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Sparse Scattered Data

PART I: SPARSE SCATTERED DATA
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Sparse Scattered Data (Sparse) Scattered Data on (Sub)Manifolds

PROBLEM STATEMENT

Setting:

� M ⊆ Rd an embedded submanifold with q = dim M < 4

� closed � compact � without boundary

� Ξ ⊆ M a set of sparse sites scattered over M

� Υ function values to Ξ

Task: Determine a »reasonable« function f : M→ R such that

f (ξ) = yξ for all ξ ∈ Ξ and corresponding yξ ∈ Υ
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Common Approaches

COMMON APPROACHES: CHARTS AND BLENDING

� Use charts and define function spaces there to solve problem locally.

� Blend local solutions to obtain global solution.

Problems:

• There might be charts without any sites

• Blending tends to produce undesireable »gluing breaks«
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Common Approaches

COMMON APPROACHES: INTRINSIC FUNCTIONS

� Determine purely intrinsic function spaces FM like spherical harmonics on Sq .

� Use these for a solution

Problems:

• These spaces are M-specific and for arbitrary M hard to determine.

• Also, they are often costly to evaluate.
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Common Approaches

COMMON APPROACHES: EXTRINSIC DIRECT INTERPOLATION

� Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...

� Solve standard interpolation problem in neighbourhood, ignore the geometry of M.

� Restrict the solution to M.

Directly applicable and works always — but how good?
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Common Approaches
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Common Approaches
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Common Approaches
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Common Approaches
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Common Approaches

COMMON APPROACHES: EXTRINSIC INTERPOLATION

� Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...

� Solve standard interpolation problem in neighbourhood, ignore the geometry of M.

� Restrict the solution to M.

Problems:

• Difficulties occur for sparse data.

• Suffers extremely from intricate geometries.
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New Approach: Setting

NEW APPROACH (M., REIF)

� Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...

� Transfer intrinsic properties into extrinsic (ambient) properties — approximately.

� Solve approximately intrinsic problem with extrinsic methods.

Pro’s:

• Extrinsic function spaces are well understood.

• Extrinsic function space are applicable to any submanifold.

• Easily understood and implemented even for non-mathematicians.
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New Approach: Setting

SOLUTION IDEA: BACKGROUND

DEFINITION (Tangent Derivative)

Let f : M→ R be a sufficiently (weakly) differentiable function and f̃ an extension into

U(M). The Tangent Derivative Operator dM is defined as

dMf := df̃ − πN(df̃ )

and independent of the choice of f̃ .
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New Approach: Setting

SOLUTION IDEA: BACKGROUND

THEOREM (e.g. [Dziuk/Elliot, 2013])

Let f ∈ C2(M), and f an extension that is constant in normal directions of M.

Then the 1st and 2nd tangent derivatives of f coincide with the euclidean 1st and 2nd

derivatives of f on the tangent space.
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New Approach: Setting

SOLUTION IDEA: BACKGROUND

THEOREM (M. 2015)

Let f ∈ C2(M), and f̃ an arbitrary extension. Then the deviations of the 1st and 2nd

tangent derivatives of f from the euclidean 1st and 2nd derivatives of f̃ on the tangent

space are Lipschitz functions of the first normal derivatives.
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New Approach: Setting

SOLUTION IDEA: BACKGROUND

What does that mean?

� Euclidean derivatives of f̃ give approximate access to tangent derivatives of f

� Standard methods can be used to handle intrinsic problems approximately

� Intrinsic functionals are easily approximated by standard functionals
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New Approach: Setting

NEW APPROACH (M., REIF): SOLUTION IDEA

Let U(M) be a suitable neighbourhood of M, such that any point there has a unique

closest point on M.

Consider a suitable function space F(U(M)) on U(M).

