Scattered Data Approximation on Submanifolds

(Combined) Ambient Solutions

Lars-B. Maier

Technische Universität Darmstadt

Bernried, 27.02.-03.03.2017

Part I: Sparse Scattered Data

Part II: Regular well-sampled Scattered Data

Part III: Irregular Scattered Data

PART I: SPARSE SCATTERED DATA

PROBLEM STATEMENT

Setting:

▶ $\mathbb{M} \subseteq \mathbb{R}^d$ an embedded submanifold with $q = \dim \mathbb{M} < 4$

◊ closed
◊ compact
◊ without boundary

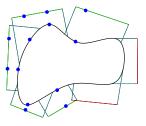
- $\blacktriangleright \Xi \subseteq \mathbb{M}$ a set of **sparse** sites scattered over \mathbb{M}
- ▶ Υ function values to Ξ

Task: Determine a »reasonable« function $f : \mathbb{M} \to \mathbb{R}$ such that

 $f(\xi) = y_{\xi}$ for all $\xi \in \Xi$ and corresponding $y_{\xi} \in \Upsilon$

COMMON APPROACHES: CHARTS AND BLENDING

- ► Use charts and define function spaces there to solve problem locally.
- ► Blend local solutions to obtain global solution.



Problems:

- There might be charts without any sites
- Blending tends to produce undesireable »gluing breaks«

COMMON APPROACHES: INTRINSIC FUNCTIONS

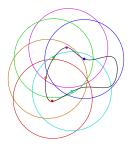
- ► Determine purely intrinsic function spaces $\mathcal{F}_{\mathbb{M}}$ like spherical harmonics on \mathbb{S}^q .
- ► Use these for a solution

Problems:

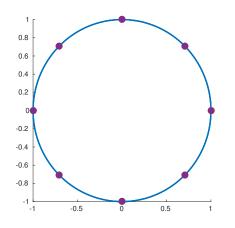
- These spaces are \mathbb{M} -specific and for arbitrary \mathbb{M} hard to determine.
- Also, they are often costly to evaluate.

COMMON APPROACHES: EXTRINSIC DIRECT INTERPOLATION

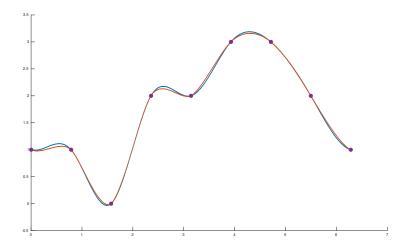
- ► Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...
- ► Solve standard interpolation problem in neighbourhood, ignore the geometry of M.
- \blacktriangleright Restrict the solution to $\mathbb{M}.$



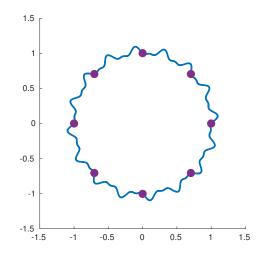
Directly applicable and works always — but how good?



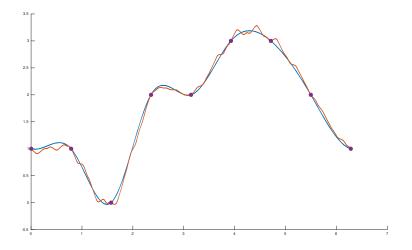
Data sites with function values: 1, 1, 0, 2, 2, 3, 3, 2



Periodic cubic spline Restricted thin-plate spline Interpolation sites



Data sites with function values: 1, 1, 0, 2, 2, 3, 3, 2



Periodic cubic spline interpolant

Restricted thin-plate spline interpolant

COMMON APPROACHES: EXTRINSIC INTERPOLATION

- ► Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...
- ► Solve standard interpolation problem in neighbourhood, ignore the geometry of M.
- ► Restrict the solution to M.

Problems:

- Difficulties occur for sparse data.
- Suffers extremely from intricate geometries.

