The classification of anisotropic Besov spaces

Hartmut Führ, J. Cheshmavar fuehr@matha.rwth-aachen.de

IM Workshop 2017, Bernried

Lehrstuhl A für Mathematik, RNTH

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

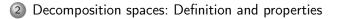
IM 2017 1 / 32

< ロ > < 同 > < 回 > < 回 >

Anisotropic Besov spaces

<ロト < 団ト < 巨ト < 巨ト</p>

Anisotropic Besov spaces



H. Führ (RWTH Aachen)

Anisotropic Besov spaces

(目) 目 つへで IM 2017 2 / 32

イロト イポト イヨト イヨト

Anisotropic Besov spaces

- 2 Decomposition spaces: Definition and properties
- 3 Rigidity theorem for decomposition spaces

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 2 / 32

< ロト < 同ト < ヨト < ヨト

Anisotropic Besov spaces

- 2 Decomposition spaces: Definition and properties
- 3 Rigidity theorem for decomposition spaces
- 4 Classifying anisotropic coverings

ORWTH

A E F A E F

Overview

1 Anisotropic Besov spaces

2 Decomposition spaces: Definition and properties

3 Rigidity theorem for decomposition spaces

4 Classifying anisotropic coverings

ORWTH :::

H. Führ (RWTH Aachen)

∃ ⊳.

⊘R₩THﷺ • ೨९९

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

< ≣ ▶ ≣ ∽ < ↔ IM 2017 4 / 32

<ロト < 団ト < 巨ト < 巨ト</p>

Definition

A matrix $A \in GL(d, \mathbb{R})$ is called expansive if all eigenvalues of A have modulus > 1.

ORWTH

< □ ト < 凸

4 E b

Definition

A matrix $A \in GL(d, \mathbb{R})$ is called expansive if all eigenvalues of A have modulus > 1.

Definition

Let A be expansive. A function $\psi \in \mathcal{S}(\mathbb{R}^d)$ is called an A-wavelet if $\widehat{\psi}$ is compactly supported away from zero, and fulfills

$$orall \xi \in \mathbb{R}^d \setminus \{0\} \hspace{0.1 in} : \hspace{0.1 in} \sum_{j \in \mathbb{Z}} |\widehat{\psi}((\mathcal{A}^{\mathcal{T}})^{-j}\xi)|^2 = 1 \hspace{0.1 in} .$$

Definition

A matrix $A \in GL(d, \mathbb{R})$ is called expansive if all eigenvalues of A have modulus > 1.

Definition

Let A be expansive. A function $\psi \in \mathcal{S}(\mathbb{R}^d)$ is called an A-wavelet if $\widehat{\psi}$ is compactly supported away from zero, and fulfills

$$orall \xi \in \mathbb{R}^d \setminus \{0\} \hspace{0.1 in} : \hspace{0.1 in} \sum_{j \in \mathbb{Z}} |\widehat{\psi}((\mathcal{A}^{\mathcal{T}})^{-j}\xi)|^2 = 1 \hspace{0.1 in} .$$

A Schwartz function φ is called A-scaling function if

$$orall \xi \in \mathbb{R}^d \; : \; ert arphi(\xi) ert^2 + \sum_{j \in \mathbb{N}} ert \widehat{\psi}((\mathsf{A}^{\mathcal{T}})^{-j}\xi) ert^2 = 1 \; .$$

Definition

A matrix $A \in GL(d, \mathbb{R})$ is called expansive if all eigenvalues of A have modulus > 1.

Definition

Let A be expansive. A function $\psi \in \mathcal{S}(\mathbb{R}^d)$ is called an A-wavelet if $\widehat{\psi}$ is compactly supported away from zero, and fulfills

$$orall \xi \in \mathbb{R}^d \setminus \{0\} \hspace{0.1 in} : \hspace{0.1 in} \sum_{j \in \mathbb{Z}} |\widehat{\psi}((\mathcal{A}^{\mathcal{T}})^{-j}\xi)|^2 = 1 \hspace{0.1 in} .$$

A Schwartz function φ is called A-scaling function if

$$orall \xi \in \mathbb{R}^d \; : \; ert arphi(\xi) ert^2 + \sum_{j \in \mathbb{N}} ert \widehat{\psi}((\mathcal{A}^{\mathcal{T}})^{-j} \xi) ert^2 = 1 \; .$$

Note: A-wavelets and scaling functions always exist.

