conjecture for n = 4., J. Approx. Theory **159** (2009), 224–242.

Conjecture

Any GC_n set is obtained by the Berzolari–Radon construction.

Known?

2
$$n = 5$$

- If there is one line, there are three lines.
- Proofs are *combinatorial*, not really geometric.
- More work available.
- Generalization to s > 2?

J. R. Busch, A note on Lagrange interpolation in R², Rev. Union Matem. Argent. 36 (1990), 33–38.

J. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Rev. R. Acad. Cien. Serie A. Mat. **95** (2001), 145–153. H. Hakopian, K. Jetter, and G. Zimmermann, A new proof of the Gasca-Maeztu conjecture for n = 4., J. Approx. Theory **159** (2009), 224–242.

Conjecture

Any GC_n set is obtained by the Berzolari–Radon construction.

Known?

- **●** *n* = 4
- **2** n = 5
- If there is one line, there are three lines.
- Proofs are *combinatorial*, not really geometric.
- More work available.
- Generalization to s > 2?
- J. R. Busch, A note on Lagrange interpolation in \mathbb{R}^2 , Rev. Union Matem. Argent. 36 (1990), 33–38.

J. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Rev. R. Acad. Cien. Serie A. Mat. **95** (2001), 145–153. H. Hakopian, K. Jetter, and G. Zimmermann, A new proof of the Gasca-Maeztu conjecture for n = 4., J. Approx. Theory **159** (2009), 224–242.

H. Hakopian, K. Jetter, and G. Zimmermann, The Gasca-Maeztu conjecture for n = 5, Numer. Math. 127 (2014), 685–713.

Tomas Sauer (Uni Passau)

Conjecture

Any GC_n set is obtained by the Berzolari–Radon construction.

Known?

- **●** *n* = 4
- **2** n = 5
- If there is one line, there are three lines.
- Proofs are *combinatorial*, not really geometric.
- More work available.
- Generalization to s > 2?
- J. R. Busch, A note on Lagrange interpolation in R², Rev. Union Matem. Argent. 36 (1990), 33–38.

J. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Rev. R. Acad. Cien. Serie A. Mat. **95** (2001), 145–153. H. Hakopian, K. Jetter, and G. Zimmermann, A new proof of the Gasca-Maeztu conjecture for n = 4., J. Approx. Theory **159** (2009), 224–242.

H. Hakopian, K. Jetter, and G. Zimmermann, The Gasca-Maeztu conjecture for n = 5, Numer. Math. 127 (2014), 685–713.

Tomas Sauer (Uni Passau)

Conjecture

Any GC_n set is obtained by the Berzolari–Radon construction.

Known?

- **●** *n* = 4
- **2** n = 5
- If there is one line, there are three lines.
- 9 Proofs are *combinatorial*, not really geometric.
- More work available.
- Generalization to s > 2?
- J. R. Busch, A note on Lagrange interpolation in R², Rev. Union Matem. Argent. 36 (1990), 33–38.

J. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Rev. R. Acad. Cien. Serie A. Mat. **95** (2001), 145–153. H. Hakopian, K. Jetter, and G. Zimmermann, A new proof of the Gasca-Maeztu conjecture for n = 4., J. Approx. Theory **159** (2009), 224–242.

H. Hakopian, K. Jetter, and G. Zimmermann, The Gasca-Maeztu conjecture for n = 5, Numer. Math. 127 (2014), 685–713.

Tomas Sauer (Uni Passau)

Conjecture

Any GC_n set is obtained by the Berzolari–Radon construction.

Known?

- **●** *n* = 4
- **2** n = 5
- If there is one line, there are three lines.
- 9 Proofs are *combinatorial*, not really geometric.
- More work available.
 - Generalization to s > 2?
- J. R. Busch, A note on Lagrange interpolation in R², Rev. Union Matem. Argent. 36 (1990), 33–38.

J. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Rev. R. Acad. Cien. Serie A. Mat. **95** (2001), 145–153. H. Hakopian, K. Jetter, and G. Zimmermann, A new proof of the Gasca-Maeztu conjecture for n = 4., J. Approx. Theory **159** (2009), 224–242.

H. Hakopian, K. Jetter, and G. Zimmermann, The Gasca-Maeztu conjecture for n = 5, Numer. Math. 127 (2014), 685–713.

Tomas Sauer (Uni Passau)

Conjecture

Any GC_n set is obtained by the Berzolari–Radon construction.

Known?

- **●** *n* = 4
- **2** n = 5
- If there is one line, there are three lines.
- 9 Proofs are *combinatorial*, not really geometric.
- More work available.
- Generalization to *s* > 2?

J. R. Busch, A note on Lagrange interpolation in \mathbb{R}^2 , Rev. Union Matem. Argent. **36** (1990), 33–38.

J. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Rev. R. Acad. Cien. Serie A. Mat. **95** (2001), 145–153. H. Hakopian, K. Jetter, and G. Zimmermann, A new proof of the Gasca-Maeztu conjecture for n = 4., J. Approx. Theory **159** (2009), 224–242.

H. Hakopian, K. Jetter, and G. Zimmermann, The Gasca-Maeztu conjecture for n = 5, Numer. Math. 127 (2014), 685–713.

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- **I** Geometric approach to Gasca–Maeztu conjecture.
- a Algebraic geometry, syzygies.
- Itilbert-Burch theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- **1** Geometric approach to Gasca–Maeztu conjecture.
- algebraic geometry, syzygies.
- Itilbert-Burch theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage Sophisticated, projective

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- **1** Geometric approach to Gasca–Maeztu conjecture.
- Algebraic geometry, syzygies.
- 3 *Hilbert–Burch* theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage Sophisticated, projective

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- Geometric approach to Gasca–Maeztu conjecture.
- Algebraic geometry, syzygies.
- 9 *Hilbert–Burch* theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage Sophisticated, projective.