Minimize squared 2nd derivative in tangent directions over M

such that:

Interpolation in Ξ holds Normal derivatives→ 0
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New Approach: Setting

OPTIMIZATION FUNCTIONAL: TENSOR-PRODUCT B-SPLINES

Minimize for grid width h > 0 and τ1, ...τq an ONB of Tp(M), ν1, ..., νd−q ONB of Np(M)

∫
M

q∑
i,j=1

∣∣∣∣ ∂2

∂τi∂τj
sh

∣∣∣∣2 + Ch−σ
∫
M

d−q∑
i=1

∣∣∣∣ ∂∂νi
sh

∣∣∣∣2 +

∫
Uh(M)

w(h−σ,Nx )

d−q∑
i=1

∣∣∣∣ ∂

∂νi (clp(·))
sh

∣∣∣∣2

for suitable penalty parameter σ and radial weight function w , under side conditions

sh(ξ) = yξ ∀ξ ∈ Ξ
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New Approach: Theory

THEORY: SOLVABILITY AND CONVERGENCE

THEOREM (M. 2015):

1. For TP-B-Splines and sufficiently small h, the above problem is uniquely solvable.

2. For h→ 0 the squared second derivative energy converges to the unique optimal

energy in H2(M).

3. Restrictions of optimal splines sh|M approach unique optimum f ∗ ∈ H2(M):

||sh − f ∗||H2(M) → 0 as h→ 0.
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples

Sites with corresponding interpolation values:

s(±e1) = ±1, s(±e2) = 0, s(±e3) = 0
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New Approach: Examples

Reprojections onto S2:

Our optimum for h = 0.08 Standard ambient interpolation
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New Approach: Examples

Equator evaluation:

Our optimum for h = 0.08 Standard ambient interpolation
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New Approach: Examples

Our optimum for h = 0.0625 Standard ambient interpolation

Stanford bunny as an image of the pumpkin, using ≈ 80 (upper row)

and ≈ 160 sites (lower row)
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New Approach: Examples

Our optimum for h = 0.0625 Standard ambient interpolation

Stanford bunny as an image of the pumpkin, using ≈ 350 (upper row)

and ≈ 700 sites (lower row)
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Further remarks

FURTHER REMARKS

� With fill distance hΞ,M = maxp∈M minξ∈Ξ ||p − ξ||2 decreasing, the convergence is

about that of thin-plate splines

But: One will have to increase the number of DOF correspondingly to meet

• More interpolation conditions

• Sufficient decrease of derivatives in normal directions

� One can use RBF or other approaches instead of TPBS — but their locality makes

them a very good choice.

� Application for M with boundary is possible, but requires reasonable boundary

conditions (ongoing research).

� Similar approaches work for Smoothing and Elliptical PDEs on M.
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Well sampled regular Scattered Data

PART II: WELL SAMPLED REGULAR SCATTERED DATA
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Well sampled regular Scattered Data Well sampled regular Scattered Data

PROBLEM STATEMENT

Setting:

� M ⊆ Rd an embedded submanifold

� closed � compact � without boundary

� Ξ ⊆ M a set of quasi-uniform sites scattered over M, |Ξ| rather large

� Υ function values to Ξ

Task: Determine a function f : M→ R such that

� f (ξ) ≈ yξ for all ξ ∈ Ξ and corresponding yξ ∈ Υ

� yξ sampled from function g: f ≈ g
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Well sampled regular Scattered Data Well sampled regular Scattered Data

COMMON APPROACHES: EXTRINSIC DIRECT INTERPOLATION

Pleasant conv. rates for RBF: Only loss of O(hcodim(M)/p
Ξ ) [Fuselier/Wright ’12]

Problems:

• Polynomials/Splines/MLS presumably unstable

• RBF still face a loss of order — although it is moderate
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Well sampled regular Scattered Data Well sampled regular Scattered Data

RECENT APPROACH (REIF ET AL.):
CONSTANT EXTENSION INTO AMBIENT SPACE

� Use some function space in ambient neighbourhood of M: RBF, MLS, Splines...

� Extend function constantly into ambient space and solve problem there.