Definition (M. Bownik, 2005)

 $A \in \operatorname{GL}(d,\mathbb{R})$ expansive matrix, ψ, ϕ an A-wavelet and scaling function, respectively.

ORWTH

H. Führ (RWTH Aachen)

< 口 > < 同 >

Definition (M. Bownik, 2005)

 $A \in \operatorname{GL}(d, \mathbb{R})$ expansive matrix, ψ, ϕ an A-wavelet and scaling function, respectively. Let $0 < p, q < \infty$ and $s \in \mathbb{R}$.

ORWTH

H. Führ (RWTH Aachen)

Definition (M. Bownik, 2005)

 $A \in \operatorname{GL}(d, \mathbb{R})$ expansive matrix, ψ, ϕ an A-wavelet and scaling function, respectively. Let $0 < p, q < \infty$ and $s \in \mathbb{R}$.

(a) For $j \in \mathbb{Z}$, define $\psi_j(x) = |\det(A)|^j \psi(A^j x)$.

ORWTH

Definition (M. Bownik, 2005)

 $A \in \operatorname{GL}(d, \mathbb{R})$ expansive matrix, ψ, ϕ an A-wavelet and scaling function, respectively. Let $0 < p, q < \infty$ and $s \in \mathbb{R}$.

(a) For
$$j \in \mathbb{Z}$$
, define $\psi_j(x) = |\det(A)|^j \psi(A^j x)$.
Given $f \in S'(\mathbb{R}^d)$, let

$$\|f\|_{\dot{B}^{\alpha}_{p,q}(A)} = \left\| \left(|\det(A)|^{j\alpha} \|f * \psi_j\|_p \right)_{j \in \mathbb{Z}} \right\|_{\ell^q} \tag{1}$$

denote the homogeneous Besov quasi-norm. The homogeneous Besov space $\dot{B}^{\alpha}_{p,q}(A)$ associated to A consists of all f with $||f||_{\dot{B}^{\alpha}_{p,q}(A)} < \infty$.

ORWITH

< ロ ト < 団 ト < 三 ト < 三 ト</p>

Definition (M. Bownik, 2005)

 $A \in \operatorname{GL}(d, \mathbb{R})$ expansive matrix, ψ, ϕ an A-wavelet and scaling function, respectively. Let $0 < p, q < \infty$ and $s \in \mathbb{R}$.

(a) For
$$j \in \mathbb{Z}$$
, define $\psi_j(x) = |\det(A)|^j \psi(A^j x)$.
Given $f \in S'(\mathbb{R}^d)$, let

$$\|f\|_{\dot{B}^{\alpha}_{p,q}(A)} = \left\| \left(|\det(A)|^{j\alpha} \|f * \psi_j\|_p \right)_{j \in \mathbb{Z}} \right\|_{\ell^q} \tag{1}$$

denote the homogeneous Besov quasi-norm. The homogeneous Besov space $\dot{B}^{\alpha}_{p,q}(A)$ associated to A consists of all f with $||f||_{\dot{B}^{\alpha}_{p,q}(A)} < \infty$. We identify elements of $\dot{B}^{\alpha}_{p,q}(A)$ that only differ by a polynomial.

ORWITH

Definition (M. Bownik, 2005)

(a) ...

©RWTH≣ ∙ ∽ ∝ ભ

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ ■ ▶ ■ のへの IM 2017 6 / 32

イロト イポト イヨト イヨト

Definition (M. Bownik, 2005)

(a) ...

(b) Define $\psi_0^i = \varphi$, as well as $\psi_j^i(x) = |\det(A)|^j \psi(A^j x)$ for $j \in \mathbb{N}$.

< ロト < 同ト < ヨト < ヨト

Definition (M. Bownik, 2005)

(a) ...

(b) Define $\psi_0^i = \varphi$, as well as $\psi_j^i(x) = |\det(A)|^j \psi(A^j x)$ for $j \in \mathbb{N}$. Given $f \in S'(\mathbb{R}^d)$, define

$$\|f\|_{B^{\alpha}_{p,q}(A)} = \left\| \left(|\det(A)|^{j\alpha} \left\| f * \psi^{j}_{j} \right\|_{p} \right)_{j \in \mathbb{N}} \right\|_{\ell^{q}}$$
(2)

The inhomogeneous anisotropic Besov space $B_{p,q}^{\alpha}(A)$ associated to A consists of all tempered distributions f with $\|f\|_{B_{p,q}^{\alpha}(A)} < \infty$.