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- Geometric approach to Gasca–Maeztu conjecture.
- Algebraic geometry, syzygies.
- Solution Hilbert–Burch theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage Sophisticated, projective.

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- Geometric approach to Gasca–Maeztu conjecture.
- Algebraic geometry, syzygies.
- 9 *Hilbert–Burch* theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage Sophisticated, projective.

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- Geometric approach to Gasca–Maeztu conjecture.
- Algebraic geometry, syzygies.
- 9 *Hilbert–Burch* theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage

Sophisticated, projective.

Tomas Sauer (Uni Passau)

Hal Schenck (2015)

- Geometric approach to Gasca–Maeztu conjecture.
- Algebraic geometry, syzygies.
- 9 *Hilbert–Burch* theorem for zero dimensional ideals.
- Syzygies.

Advantage

Check for maximal lines in a systematic way.

Disadvantage

Sophisticated, projective. \Rightarrow Give elementary and affine approach.

Ideals & Bases

Definition (Ideal)

I ⊂ Π is called *ideal* if I + I = I and I · Π = I.
 I(X) = {f ∈ Π : f(X) = 0}.

Definition (Bases)

• $F \subset \Pi$ is called *basis* for \mathscr{I} if

$$\mathscr{I} = \langle F \rangle = \{ \sum_{f \in F} g_f f : g_f \in \Pi \}.$$

 \bigcirc *H* ⊂ Π is called *H–basis* for *I* if

 $\mathscr{I} \ni f = \sum_{h \in H} f_h h, \quad \deg f_h \leq \deg f - \deg h, \quad h \in H.$

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 10 / 23

Definition (Ideal)

$\ \, {\mathscr I} \subset \Pi \text{ is called } ideal \text{ if } {\mathscr I} + {\mathscr I} = {\mathscr I} \text{ and } {\mathscr I} \cdot \Pi = {\mathscr I}.$

Definition (Bases)

• $F \subset \Pi$ is called *basis* for \mathscr{I} if

$$\mathscr{I} = \langle F \rangle = \{ \sum_{f \in F} g_f f : g_f \in \Pi \}.$$

● $H \subset \Pi$ is called *H*–basis for \mathscr{I} if

 $\mathscr{I} \ni f = \sum_{h \in H} f_h h, \quad \deg f_h \leq \deg f - \deg h, \quad h \in H.$

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition (Ideal)

- **2** $\mathscr{I}(X) = \{ f \in \Pi : f(X) = 0 \}.$

Definition (Bases)

• $F \subset \Pi$ is called *basis* for \mathscr{I} if

$$\mathscr{I} = \langle F \rangle = \{ \sum_{f \in F} g_f f : g_f \in \Pi \}.$$

● $H \subset \Pi$ is called *H*–basis for \mathscr{I} if

 $\mathscr{I} \ni f = \sum_{h \in H} f_h h, \quad \deg f_h \leq \deg f - \deg h, \quad h \in H.$

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition (Ideal)

Definition (Bases)

● $F \subset \Pi$ is called *basis* for \mathscr{I} if

$$\mathscr{I} = \langle F \rangle = \{ \sum_{f \in F} g_f f : g_f \in \Pi \}.$$

② $H \subset \Pi$ is called *H*–*basis* for *I* if

$$\mathscr{I} \ni f = \sum_{h \in H} f_h h, \quad \deg f_h \leq \deg f - \deg h, \quad h \in H$$

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition (Ideal)

Definition (Bases)

• $F \subset \Pi$ is called *basis* for \mathscr{I} if

$$\mathscr{I} = \langle F \rangle = \{ \sum_{f \in F} g_f f : g_f \in \Pi \}.$$

② $H \subset \Pi$ is called *H*–*basis* for *I* if

$$\mathscr{I} \ni f = \sum_{h \in H} f_h h, \quad \deg f_h \leq \deg f - \deg h, \quad h \in H.$$

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition (Ideal)

Definition (Bases)

• $F \subset \Pi$ is called *basis* for \mathscr{I} if

$$\mathscr{I} = \langle F \rangle = \{ \sum_{f \in F} g_f f : g_f \in \Pi \}.$$

② $H \subset \Pi$ is called *H*–*basis* for *I* if

$$\mathscr{I} \ni f = \sum_{h \in H} f_h h, \quad \deg f_h \leq \deg f - \deg h, \quad h \in H.$$

Tomas Sauer (Uni Passau)

Lemma

If $\Pi_{n-1} \cap \mathscr{I} = \{0\}$ and dim $(\Pi_n \cap \mathscr{I}) = \dim \Pi_n^0 = \binom{n+s}{s-1}$ then

F is vector space basis of $\Pi_n \cap \mathscr{I} \quad \Leftrightarrow \quad F$ is H–basis of \mathscr{I} .

Theorem (Berzolari–Radon extension, ideal version) X (n-1)–correct, Y on hyperplane H, #Y = $\binom{n+s}{s-1}$. Then: $\{\ell_y : y \in Y\} \subset \prod_n \text{ is } H\text{-basis for } \mathscr{I}(X).$

Proposition (Schenck, Sauer&Xu)

• If X is GC_n then $\mathscr{I}(X)$ has a factorizable H–basis.

③ Basis can be given explicitly, multiples of l_x , $x \in X \setminus X_{n-1}$.

Tomas Sauer (Uni Passau)

Lemma

If $\Pi_{n-1} \cap \mathscr{I} = \{0\}$ and dim $(\Pi_n \cap \mathscr{I}) = \dim \Pi_n^0 = \binom{n+s}{s-1}$ then

F is vector space basis of $\Pi_n \cap \mathscr{I} \quad \Leftrightarrow \quad F$ is H–basis of \mathscr{I} .

Theorem (Berzolari–Radon extension, ideal version) X (*n* – 1)–correct, Y on hyperplane H, #Y = $\binom{n+s}{s-1}$. Then: $\{\ell_{\psi} : \psi \in Y\} \subset \prod_{n}$ is H–basis for $\mathscr{I}(X)$.