Extension along normals:

• Scattered sites are extended along the normals of M
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Well sampled regular Scattered Data Well sampled regular Scattered Data

RECENT APPROACH (REIF ET AL.):
CONSTANT EXTENSION INTO AMBIENT SPACE

� Use some function space in ambient neighbourhood of M: RBF, MLS, Splines...

� Extend function constantly into ambient space and solve problem there.

Extension along some suitable flow:

• Scattered sites are extended along e.g. gradient flow of implicit function
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Well sampled regular Scattered Data Well sampled regular Scattered Data

RECENT APPROACH:
CONSTANT EXTENSION INTO AMBIENT SPACE

� Use some function space in ambient neighbourhood of M: RBF, MLS, Splines...

� Extend function constantly into ambient space and solve problem there.

THEOREM (M., 2016)

• Let f ∈ W m
p (M) extended constantly along normals.

• Use quasi-interpolation with TPB-Splines of order m.

=⇒ Optimal convergence order m − k in W k
p (M) for k < m − 1 regardless codim(M).
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Well sampled regular Scattered Data Well sampled regular Scattered Data

Stanford Bunny Approximation

Locally weighted Least Squares and TPBS cells of edge length 0.025,

applied to about 30.000 data sites
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Well sampled regular Scattered Data Further remarks

FURTHER REMARKS

� Comparable convergence results hold for other approximation methods and/or

extension flows at least if k < m − codim(M).

� Convergence requires the data to increase as the degrees of freedom

� Application for M with boundary is possible, but requires reasonable boundary

handling, e.g. coupling of splines.
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Irregular Scattered Data

PART III: IRREGULAR SCATTERED DATA
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Irregular Scattered Data Irregular Scattered Data

PROBLEM STATEMENT

Setting:

� M ⊆ Rd an embedded submanifold with q = dim M < 4

� closed � compact � without boundary

� Ξ ⊆ M a set of sites scattered over M

� Ξ contains clusters or considerable holes / gaps

� Υ function values to Ξ

Task: Determine a function f : M→ R such that

� f (ξ) ≈ yξ for all ξ ∈ Ξ and corresponding yξ ∈ Υ

� yξ sampled from function g: f ≈ g
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Irregular Scattered Data Irregular Scattered Data

APPROACH (M., REIF): MULTI-LEVEL/HIERACHY APPROXIMATION

� Thin data sites until suitably sparse

� Apply »Sparse Data« method on thinned sites

� Approximate error in well-sampled regions using all sites

� Hierarchical approach might be used in second level

Advantage:

� Use of the same function space in first and following levels:

⇒ single explicit expression for solution
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Irregular Scattered Data Irregular Scattered Data

Hole in the data sites (≈ 2.500): Rear side is lost
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Irregular Scattered Data Irregular Scattered Data

Result of first level with data sites (≈ 160) over »pumpkin«
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Irregular Scattered Data Irregular Scattered Data

Result of first and second level with data sites
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Irregular Scattered Data Irregular Scattered Data

Error plot on resulting model, error cut at 4 · 10−3 for comparability reasons
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Irregular Scattered Data Irregular Scattered Data

Resulting model after both levels
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Irregular Scattered Data Irregular Scattered Data

Data sites (≈ 7.000) clustering in one area around the head
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Irregular Scattered Data Irregular Scattered Data

Result and sites (≈ 130) of first step (h = 0.1)
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Irregular Scattered Data Irregular Scattered Data

Resulting model after 3 hierarchy levels (0.1, 0.05, 0.025) in second step
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Irregular Scattered Data Irregular Scattered Data

Error plot on resulting model, error cut at 8 · 10−4 for comparability reasons
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Irregular Scattered Data Conclusion and Prospects

SUMMARY

New approaches to all kinds of scattered data approximation and/or interpolation

on certain submanifolds:

� Overcome common difficulties

� Apply well-known concepts in novel setting

� Easy to implement

� Produce pleasant results
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Irregular Scattered Data Conclusion and Prospects

THANK YOU!
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