NEW APPROACH (M., REIF)

- \blacktriangleright Use some function space in a suitable ambient neighbourhood of $\mathbb{M}:$ RBF, Splines...
- ► Transfer intrinsic properties into extrinsic (ambient) properties approximately.
- ► Solve approximately intrinsic problem with extrinsic methods.

Pro's:

- Extrinsic function spaces are well understood.
- Extrinsic function space are applicable to any submanifold.
- Easily understood and implemented even for non-mathematicians.

DEFINITION (Tangent Derivative)

Let $f : \mathbb{M} \to \mathbb{R}$ be a sufficiently (weakly) differentiable function and \tilde{f} an extension into $U(\mathbb{M})$. The **Tangent Derivative Operator** $\mathbf{d}_{\mathbb{M}}$ is defined as

$$\mathbf{d}_{\mathbb{M}}f := \mathbf{d}\tilde{f} - \pi_{N}(\mathbf{d}\tilde{f})$$

and independent of the choice of \tilde{f} .

THEOREM (e.g. [Dziuk/Elliot, 2013])

Let $f \in C^2(\mathbb{M})$, and \overline{f} an extension that is **constant in normal directions** of \mathbb{M} . Then the 1st and 2nd **tangent** derivatives of f <u>coincide</u> with the **euclidean** 1st and 2nd derivatives of \overline{f} on the tangent space.

ТНЕОВЕМ (М. 2015)

Let $f \in C^2(\mathbb{M})$, and \tilde{f} an arbitrary extension. Then the deviations of the 1st and 2nd tangent derivatives of f from the **euclidean** 1st and 2nd derivatives of \tilde{f} on the tangent space are Lipschitz functions of the first normal derivatives.

What does that mean?

- ► Euclidean derivatives of *t̃* give **approximate** access to tangent derivatives of *f*
- Standard methods can be used to handle intrinsic problems approximately
- ► Intrinsic functionals are easily **approximated** by standard functionals

NEW APPROACH (M., REIF): SOLUTION IDEA

Let $U(\mathbb{M})$ be a suitable neighbourhood of \mathbb{M} , such that any point there has a unique closest point on \mathbb{M} .

Consider a suitable function space $\mathcal{F}(U(\mathbb{M}))$ on $U(\mathbb{M})$.

Minimize squared $2^{\textit{nd}}$ derivative in tangent directions over $\mathbb M$

such that:

Interpolation in Ξ holds

Normal derivatives $\rightarrow 0$

OPTIMIZATION FUNCTIONAL: TENSOR-PRODUCT B-SPLINES

Minimize for grid width h > 0 and $\tau_1, ..., \tau_q$ an ONB of $T_p(\mathbb{M}), \nu_1, ..., \nu_{d-q}$ ONB of $N_p(\mathbb{M})$

$$\int_{\mathbb{M}} \sum_{i,j=1}^{q} \left| \frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}} s_{h} \right|^{2} + Ch^{-\sigma} \int_{\mathbb{M}} \sum_{i=1}^{d-q} \left| \frac{\partial}{\partial \nu_{i}} s_{h} \right|^{2} + \int_{U_{h}(\mathbb{M})} w(h^{-\sigma}, N_{x}) \sum_{i=1}^{d-q} \left| \frac{\partial}{\partial \nu_{i}(clp(\cdot))} s_{h} \right|^{2}$$

for suitable penalty parameter σ and radial weight function w, under side conditions

$$s_h(\xi) = y_{\xi} \quad \forall \xi \in \Xi$$

THEORY: SOLVABILITY AND CONVERGENCE

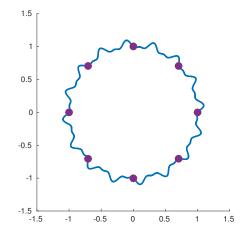
ТНЕОВЕМ (М. 2015):

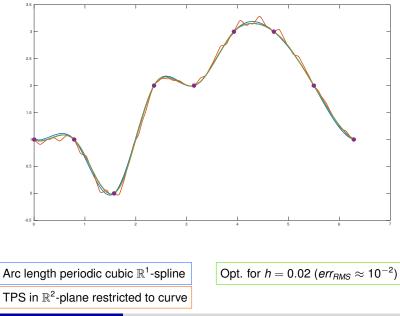
1. For TP-B-Splines and sufficiently small *h*, the above problem is uniquely solvable.