Proposition (Schenck, Sauer&Xu)

• If X is GC_n then $\mathcal{I}(X)$ has a factorizable H–basis.

● Basis can be given explicitly, multiples of l_x , $x \in X \setminus X_{n-1}$.

Tomas Sauer (Uni Passau)

Lemma

If $\Pi_{n-1} \cap \mathscr{I} = \{0\}$ and dim $(\Pi_n \cap \mathscr{I}) = \dim \Pi_n^0 = \binom{n+s}{s-1}$ then

F is vector space basis of $\Pi_n \cap \mathscr{I} \quad \Leftrightarrow \quad F$ is H–basis of \mathscr{I} .

Theorem (Berzolari–Radon extension, ideal version)

X (*n*-1)–correct, *Y* on hyperplane *H*, $\#Y = \binom{n+s}{s-1}$. Then:

 $\{\ell_y : y \in Y\} \subset \prod_n \text{ is H-basis for } \mathscr{I}(X).$

Proposition (Schenck, Sauer&Xu)

If X is GC_n then $\mathscr{I}(X)$ has a factorizable H–basis.

Basis can be given explicitly, multiples of ℓ_x , $x \in X \setminus X_{n-1}$.

Tomas Sauer (Uni Passau)

Lemma

If $\Pi_{n-1} \cap \mathscr{I} = \{0\}$ and dim $(\Pi_n \cap \mathscr{I}) = \dim \Pi_n^0 = \binom{n+s}{s-1}$ then

F is vector space basis of $\Pi_n \cap \mathscr{I} \quad \Leftrightarrow \quad F$ is H–basis of \mathscr{I} .

Theorem (Berzolari–Radon extension, ideal version)

X (*n*-1)–correct, *Y* on hyperplane *H*, $\#Y = \binom{n+s}{s-1}$. Then:

 $\{\ell_y : y \in Y\} \subset \Pi_n \text{ is H-basis for } \mathscr{I}(X).$

Proposition (Schenck, Sauer&Xu)

() If *X* is GC_n then $\mathscr{I}(X)$ has a factorizable H–basis.

Basis can be given explicitly, multiples of ℓ_x , $x \in X \setminus X_{n-1}$.

Tomas Sauer (Uni Passau)

Lemma

If $\Pi_{n-1} \cap \mathscr{I} = \{0\}$ and dim $(\Pi_n \cap \mathscr{I}) = \dim \Pi_n^0 = \binom{n+s}{s-1}$ then

F is vector space basis of $\Pi_n \cap \mathscr{I} \quad \Leftrightarrow \quad F$ is H–basis of \mathscr{I} .

Theorem (Berzolari–Radon extension, ideal version)

X (*n*-1)–correct, *Y* on hyperplane *H*, $\#Y = \binom{n+s}{s-1}$. Then:

 $\{\ell_y : y \in Y\} \subset \Pi_n \text{ is H-basis for } \mathscr{I}(X).$

Proposition (Schenck, Sauer&Xu)

- If X is GC_n then $\mathscr{I}(X)$ has a factorizable H–basis.
- **2** Basis can be given explicitly, multiples of ℓ_x , $x \in X \setminus X_{n-1}$.

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

Module $S, S' \in \Sigma(P) \implies S + S' \in S(P), S \Pi \subset \Sigma(P).$

Dimension theory in one line

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module $S, S' \in \Sigma(P) \implies S + S' \in S(P), S \Pi \subset \Sigma(P)$

Dimension theory in one line

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module $S, S' \in \Sigma(P) \implies S + S' \in S(P), S \Pi \subset \Sigma(P).$

Dimension theory in one line

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S + S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S+S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

Tomas Sauer (Uni Passau)

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S+S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

Х

Tomas Sauer (Uni Passau)

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S+S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

 $X \to \mathscr{I}(X)$

Tomas Sauer (Uni Passau)

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S + S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

 $X \to \mathscr{I}(X) \to H, \, \langle H \rangle = \mathscr{I}(X)$

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S + S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

 $X \to \mathscr{I}(X) \to H \to \Sigma(H)$

Tomas Sauer (Uni Passau)

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S + S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

 $X \to \mathscr{I}(X) \to H \to \Sigma(H) \to \Sigma(\Sigma(H))$

Tomas Sauer (Uni Passau)

Definition

 $S \in \Pi^n$ is *syzygy* of $S \in \Pi^n$ if

$$0=S\cdot P=\sum_{j=1}^n s_j p_j.$$

 $\Sigma(P)$ *module* of all syzygies of *P*.

Module

 $S, S' \in \Sigma(P) \quad \Rightarrow \quad S + S' \in S(P), S \Pi \subset \Sigma(P).$

Like ideal!

Dimension theory in one line

 $X \to \mathscr{I}(X) \to H \to \Sigma(H) \to \Sigma(\Sigma(H)) \to \cdots \to \Sigma(\cdots (\Sigma(H)) \cdots)$

Tomas Sauer (Uni Passau)

Observation: Zero dimensional ideals $\#X < \infty$ implies dim $\mathscr{I}(X) = 0$.

Theorem (poor men's Hilbert–Burch) If $X \subset \mathbb{R}^2$ is *n*–poised then there exist O H–basis $H \subset \prod_{n+1}$ of $\mathscr{I}(X)$, O syzygy matrix $S \in \prod_{1}^{n+1 \times n+2}$

Observation: Zero dimensional ideals

 $#X < \infty$ implies dim $\mathscr{I}(X) = 0$. Chain stops with $\Rightarrow \Sigma(H)$.