H. Führ (RWTH Aachen)

IM 2017 6 / 32

Known properties of anisotropic Besov spaces

990

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

Э 7 / 32 IM 2017

 $< \Box + < \Box + <$

Known properties of anisotropic Besov spaces

• The definition of Besov spaces is independent of the choice of wavelet.

Known properties of anisotropic Besov spaces

- The definition of Besov spaces is independent of the choice of wavelet.
- Besov spaces are (quasi-)Banach spaces.

Known properties of anisotropic Besov spaces

- The definition of Besov spaces is independent of the choice of wavelet.
- Besov spaces are (quasi-)Banach spaces.
- There exist alternative characterizations of anisotropic Besov spaces in terms of atomic and molecular decompositions, local means, etc.

Known properties of anisotropic Besov spaces

- The definition of Besov spaces is independent of the choice of wavelet.
- Besov spaces are (quasi-)Banach spaces.
- There exist alternative characterizations of anisotropic Besov spaces in terms of atomic and molecular decompositions, local means, etc.

Main questions for this talk

Given two expansive matrices A, B, we call them homogeneously equivalent $(A \sim_h B)$ whenever $\dot{B}^{\alpha}_{p,q}(A) = \dot{B}^{\alpha}_{p,q}(B)$ holds for all $0 < p, q \leq \infty, \alpha \in \mathbb{R}$.

RWTH

Known properties of anisotropic Besov spaces

- The definition of Besov spaces is independent of the choice of wavelet.
- Besov spaces are (quasi-)Banach spaces.
- There exist alternative characterizations of anisotropic Besov spaces in terms of atomic and molecular decompositions, local means, etc.

Main questions for this talk

Given two expansive matrices A, B, we call them homogeneously equivalent $(A \sim_h B)$ whenever $\dot{B}^{\alpha}_{p,q}(A) = \dot{B}^{\alpha}_{p,q}(B)$ holds for all $0 < p, q \leq \infty, \alpha \in \mathbb{R}$. We define the notion of inhomogeneous equivalence $(A \sim_i B)$ analogously. The relation $A \sim_i B$ is defined analogously.

Known properties of anisotropic Besov spaces

- The definition of Besov spaces is independent of the choice of wavelet.
- Besov spaces are (quasi-)Banach spaces.
- There exist alternative characterizations of anisotropic Besov spaces in terms of atomic and molecular decompositions, local means, etc.

Main questions for this talk

Given two expansive matrices A, B, we call them homogeneously equivalent $(A \sim_h B)$ whenever $\dot{B}^{\alpha}_{p,q}(A) = \dot{B}^{\alpha}_{p,q}(B)$ holds for all $0 < p, q \le \infty, \alpha \in \mathbb{R}$. We define the notion of inhomogeneous equivalence $(A \sim_i B)$ analogously. The relation $A \sim_i B$ is defined analogously.

• Can one decide whether $A \sim_h B$ or $A \sim_i B$ holds?

< ロト < 同ト < ヨト < ヨト

Known properties of anisotropic Besov spaces

- The definition of Besov spaces is independent of the choice of wavelet.
- Besov spaces are (quasi-)Banach spaces.
- There exist alternative characterizations of anisotropic Besov spaces in terms of atomic and molecular decompositions, local means, etc.

Main questions for this talk

Given two expansive matrices A, B, we call them homogeneously equivalent $(A \sim_h B)$ whenever $\dot{B}^{\alpha}_{p,q}(A) = \dot{B}^{\alpha}_{p,q}(B)$ holds for all $0 < p, q \le \infty, \alpha \in \mathbb{R}$. We define the notion of inhomogeneous equivalence $(A \sim_i B)$ analogously. The relation $A \sim_i B$ is defined analogously.

- Can one decide whether $A \sim_h B$ or $A \sim_i B$ holds?
- Do \sim_h and \sim_i differ?

H. Führ (RWTH Aachen)

< ロト < 同ト < ヨト < ヨト

Overview

Anisotropic Besov spaces

2 Decomposition spaces: Definition and properties

3 Rigidity theorem for decomposition spaces

4 Classifying anisotropic coverings

ORWTH

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 8 / 32

イロト イロト イヨト

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets.

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity.

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Introduce a norm by locally taking L^p -norms,

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Introduce a norm by locally taking L^p -norms, and then globally combine using weighted ℓ^q norm.