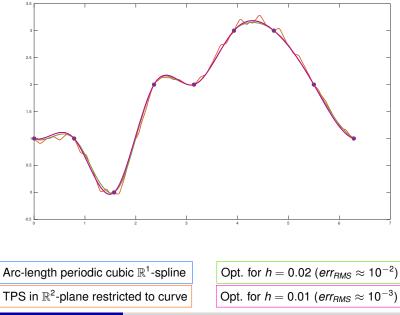
2. For $h \to 0$ the squared second derivative energy converges to the unique optimal energy in $\mathcal{H}^2(\mathbb{M})$.

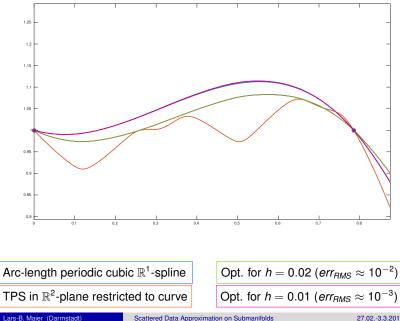
3. Restrictions of optimal splines $s_h|_{\mathbb{M}}$ approach unique optimum $f^* \in \mathcal{H}^2(\mathbb{M})$:

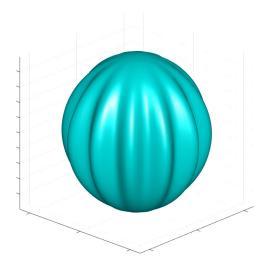
$$\|s_h - f^*\|_{\mathcal{H}^2(\mathbb{M})} o 0 \quad ext{ as } \quad h o 0.$$





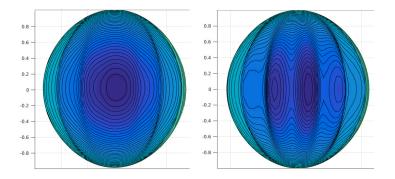






Sites with corresponding interpolation values:

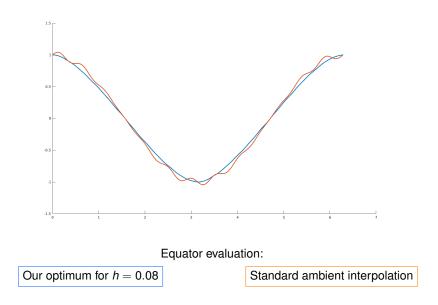
$$s(\pm e_1) = \pm 1, \; s(\pm e_2) = 0, \; s(\pm e_3) = 0$$



Reprojections onto \mathbb{S}^2 :

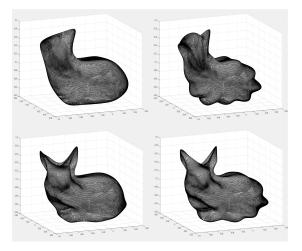
Our optimum for h = 0.08

Standard ambient interpolation



Standard ambient interpolation

Our optimum for h = 0.0625



Stanford bunny as an image of the pumpkin, using \approx 80 (upper row) and \approx 160 sites (lower row)

Lars-B. Maier (Darmstadt)

Scattered Data Approximation on Submanifolds

Our optimum for h = 0.0625

Standard ambient interpolation

Stanford bunny as an image of the pumpkin, using ≈ 350 (upper row) and ≈ 700 sites (lower row)

Lars-B. Maier (Darmstadt)

Scattered Data Approximation on Submanifolds

FURTHER REMARKS

▶ With fill distance $h_{\Xi,M} = \max_{p \in M} \min_{\xi \in \Xi} \|p - \xi\|_2$ decreasing, the convergence is about that of thin-plate splines

But: One will have to increase the number of DOF correspondingly to meet

- More interpolation conditions
- Sufficient decrease of derivatives in normal directions

► One can use RBF or other approaches instead of TPBS — but their locality makes them a very good choice.