Theorem (poor men's Hilbert–Burch) If $X \subset \mathbb{R}^2$ is *n*–poised then there exis • H–basis $H \subset \prod_{n+1}$ of $\mathscr{I}(X)$, • syzygy matrix $S \in \prod_{1}^{n+1 \times n+2}$

Tomas Sauer (Uni Passau)

Observation: Zero dimensional ideals

 $#X < \infty$ implies dim $\mathscr{I}(X) = 0$. Chain stops with $\Rightarrow \Sigma(H)$.

Theorem (poor men's Hilbert-Burch)

If $X \subset \mathbb{R}^2$ is *n*-poised then there exist

I H-basis H ⊂ Π_{n+1} of 𝒢(X),
syzygy matrix S ∈ Π₁^{n+1×n+2}

Observation: Zero dimensional ideals

 $#X < \infty$ implies dim $\mathscr{I}(X) = 0$. Chain stops with $\Rightarrow \Sigma(H)$.

Theorem (poor men's Hilbert-Burch)

If $X \subset \mathbb{R}^2$ is *n*-poised then there exist

• H-basis $H \subset \prod_{n+1}$ of $\mathscr{I}(X)$,

ⓐ syzygy matrix $S ∈ Π_1^{n+1 × n+2}$

Observation: Zero dimensional ideals

 $#X < \infty$ implies dim $\mathscr{I}(X) = 0$. Chain stops with $\Rightarrow \Sigma(H)$.

Theorem (poor men's Hilbert-Burch)

If $X \subset \mathbb{R}^2$ is *n*-poised then there exist

• H-basis
$$H \subset \prod_{n+1}$$
 of $\mathscr{I}(X)$,

2 syzygy matrix
$$S \in \prod_{1}^{n+1 \times n+2}$$

Observation: Zero dimensional ideals

 $#X < \infty$ implies dim $\mathscr{I}(X) = 0$. Chain stops with $\Rightarrow \Sigma(H)$.

Theorem (poor men's Hilbert-Burch)

If $X \subset \mathbb{R}^2$ is *n*-poised then there exist

• H-basis
$$H \subset \prod_{n+1}$$
 of $\mathscr{I}(X)$,

Syzygy matrix
$$S \in \Pi_1^{n+1 \times n+2}$$

such that

$$SH = 0$$

Observation: Zero dimensional ideals

 $#X < \infty$ implies dim $\mathscr{I}(X) = 0$. Chain stops with $\Rightarrow \Sigma(H)$.

Theorem (poor men's Hilbert–Burch)

If $X \subset \mathbb{R}^2$ is *n*-poised then there exist

• H-basis
$$H \subset \prod_{n+1}$$
 of $\mathscr{I}(X)$,

2 syzygy matrix
$$S \in \prod_{1}^{n+1 \times n+2}$$

such that

$$SH = 0$$
 and $h_j = (-1)^j w \det S_j, \quad j = 0, ..., n+1.$

 S_j : *j*th minor of *S*, $w \neq 0$.

Proof of "Hilbert-Burch"

- Start with *n*–poised *X*.
- ② Use Berzolari–Radon extension *Y* ⊂ *L*, *L* ∩ *X* = \emptyset .
- ③ $X \cap Y$ is (n + 1)–correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - , \qquad p_y = \prod_{y' \neq y} \left(m - m(y') \right), \qquad y \in Y.$$

Solution Explicit syzygies for "S-polynomials", $y \in Y$,

$$p_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}$$

💿 Linear Algebra . . .

Tomas Sauer (Uni Passau)

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*–poised *X*.
- ② Use Berzolari–Radon extension *Y* ⊂ *L*, *L* ∩ *X* = \emptyset .
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - , \qquad p_y = \prod_{y' \neq y} \left(m - m(y') \right), \qquad y \in Y.$$

Solution Explicit syzygies for "S-polynomials", $y \in Y$,

$$p_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}$$

💿 Linear Algebra ...

Tomas Sauer (Uni Passau)

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*–poised *X*.
- **2** Use Berzolari–Radon extension $Y \subset L, L \cap X = \emptyset$.
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - , \qquad p_y = \prod_{y' \neq y} \left(m - m(y') \right), \qquad y \in Y.$$

Solution Explicit syzygies for "S-polynomials", $y \in Y$,

$$p_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}$$

💿 Linear Algebra ...

Tomas Sauer (Uni Passau)

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*-poised *X*.
- **2** Use Berzolari–Radon extension $Y \subset L, L \cap X = \emptyset$.
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - , \qquad p_y = \prod_{y' \neq y} \left(m - m(y') \right), \qquad y \in Y.$$

Solution Explicit syzygies for "S-polynomials", $y \in Y$,

$$p_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}$$

💿 Linear Algebra ...

Tomas Sauer (Uni Passau)

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*–poised *X*.
- **2** Use Berzolari–Radon extension $Y \subset L, L \cap X = \emptyset$.
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - \sum_{x \in X} \frac{p_y(x)}{p_y(y)} \ell \ell_x, \qquad p_y = \prod_{y' \neq y} (m - m(y')), \qquad y \in Y.$$

Solution Explicit syzygies for "S-polynomials", $y \in Y$,

$$\nu_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}$$

Linear Algebra . .

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*-poised *X*.
- **2** Use Berzolari–Radon extension $Y \subset L, L \cap X = \emptyset$.
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - \ell \sum_{x \in X} \frac{p_y(x)}{p_y(y)} \ell_x, \qquad p_y = \prod_{y' \neq y} (m - m(y')), \qquad y \in Y.$$

Solution Explicit syzygies for "S-polynomials", $y \in Y$,

$$p_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}$$

Linear Algebra ..