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ be open, and $\mathcal{Q} = (Q_i)_{i \in I}$ a family of open, subsets $Q_i \subset \mathcal{O}$ with compact closure in \mathcal{O} .

ORWTH

< 口 > < 同

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ be open, and $\mathcal{Q} = (Q_i)_{i \in I}$ a family of open, subsets $Q_i \subset \mathcal{O}$ with compact closure in \mathcal{O} .

(a) Q is an admissible covering of O, if

ØRWTH 🔤

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ be open, and $\mathcal{Q} = (Q_i)_{i \in I}$ a family of open, subsets $Q_i \subset \mathcal{O}$ with compact closure in \mathcal{O} .

- (a) \mathcal{Q} is an admissible covering of \mathcal{O} , if
 - (i) Covering property: $\mathcal{O} = \bigcup_{i \in I} Q_i$

∃ ≻.

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ be open, and $\mathcal{Q} = (Q_i)_{i \in I}$ a family of open, subsets $Q_i \subset \mathcal{O}$ with compact closure in \mathcal{O} .

- (a) \mathcal{Q} is an admissible covering of \mathcal{O} , if
 - (i) Covering property: $\mathcal{O} = \bigcup_{i \in I} Q_i$
 - (ii) Admissibility: $\sup_{i \in I} \sup_{j \in I, Q_i \cap Q_j \neq \emptyset} \frac{\lambda(Q_i)}{\lambda(Q_j)} < \infty$.

Admissible coverings

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ be open, and $\mathcal{Q} = (Q_i)_{i \in I}$ a family of open, subsets $Q_i \subset \mathcal{O}$ with compact closure in \mathcal{O} .

- (a) \mathcal{Q} is an admissible covering of \mathcal{O} , if
 - (i) Covering property: $\mathcal{O} = \bigcup_{i \in I} Q_i$
 - (ii) Admissibility: $\sup_{i \in I} \sup_{j \in I, Q_i \cap Q_j \neq \emptyset} \frac{\lambda(Q_i)}{\lambda(Q_j)} < \infty$.
- (b) Q is called an almost structured admissible covering (a.s.a.c.) if it is an admissible covering, and there exist (Q'_i)_{i∈1}, nonempty open bounded sets and T_i ∈ GL(d, ℝ) and b_i ∈ ℝ^d with:

Admissible coverings

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ be open, and $\mathcal{Q} = (Q_i)_{i \in I}$ a family of open, subsets $Q_i \subset \mathcal{O}$ with compact closure in \mathcal{O} .

- (a) \mathcal{Q} is an admissible covering of \mathcal{O} , if
 - (i) Covering property: $\mathcal{O} = \bigcup_{i \in I} Q_i$
 - (ii) Admissibility: $\sup_{i \in I} \sup_{i \in I, Q_i \cap Q_i \neq \emptyset} \frac{\lambda(Q_i)}{\lambda(Q_i)} < \infty$.
- (b) Q is called an almost structured admissible covering (a.s.a.c.) if it is an admissible covering, and there exist $(Q'_i)_{i \in I}$, nonempty open bounded sets and $T_i \in GL(d, \mathbb{R})$ and $b_i \in \mathbb{R}^d$ with:

(i) For all
$$i \in I$$
: $\overline{T_i Q'_i + b_i} \subset Q_i$.

- (ii) The quantity $\sup_{i,j:Q_i \cap Q_i \neq \emptyset} ||T_i^{-1}T_j||$ is finite. (iii) The set $\{Q'_i : i \in I\}$ is finite.
- (iv) The family $(T_iQ'_i + b_i)_{i \in I}$ is an admissible covering.

The tuple $((T_i)_{i \in I}, (b_i)_{i \in I}, (Q'_i)_{i \in I})$ are called standardization of Q.

< ロ ト < 団 ト < 三 ト < 三 ト</p>

Partitions of unity

Definition

Let $Q = (Q_i)_{i \in I}$ denote an almost structured admissible covering with standardization $((T_i)_{i \in I}, (b_i)_{i \in I}, (Q'_i)_{i \in I})$.