► Application for M with boundary is possible, but requires reasonable boundary conditions (ongoing research).

 \blacktriangleright Similar approaches work for **Smoothing** and **Elliptical PDEs** on M.

PART II: WELL SAMPLED REGULAR SCATTERED DATA

PROBLEM STATEMENT

Setting:

 \blacktriangleright $\mathbb{M} \subseteq \mathbb{R}^d$ an embedded submanifold

◊ closed
◊ compact
◊ without boundary

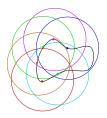
- $\blacktriangleright \ \Xi \subseteq \mathbb{M}$ a set of quasi-uniform sites scattered over $\mathbb{M}, \ |\Xi|$ rather large
- ▶ Υ function values to Ξ

Task: Determine a function $f : \mathbb{M} \to \mathbb{R}$ such that

- ▶ $f(\xi) \approx y_{\xi}$ for all $\xi \in \Xi$ and corresponding $y_{\xi} \in \Upsilon$
- ► y_{ξ} sampled from function g: $f \approx g$

COMMON APPROACHES: EXTRINSIC DIRECT INTERPOLATION

Pleasant conv. rates for RBF: Only loss of $O(h_{\Xi}^{\text{codim}(\mathbb{M})/p})$ [Fuselier/Wright '12]



Problems:

- Polynomials/Splines/MLS presumably unstable
- RBF still face a loss of order although it is moderate

RECENT APPROACH (REIF ET AL.): CONSTANT EXTENSION INTO AMBIENT SPACE

- ► Use some function space in ambient neighbourhood of M: RBF, MLS, Splines...
- ► Extend function constantly into ambient space and solve problem there.

Extension along normals:

 \bullet Scattered sites are extended along the normals of $\mathbb M$

RECENT APPROACH (REIF ET AL.): CONSTANT EXTENSION INTO AMBIENT SPACE

- ► Use some function space in ambient neighbourhood of M: RBF, MLS, Splines...
- ► Extend function constantly into ambient space and solve problem there.

Extension along some suitable flow:

• Scattered sites are extended along e.g. gradient flow of implicit function

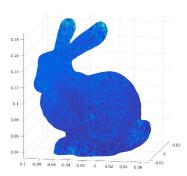
RECENT APPROACH: CONSTANT EXTENSION INTO AMBIENT SPACE

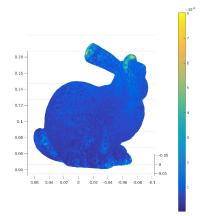
- ► Use some function space in ambient neighbourhood of M: RBF, MLS, Splines...
- ► Extend function constantly into ambient space and solve problem there.

THEOREM (M., 2016)

- Let $f \in W_p^m(\mathbb{M})$ extended constantly along normals.
- Use quasi-interpolation with **TPB-Splines of order** *m*.

 \implies Optimal convergence order m - k in $W_{\rho}^{k}(\mathbb{M})$ for k < m - 1 regardless codim(\mathbb{M}).





Stanford Bunny Approximation

Locally weighted Least Squares and TPBS cells of edge length 0.025,

applied to about 30.000 data sites

Lars-B. Maier (Darmstadt)

Scattered Data Approximation on Submanifolds

FURTHER REMARKS

► Comparable convergence results hold for other approximation methods and/or extension flows at least if $k < m - \text{codim}(\mathbb{M})$.

- ► Convergence requires the data to increase as the degrees of freedom
- ► Application for M with boundary is possible, but requires reasonable boundary handling, e.g. coupling of splines.