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*–poised *X*.
- **2** Use Berzolari–Radon extension $Y \subset L, L \cap X = \emptyset$.
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - \ell \sum_{x \in X} \frac{p_y(x)}{p_y(y)} \ell_x, \qquad p_y = \prod_{y' \neq y} (m - m(y')), \qquad y \in Y.$$

Sector Explicit syzygies for "S-polynomials", $y, y' \in Y$,

$$p_{\mathcal{Y}}(\mathcal{Y})\left(m-m(\mathcal{Y})\right)\ell_{\mathcal{Y}}-p_{\mathcal{Y}'}(\mathcal{Y}')\left(m-m(\mathcal{Y}')\right)\ell_{\mathcal{Y}'}=\ell\sum_{\tilde{\mathcal{Y}}\in \mathcal{Y}}c_{\tilde{\mathcal{Y}}}\ell_{\tilde{\mathcal{Y}}}$$

Linear Algebra . .

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*-poised *X*.
- **2** Use Berzolari–Radon extension $Y \subset L, L \cap X = \emptyset$.
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - \ell \sum_{x \in X} \frac{p_y(x)}{p_y(y)} \ell_x, \qquad p_y = \prod_{y' \neq y} \left(m - m(y') \right), \qquad y \in Y.$$

Sector Explicit basis of syzygies for "S-polynomials", $y \in Y$,

$$p_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}-\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}=0, \quad y'\in Y.$$

Hilbert-Burch II

UNIVERSITÄT

Proof of "Hilbert-Burch"

- Start with *n*–poised *X*.
- **2** Use Berzolari–Radon extension $Y \subset L, L \cap X = \emptyset$.
- $X \cap Y$ is (n+1)-correct.
- Explicit H–basis for almost any $m \in \Pi_1$

$$\ell_y = \frac{p_y}{p_y(y)} - \ell \sum_{x \in X} \frac{p_y(x)}{p_y(y)} \ell_x, \qquad p_y = \prod_{y' \neq y} (m - m(y')), \qquad y \in Y.$$

Sector Explicit basis of syzygies for "S-polynomials", $y \in Y$,

$$p_{y}(y)\left(m-m(y)\right)\ell_{y}-p_{y'}(y')\left(m-m(y')\right)\ell_{y'}-\ell\sum_{\tilde{y}\in Y}c_{\tilde{y}}\ell_{\tilde{y}}=0, \quad y'\in Y.$$

Linear Algebra ...

The Syzygy Matrix

Theorem

Suppose *X* is *n*–correct and *H*, *H*' two H–bases of $\mathscr{I}(X)$ with syzygy matrices *S*, *S*'. Then

 $S' = ASB, \qquad A \in \mathbb{R}^{n+1 \times n+1}, \quad B \in \mathbb{R}^{n+2 \times n+2},$

with nonsingular A, B.

Corollary

The syzygy matrix $S = S_X$ is unique up to *scalar* similarities.

Corollary

The rows of S_X are linearly independent.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 15 / 23

The Syzygy Matrix

Theorem

Suppose X is *n*–correct and H, H' two H–bases of $\mathscr{I}(X)$ with syzygy matrices *S*, *S'*. Then

$$S' = ASB$$
, $A \in \mathbb{R}^{n+1 \times n+1}$, $B \in \mathbb{R}^{n+2 \times n+2}$,

with nonsingular A, B.

Corollary

The syzygy matrix $S = S_X$ is unique up to *scalar* similarities.

Corollary

The rows of S_X are linearly independent.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 15 / 23

The Syzygy Matrix

Theorem

Suppose *X* is *n*–correct and *H*, *H*' two H–bases of $\mathscr{I}(X)$ with syzygy matrices *S*, *S*'. Then

$$S' = ASB$$
, $A \in \mathbb{R}^{n+1 \times n+1}$, $B \in \mathbb{R}^{n+2 \times n+2}$,

with nonsingular A, B.

Corollary

The syzygy matrix $S = S_X$ is unique up to *scalar* similarities.

Corollary

The rows of S_X are linearly independent.

Tomas Sauer (Uni Passau)

Theorem

For an *n*–correct *X* are equivalent:

- ① *X* contains a *maximal line*, i.e., $X \cap L = n + 1$ for some *L*.
- ② The exists a syzygy matrix *S* such that

$$S = \left[\begin{array}{cc} \ell & * \\ 0 & * \end{array} \right]$$

Remark

- Need only that some column contains *l e*_{*i*} for some *j*.
- Read maximal line from syzygy matrix.
- " \leftarrow " due to Hal Schenck.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 16 / 23

Theorem

For an *n*–correct *X* are equivalent:

() *X* contains a *maximal line*, i.e., $X \cap L = n + 1$ for some *L*.

2 The exists a syzygy matrix *S* such that

$$S = \left[\begin{array}{cc} \ell & * \\ 0 & * \end{array} \right]$$

Remark

• Need only that some column contains *l e*_{*i*} for some *j*.

- Read maximal line from syzygy matrix.
- " \Leftarrow " due to Hal Schenck.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 16 / 23

Theorem

For an *n*–correct *X* are equivalent:

- **(**) *X* contains a *maximal line*, i.e., $X \cap L = n + 1$ for some *L*.
- **2** The exists a syzygy matrix *S* such that

$$S = \left[egin{array}{cc} \ell & * \ 0 & * \end{array}
ight]$$

Remark

Need only that some column contains le_i for some j.

Read maximal line from syzygy matrix.

• " \Leftarrow " due to Hal Schenck.

Tomas Sauer (Uni Passau)

Theorem

For an *n*–correct *X* are equivalent:

- **(**) *X* contains a *maximal line*, i.e., $X \cap L = n + 1$ for some *L*.
- **2** The exists a syzygy matrix *S* such that

$$S = \left[egin{array}{cc} \ell & * \ 0 & * \end{array}
ight]$$

Remark

- **1** Need only that some column contains $l e_j$ for some *j*.
- ead maximal line from syzygy matrix.
 - " \Leftarrow " due to Hal Schenck.