Partitions of unity

Definition

Let $Q = (Q_i)_{i \in I}$ denote an almost structured admissible covering with standardization $((T_i)_{i \in I}, (b_i)_{i \in I}, (Q'_i)_{i \in I})$. Let $0 . We call a family <math>(\varphi_i)_{i \in I}$ of functions an L^{*p*}-BAPU with respect to Q if it has the following properties:

(i) For all
$$i \in I : \varphi_i \in C_c^{\infty}(\mathcal{O})$$
.
(ii) For all $i \in I : \varphi_i \equiv 0$ on $\mathbb{R}^d \setminus Q_i$.
(iii) $\sum_{i \in I} \varphi \equiv 1$ on \mathcal{O} .
(iv) $\sup_{i \in I} |\det(T_i)|^{\frac{1}{t}-1} ||\mathcal{F}^{-1}\varphi_i||_{L^p} < \infty$. Here $t = \min(p, 1)$.

H. Führ (RWTH Aachen)

IM 2017 11 / 32

Partitions of unity

Definition

Let $Q = (Q_i)_{i \in I}$ denote an almost structured admissible covering with standardization $((T_i)_{i \in I}, (b_i)_{i \in I}, (Q'_i)_{i \in I})$. Let $0 . We call a family <math>(\varphi_i)_{i \in I}$ of functions an L^{*p*}-BAPU with respect to Q if it has the following properties:

(i) For all
$$i \in I : \varphi_i \in C_c^{\infty}(\mathcal{O})$$
.
(ii) For all $i \in I : \varphi_i \equiv 0$ on $\mathbb{R}^d \setminus Q_i$.
(iii) $\sum_{i \in I} \varphi \equiv 1$ on \mathcal{O} .
(iv) $\sup_{i \in I} |\det(T_i)|^{\frac{1}{t}-1} ||\mathcal{F}^{-1}\varphi_i||_{L^p} < \infty$. Here $t = \min(p, 1)$.

Lemma (Feichtinger, Voigtlaender) BAPU's exist.

H. Führ (RWTH Aachen)

イロト イロト イヨト イ

Weights associated to coverings

Definition

Let $Q = (Q_i)_{i \in I}$ denote an admissible covering, and let $v : I \to \mathbb{R}^+$ denote a weight. The weight is called *Q*-moderate if

$$\sup_{i,j\in I:Q_i\cap Q_j\neq\emptyset}\frac{v(i)}{v(j)}<\infty \ .$$

Given $0 < q \le \infty$, let $\ell_v^q(I) = \{c = (c_i)_{i \in I} \in \mathbb{C}^I : (c_i v(i))_{i \in I} \in \ell^q(I)\}$, with the obvious (quasi-)norm.

H. Führ (RWTH Aachen)

Definition (Feichtinger/Gröbner, Voigtlaender) Given a.s.a.c. $Q = (Q_i)_{i \in I}$, a Q-moderate weight v, $0 \le p, q \le \infty$.

Definition (Feichtinger/Gröbner, Voigtlaender)

Given a.s.a.c. $Q = (Q_i)_{i \in I}$, a Q-moderate weight v, $0 \le p, q \le \infty$. Let $(\varphi_i)_{i \in I}$ denote an L^p-BAPU associated to Q.

Definition (Feichtinger/Gröbner, Voigtlaender)

Given a.s.a.c. $Q = (Q_i)_{i \in I}$, a Q-moderate weight v, $0 \le p, q \le \infty$. Let $(\varphi_i)_{i \in I}$ denote an L^{*p*}-BAPU associated to Q. Given $u \in \mathcal{D}'(\mathcal{O})$, we define its decomposition space (quasi-)norm as

$$\|u\|_{\mathcal{D}(\mathcal{Q},\mathrm{L}^{p},\ell_{\nu}^{q})} = \left\| \left(\|\mathcal{F}^{-1}(\varphi_{i}\cdot u)\|_{\mathrm{L}^{p}} \right)_{i\in I} \right\|_{\ell_{\nu}^{q}} .$$
(3)

イロト イポト イヨト イヨト

Definition (Feichtinger/Gröbner, Voigtlaender)

Given a.s.a.c. $Q = (Q_i)_{i \in I}$, a Q-moderate weight v, $0 \le p, q \le \infty$. Let $(\varphi_i)_{i \in I}$ denote an L^{*p*}-BAPU associated to Q. Given $u \in \mathcal{D}'(\mathcal{O})$, we define its decomposition space (quasi-)norm as

$$\|u\|_{\mathcal{D}(\mathcal{Q},\mathrm{L}^{p},\ell_{\nu}^{q})} = \left\| \left(\|\mathcal{F}^{-1}(\varphi_{i}\cdot u)\|_{\mathrm{L}^{p}} \right)_{i\in I} \right\|_{\ell_{\nu}^{q}} .$$
(3)

The decomposition space $\mathcal{D}(\mathcal{Q}, L^p, \ell^q_v)$ is the space of all $u \in \mathcal{D}'(\mathcal{O})$ for which this (quasi-)norm is finite.