PART III: IRREGULAR SCATTERED DATA

PROBLEM STATEMENT

without boundary

Setting:

▶ $\mathbb{M} \subseteq \mathbb{R}^d$ an embedded submanifold with $q = \dim \mathbb{M} < 4$

◊ closed
◊ compact

- $\Xi \subset \mathbb{M}$ a set of sites scattered over \mathbb{M}
- ► Ξ contains clusters or considerable holes / gaps
- ▶ Υ function values to Ξ

Task: Determine a function $f : \mathbb{M} \to \mathbb{R}$ such that

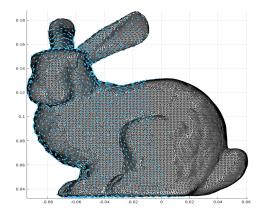
- ► $f(\xi) \approx y_{\xi}$ for all $\xi \in \Xi$ and corresponding $y_{\xi} \in \Upsilon$
- ► y_{ξ} sampled from function g: $f \approx g$

APPROACH (M., REIF): MULTI-LEVEL/HIERACHY APPROXIMATION

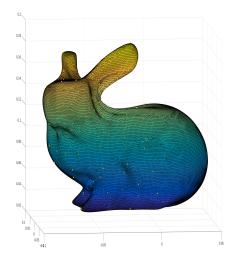
- ► Thin data sites until suitably sparse
- Apply »Sparse Data« method on thinned sites
- Approximate error in well-sampled regions using all sites
- ► Hierarchical approach might be used in second level

Advantage:

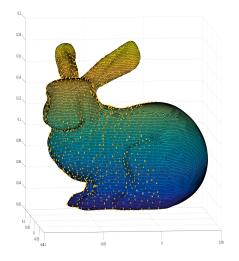
- Use of the same function space in first and following levels:
 - \Rightarrow single explicit expression for solution



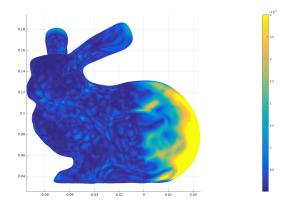
Hole in the data sites (\approx 2.500): Rear side is lost



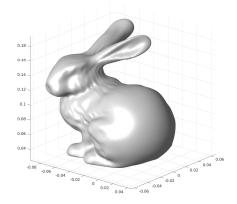
Result of first level with data sites (\approx 160) over »pumpkin«



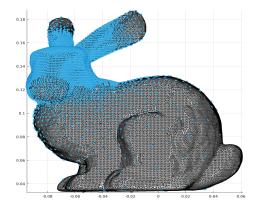
Result of first and second level with data sites



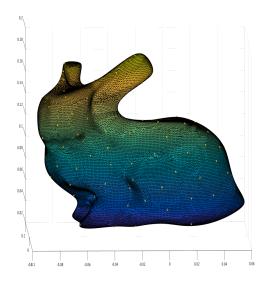
Error plot on resulting model, error cut at $4 \cdot 10^{-3}$ for comparability reasons



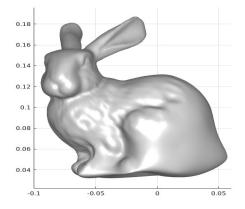
Resulting model after both levels



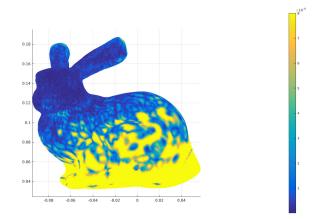
Data sites (\approx 7.000) clustering in one area around the head



Result and sites (\approx 130) of first step (h = 0.1)



Resulting model after 3 hierarchy levels (0.1, 0.05, 0.025) in second step



Error plot on resulting model, error cut at $8 \cdot 10^{-4}$ for comparability reasons

SUMMARY

New approaches to all kinds of scattered data approximation and/or interpolation on certain submanifolds:

- ► Overcome common difficulties
- Apply well-known concepts in novel setting
- Easy to implement
- Produce pleasant results

THANK YOU!