Tomas Sauer (Uni Passau)

Theorem

For an *n*–correct *X* are equivalent:

- **(**) *X* contains a *maximal line*, i.e., $X \cap L = n + 1$ for some *L*.
- **2** The exists a syzygy matrix *S* such that

$$S = \left[egin{array}{cc} \ell & * \ 0 & * \end{array}
ight]$$

Remark

• Need only that some column contains $l e_j$ for some j.

② Read maximal line from syzygy matrix.

" \Leftarrow " due to Hal Schenck.

Tomas Sauer (Uni Passau)

Theorem

For an *n*–correct *X* are equivalent:

- **(**) *X* contains a *maximal line*, i.e., $X \cap L = n + 1$ for some *L*.
- Intervises a syzygy matrix S such that

$$S = \left[egin{array}{cc} \ell & * \ 0 & * \end{array}
ight]$$

Remark

- Need only that some column contains $l e_j$ for some *j*.
- Read maximal line from syzygy matrix.

=" due to Hal Schenck.

Theorem

For an *n*–correct *X* are equivalent:

- **(**) *X* contains a *maximal line*, i.e., $X \cap L = n + 1$ for some *L*.
- Intervises a syzygy matrix S such that

$$S = \left[egin{array}{cc} \ell & * \ 0 & * \end{array}
ight]$$

Remark

- Need only that some column contains $l e_j$ for some j.
- Read maximal line from syzygy matrix.
- " \Leftarrow " due to Hal Schenck.

Setup

- Lines $L_j = \{x : \ell_j(x) = 0\}, j = 0, ..., n 1$, in general position.
- 2 $X = \{L_j \cap L_k : j \neq k\}, \#X = \binom{n+2}{2}.$

Bases

```
    Fundamental polynomials: l<sub>x</sub> = ∏<sub>r≠jk</sub> l<sub>r</sub>(x), x = L<sub>j</sub> ∩ L<sub>k</sub> ∈ X.
    H−basis h<sub>j</sub> = ∏ l<sub>r</sub>.
```

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 17 / 23

Setup

• Lines $L_j = \{x : \ell_j(x) = 0\}, j = 0, ..., n - 1$, in general position.

2 $X = \{L_j \cap L_k : j \neq k\}, \#X = \binom{n+2}{2}.$

Bases

```
    ● Fundamental polynomials: l<sub>x</sub> = ∏<sub>r≠j,k</sub> l<sub>r</sub>(x), x = L<sub>j</sub> ∩ L<sub>k</sub> ∈ X.
    ● H−basis h<sub>j</sub> = ∏<sub>r≠j</sub> l<sub>r</sub>.
```

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 17 / 23

Setup

■ Lines
$$L_j = \{x : \ell_j(x) = 0\}, j = 0, ..., n - 1$$
, in general position.

■
$$X = \{L_j \cap L_k : j \neq k\}, \#X = \binom{n+2}{2}.$$

Bases

```
    Fundamental polynomials: l<sub>x</sub> = ∏<sub>r≠j,k</sub> l<sub>r</sub>(x), x = L<sub>j</sub> ∩ L<sub>k</sub> ∈ X.
    H−basis h<sub>j</sub> = ∏ l<sub>r</sub>.
```


Setup

Lines
$$L_j = \{x : \ell_j(x) = 0\}, j = 0, ..., n - 1$$
, in general position.

■
$$X = \{L_j \cap L_k : j \neq k\}, \#X = \binom{n+2}{2}.$$

Bases

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 17 / 23

Setup

(

Lines
$$L_j = \{x : \ell_j(x) = 0\}, j = 0, \dots, n-1$$
, in general position.

2 *X* = {*L_j* ∩ *L_k* : *j* ≠ *k*}, #*X* =
$$\binom{n+2}{2}$$
.

Bases

Tomas Sauer (Uni Passau)

Setup

(

Lines
$$L_j = \{x : \ell_j(x) = 0\}, j = 0, ..., n - 1$$
, in general position.

2 *X* = {*L_j* ∩ *L_k* : *j* ≠ *k*}, #*X* =
$$\binom{n+2}{2}$$
.

Bases

.

Tomas Sauer (Uni Passau)

Syzygy matrix

$$S = \begin{pmatrix} \ell_0 & -\ell_1 & 0 & \dots & 0 \\ \ell_0 & 0 & -\ell_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \ell_0 & 0 & \dots & 0 & -\ell_{n+1} \end{pmatrix}$$

Consequence

- All lines are maximal.
- Oriect for l_1, \ldots, l_{n-1} .
- ℓ_0 by row transforms.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 18 / 23

Syzygy matrix

$$S = \begin{pmatrix} \ell_0 & -\ell_1 & 0 & \dots & 0 \\ \ell_0 & 0 & -\ell_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \ell_0 & 0 & \dots & 0 & -\ell_{n+1} \end{pmatrix}$$

Consequence

- All lines are maximal.
- ② Direct for $\ell_1, \ldots, \ell_{n-1}$.
- (a) ℓ_0 by row transforms.

Tomas Sauer (Uni Passau)

Syzygy matrix

$$S = \begin{pmatrix} \ell_0 & -\ell_1 & 0 & \dots & 0 \\ \ell_0 & 0 & -\ell_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \ell_0 & 0 & \dots & 0 & -\ell_{n+1} \end{pmatrix}$$

Consequence

All lines are maximal.

2 Direct for
$$\ell_1, \ldots, \ell_{n-1}$$
.

(a) ℓ_0 by row transforms.

Tomas Sauer (Uni Passau)

Syzygy matrix

$$S = \begin{pmatrix} \ell_0 & -\ell_1 & 0 & \dots & 0 \\ \ell_0 & 0 & -\ell_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \ell_0 & 0 & \dots & 0 & -\ell_{n+1} \end{pmatrix}$$

Consequence

- All lines are maximal.
- 2 Direct for $\ell_1, \ldots, \ell_{n-1}$.
- (a) ℓ_0 by row transforms.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 18 / 23

Syzygy matrix

$$S = \begin{pmatrix} \ell_0 & -\ell_1 & 0 & \dots & 0 \\ \ell_0 & 0 & -\ell_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \ell_0 & 0 & \dots & 0 & -\ell_{n+1} \end{pmatrix}$$

Consequence

- All lines are maximal.
- 2 Direct for $\ell_1, \ldots, \ell_{n-1}$.
- **(a)** ℓ_0 by row transforms.