ORWITH

イロト イポト イヨト イヨト

⊘R₩THﷺ • ೨९९

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ 三 → 三 → へへ
 IM 2017 14 / 32

イロト イロト イヨト イヨト

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{v})$ is a quasi-Banach space, that is independent of the choice of BAPU.

< 口 > < 同 >

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^p, \ell^q_v)$ is a quasi-Banach space, that is independent of the choice of BAPU.

Sar

 $\exists = b$

イロト イロト イヨト イ

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{v})$ is a quasi-Banach space, that is independent of the choice of BAPU.

• Central message: Frequency covering is the decisive feature!

жы п 🖄

- b

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{v})$ is a quasi-Banach space, that is independent of the choice of BAPU.

- Central message: Frequency covering is the decisive feature!
- Large variety of admissible coverings allows diverse ways of measuring the decay.

< 口 > < 同 >

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{v})$ is a quasi-Banach space, that is independent of the choice of BAPU.

- Central message: Frequency covering is the decisive feature!
- Large variety of admissible coverings allows diverse ways of measuring the decay. Describes homogeneous and inhomogeneous isotropic Besov spaces, α -modulation spaces, shearlet and curvelet approximation spaces,

14 h

イロト イロト イヨト イ

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{v})$ is a quasi-Banach space, that is independent of the choice of BAPU.

- Central message: Frequency covering is the decisive feature!
- Large variety of admissible coverings allows diverse ways of measuring the decay. Describes homogeneous and inhomogeneous isotropic Besov spaces, α-modulation spaces, shearlet and curvelet approximation spaces, shearlet coorbit spaces (see upcoming talk by René Koch), and

- b

イロト イロト イヨト イ

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{v})$ is a quasi-Banach space, that is independent of the choice of BAPU.

- Central message: Frequency covering is the decisive feature!
- Large variety of admissible coverings allows diverse ways of measuring the decay. Describes homogeneous and inhomogeneous isotropic Besov spaces, α-modulation spaces, shearlet and curvelet approximation spaces, shearlet coorbit spaces (see upcoming talk by René Koch), and anisotropic Besov spaces.

Theorem (Feichtinger/Gröbner)

 $\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{v})$ is a quasi-Banach space, that is independent of the choice of BAPU.

- Central message: Frequency covering is the decisive feature!
- Large variety of admissible coverings allows diverse ways of measuring the decay. Describes homogeneous and inhomogeneous isotropic Besov spaces, α-modulation spaces, shearlet and curvelet approximation spaces, shearlet coorbit spaces (see upcoming talk by René Koch), and anisotropic Besov spaces.
- Decomposition spaces provide a unified framework for many embedding results, either between different decomposition spaces, or of decomposition spaces into well-known smoothness spaces such as Sobolev spaces (F. Voigtlaender).

(日) (同) (三) (三)

Induced covering

Definition

Let A denote an expansive matrix. Let $Q \Subset \mathbb{R}^d \setminus \{0\}$ be open, and such that

$$\bigcup_{j\in\mathbb{Z}}A^{j}Q=\mathbb{R}^{d}\setminus\{0\}\,\,.$$

Then $Q_A = (A^j Q)_{j \in \mathbb{Z}}$ is called the homogeneous covering induced by A.

Induced covering

Definition

Let A denote an expansive matrix. Let $Q \Subset \mathbb{R}^d \setminus \{0\}$ be open, and such that

$$\bigcup_{j\in\mathbb{Z}}\mathcal{A}^{j}Q=\mathbb{R}^{d}\setminus\{0\}\,\,.$$

Then $Q_A = (A^j Q)_{j \in \mathbb{Z}}$ is called the homogeneous covering induced by A. Letting $Q_j^i = A^j Q$, for $j \ge 1$, and choosing Q_0^j open, relatively compact such that

$$igcup_{j\in\mathbb{N}} \mathcal{Q}^i_j = \mathbb{R}^d$$

defines Q_A^i , the inhomogeneous covering induced by A.