Projective setup

• Sets of lines
$$L_{j,k}$$
, $j = 0, ..., n, k = 0, 1, 2$.

2 Points

$$x_{\beta} = \bigcap_{k=0,1,2} L_{\beta_j,j}, \qquad \beta \in \mathbb{N}_0^3, \, |\beta| = n.$$

Bases

• Fundamental: $\ell_{\beta} = \prod_{j=0,1,2} \prod_{\gamma_j < \beta_j} \frac{\ell_{\gamma_j,j}}{\ell_{\gamma_j,j}(x_{\beta})}$ • H-basis: $h_j = \prod_{\gamma_1 < j} \ell_{\gamma_1,1} \prod_{\gamma_2 < n+1-j} \ell_{\gamma_2,2}$.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 19 / 23

Projective setup

Sets of lines
$$L_{j,k}$$
, $j = 0, ..., n$, $k = 0, 1, 2$.

2 Points

$$x_{\beta} = \bigcap_{k=0,1,2} L_{\beta_j,j}, \qquad \beta \in \mathbb{N}_0^3, \, |\beta| = n.$$

Bases

• Fundamental:
$$\ell_{\beta} = \prod_{j=0,1,2} \prod_{\gamma_j < \beta_j} \frac{\ell_{\gamma_j,j}}{\ell_{\gamma_j,j}(x_{\beta})}$$

• H-basis: $h_j = \prod_{\gamma_1 < j} \ell_{\gamma_1,1} \prod_{\gamma_2 < n+1-j} \ell_{\gamma_2,2}$.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 19 / 23

Projective setup

• Sets of lines
$$L_{j,k}$$
, $j = 0, ..., n, k = 0, 1, 2$.

2 Points

$$x_{\beta} = \bigcap_{k=0,1,2} L_{\beta_j,j}, \qquad \beta \in \mathbb{N}_0^3, \, |\beta| = n.$$

Bases

• Fundamental:
$$\ell_{\beta} = \prod_{j=0,1,2} \prod_{\gamma_j < \beta_j} \frac{\ell_{\gamma_j,j}}{\ell_{\gamma_j,j}(x_{\beta})}$$

• H-basis: $h_j = \prod_{\gamma_1 < j} \ell_{\gamma_1,1} \prod_{\gamma_2 < n+1-j} \ell_{\gamma_2,2}$.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 19 / 23

Projective setup

• Sets of lines $L_{j,k}$, j = 0, ..., n, k = 0, 1, 2.

Points (existence is condition!)

$$x_{eta} = igcap_{k=0,1,2} L_{eta_j,j}, \qquad eta \in \mathbb{N}^3_0, \, |eta| = n.$$

Bases

• Fundamental:
$$\ell_{\beta} = \prod_{j=0,1,2} \prod_{\gamma_j < \beta_j} \frac{\ell_{\gamma_{j,j}}}{\ell_{\gamma_{j,j}}(x_{\beta})}$$

• H-basis: $h_j = \prod_{\gamma_1 < j} \ell_{\gamma_1,1} \prod_{\gamma_2 < n+1-j} \ell_{\gamma_2,2}$.

Tomas Sauer (Uni Passau)

Projective setup

9 Sets of lines
$$L_{j,k}$$
, $j = 0, ..., n$, $k = 0, 1, 2$.

Points (existence is condition!)

$$x_{\beta} = \bigcap_{k=0,1,2} L_{\beta_j,j}, \qquad \beta \in \mathbb{N}_0^3, \, |\beta| = n.$$

Bases

Tomas Sauer (Uni Passau)

Projective setup

Sets of lines
$$L_{j,k}$$
, $j = 0, ..., n$, $k = 0, 1, 2$.

Points (existence is condition!)

$$x_{\beta} = \bigcap_{k=0,1,2} L_{\beta_j,j}, \qquad \beta \in \mathbb{N}^3_0, \, |\beta| = n.$$

Bases

• Fundamental:
$$\ell_{\beta} = \prod_{j=0,1,2} \prod_{\gamma_j < \beta_j} \frac{\ell_{\gamma_j,j}}{\ell_{\gamma_j,j}(x_{\beta})}.$$

• H-basis: $h_j = \prod_{\gamma_1 < j} \ell_{\gamma_1,1} \prod_{\gamma_2 < n+1-j} \ell_{\gamma_2,2}.$

Tomas Sauer (Uni Passau)

Projective setup

Sets of lines
$$L_{j,k}$$
, $j = 0, ..., n$, $k = 0, 1, 2$.

Points (existence is condition!)

$$x_{\beta} = \bigcap_{k=0,1,2} L_{\beta_j,j}, \qquad \beta \in \mathbb{N}_0^3, \, |\beta| = n.$$

Bases

Tomas Sauer (Uni Passau)

Syzygy matrix

$$S = \begin{pmatrix} \ell_{0,1} & -\ell_{n,2} & 0 & \dots & 0 \\ 0 & \ell_{1,1} & -\ell_{n-1,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \ell_{n,1} & -\ell_{0,2} \end{pmatrix}$$

Consequence

- Find the two maximal lines l_{0,1}, l_{0,2}.
- If $I_{0,0}$ we need another H–basis that contains $l_{i,0}$
- Direct operations on S?

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Bernried, February 2017 20 / 23

Syzygy matrix

$S = \begin{pmatrix} \ell_{0,1} & -\ell_{n,2} & 0 & \dots & 0 \\ 0 & \ell_{1,1} & -\ell_{n-1,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \ell_{n,1} & -\ell_{0,2} \end{pmatrix}$

Consequence

- Find the two maximal lines $\ell_{0,1}$, $\ell_{0,2}$.
- If $\ell_{0,0}$ we need another H–basis that contains $\ell_{j,0}$.
- O Direct operations on S?

Syzygy matrix

$S = \begin{pmatrix} \ell_{0,1} & -\ell_{n,2} & 0 & \dots & 0 \\ 0 & \ell_{1,1} & -\ell_{n-1,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \ell_{n,1} & -\ell_{0,2} \end{pmatrix}$

Consequence

• Find the two maximal lines $\ell_{0,1}$, $\ell_{0,2}$.

For $\ell_{0,0}$ we need another H–basis that contains $\ell_{j,0}$.

Oirect operations on S?

Tomas Sauer (Uni Passau)

Syzygy matrix

$S = \begin{pmatrix} \ell_{0,1} & -\ell_{n,2} & 0 & \dots & 0 \\ 0 & \ell_{1,1} & -\ell_{n-1,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \ell_{n,1} & -\ell_{0,2} \end{pmatrix}$

Consequence

- Find the two maximal lines $\ell_{0,1}$, $\ell_{0,2}$.
- So For $\ell_{0,0}$ we need another H–basis that contains $\ell_{j,0}$.

O Direct operations on S?

Tomas Sauer (Uni Passau)

Syzygy matrix

$S = \begin{pmatrix} \ell_{0,1} & -\ell_{n,2} & 0 & \dots & 0 \\ 0 & \ell_{1,1} & -\ell_{n-1,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \ell_{n,1} & -\ell_{0,2} \end{pmatrix}$

Consequence

- Find the two maximal lines $\ell_{0,1}$, $\ell_{0,2}$.
- So For $\ell_{0,0}$ we need another H–basis that contains $\ell_{j,0}$.
- Oirect operations on S?

Syzygy matrix

$S = \begin{pmatrix} \ell_{0,1} & -\ell_{n,2} & 0 & \dots & 0 \\ 0 & \ell_{1,1} & -\ell_{n-1,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \ell_{n,1} & -\ell_{0,2} \end{pmatrix}$

Consequence

- Find the two maximal lines $\ell_{0,1}$, $\ell_{0,2}$.
- **2** For $\ell_{0,0}$ we need another H–basis that contains $\ell_{j,0}$.
- Solution Of the provided and the second seco

Summary

What's the point?

- Does not prove Gasca–Maeztu conjecture.
- Advantage: geometry instead of combinatorics.
- In the second second
- I Algebraic condition to be checked.
- Optimitely worthwhile.

- O Does not prove Gasca-Maeztu conjecture.
- Advantage: geometry instead of combinatorics.
- In the second state in the second state is a second state
- In Algebraic condition to be checked.
- Oefinitely worthwhile.

- Does not prove Gasca–Maeztu conjecture yet.
- Advantage: geometry instead of combinatorics.
- In the second second
- I Algebraic condition to be checked.
- O Definitely worthwhile.

- O Does not prove Gasca–Maeztu conjecture yet.
- Advantage: geometry instead of combinatorics.
- In the second state in the second state is a second state
- Algebraic condition to be checked.
- Optimitely worthwhile.

- Does not prove Gasca–Maeztu conjecture yet.
- Advantage: geometry instead of combinatorics.
- So case distinctions and classifications.
- Algebraic condition to be checked.
- Definitely worthwhile.

- Does not prove Gasca–Maeztu conjecture yet.
- Advantage: geometry instead of combinatorics.
- In the second second
- Algebraic condition to be checked.
- Definitely worthwhile.

- Does not prove Gasca–Maeztu conjecture yet.
- Advantage: geometry instead of combinatorics.
- In the second second
- Algebraic condition to be checked.
- Definitely worthwhile.

What's the point?

- Does not prove Gasca–Maeztu conjecture yet.
- Advantage: geometry instead of combinatorics.
- In the second second
- Algebraic condition to be checked.
- Oefinitely worthwhile.

\end\bye

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

... for coming.

... for contributions: talks & discussions.

Next time February 19–23, 2018

Keep in mind . . .

- Preregistration possible.
- Will take place with 20+ participants.

Please ...

... return keys and nametags.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

... for coming.

... for contributions: talks & discussions.

Next time February 19–23, 2018

Keep in mind . . .

- Preregistration possible.
- Will take place with 20+ participants.

Please ...

... return keys and nametags.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

- ... for coming.
- ... for contributions: talks & discussions.

Next time February 19–23, 2018

Keep in mind . . .

- Preregistration possible.
- Will take place with 20+ participants.

Please ...

... return keys and nametags.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

... for coming.

... for contributions: talks & discussions.

Next time February 19–23, 2018

Keep in mind ...

Preregistration possible.

Will take place with 20+ participants.

Please ...

... return keys and nametags.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

... for coming.

... for contributions: talks & discussions.

Next time February 19–23, 2018

Keep in mind ...

- Preregistration possible.
- Will take place with 20+ participants.

Please ...

... return keys and nametags.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

... for coming.

... for contributions: talks & discussions.

Next time

February 19–23, 2018

Keep in mind ...

- Preregistration possible.
 - Will take place with 20+ participants.

Please ...

... return keys and nametags.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

... for coming.

... for contributions: talks & discussions.

Next time

February 19–23, 2018

Keep in mind ...

- Preregistration possible.
- **2** Will take place with 20+ participants.

Please ...

... return keys and nametags.

Tomas Sauer (Uni Passau)

Interpolation and Syzygies

Thanks ...

... for coming.

... for contributions: talks & discussions.

Next time

February 19–23, 2018

Keep in mind ...

- Preregistration possible.
- **2** Will take place with 20+ participants.

Please ...

... return keys and nametags.

Closing Image

Tomas Sauer (Uni Passau)

Interpolation and Syzygies