Induced covering

Definition

Let A denote an expansive matrix. Let $Q \Subset \mathbb{R}^d \setminus \{0\}$ be open, and such that

$$\bigcup_{j\in\mathbb{Z}}A^{j}Q=\mathbb{R}^{d}\setminus\{0\}\,\,.$$

Then $Q_A = (A^j Q)_{j \in \mathbb{Z}}$ is called the homogeneous covering induced by A. Letting $Q_j^i = A^j Q$, for $j \ge 1$, and choosing Q_0^j open, relatively compact such that

$$igcup_{j\in\mathbb{N}} \mathcal{Q}_j^i = \mathbb{R}^d$$

defines Q_A^i , the inhomogeneous covering induced by A.

Intuition

$$Q_j = \widehat{\psi_j}^{-1}(\mathbb{C} \setminus \{0\}) \ , \ \ Q_j^i = \widehat{\psi_j}^{i-1}_j(\mathbb{C} \setminus \{0\})$$

and the wavelet systems are BAPUs.

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

Theorem

Let A denote an expansive matrix, and Q_A a homogeneous covering induced by A^T .

Theorem

Let A denote an expansive matrix, and Q_A a homogeneous covering induced by A^T . For $\alpha \in \mathbb{Z}$, define

$$\mathbf{v}_{lpha,\mathcal{A}}:\mathbb{Z} o\mathbb{R}^+ \ , \mathbf{v}_{lpha,\mathcal{A}}(j)=|\mathrm{det}(\mathcal{A})|^{jlpha}$$

Theorem

Let A denote an expansive matrix, and Q_A a homogeneous covering induced by A^T . For $\alpha \in \mathbb{Z}$, define

$$m{v}_{lpha,m{\mathcal{A}}}:\mathbb{Z} o\mathbb{R}^+ \;,m{v}_{lpha,m{\mathcal{A}}}(j)=|{
m det}(m{\mathcal{A}})|^{jlpha}\;,$$

Denote by $\rho : \mathcal{S}'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ the restriction map.

Theorem

Let A denote an expansive matrix, and Q_A a homogeneous covering induced by A^T . For $\alpha \in \mathbb{Z}$, define

$$v_{lpha,\mathcal{A}}:\mathbb{Z} o\mathbb{R}^+ \ , v_{lpha,\mathcal{A}}(j)=|\mathrm{det}(\mathcal{A})|^{jlpha} \ .$$

Denote by $\rho : S'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ the restriction map. Then $\rho \circ \mathcal{F}$ is a topological isomorphism

$$\rho \circ \mathcal{F} : \dot{B}^{\alpha}_{\rho,q}(\mathcal{A}) \to \mathcal{D}(\mathcal{Q}_{\mathcal{A}}, \mathrm{L}^{p}, \ell^{q}_{v_{\alpha,\mathcal{A}}}) \;.$$

Theorem

Let A denote an expansive matrix, and Q_A a homogeneous covering induced by A^T . For $\alpha \in \mathbb{Z}$, define

$$v_{lpha,\mathcal{A}}:\mathbb{Z} o\mathbb{R}^+ \ , v_{lpha,\mathcal{A}}(j)=|\mathrm{det}(\mathcal{A})|^{jlpha} \ .$$

Denote by $\rho : S'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ the restriction map. Then $\rho \circ \mathcal{F}$ is a topological isomorphism

$$\rho \circ \mathcal{F} : \dot{B}^{\alpha}_{p,q}(\mathcal{A}) \to \mathcal{D}(\mathcal{Q}_{\mathcal{A}}, \mathrm{L}^{p}, \ell^{q}_{v_{\alpha,\mathcal{A}}}) \;.$$

Similarly, if Q_A^i denote an inhomogeneous covering induced by A^T , then

$$\rho \circ \mathcal{F} : B^{\alpha}_{p,q}(\mathcal{A}) \to \mathcal{D}(\mathcal{Q}^{i}_{\mathcal{A}}, \mathrm{L}^{p}, \ell^{q}_{v_{\alpha,\mathcal{A}}}) \;.$$

is a topological isomorphism, as well. Here $v_{\alpha,A}$ denotes the restriction of the weight for the homogeneous setting to \mathbb{N}_0 .

Overview

Anisotropic Besov spaces

2 Decomposition spaces: Definition and properties

3 Rigidity theorem for decomposition spaces

4 Classifying anisotropic coverings

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 17 / 32

A E F A E F

⊘R₩THﷺ : ୬९९

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ E シ Q (~)
IM 2017 18 / 32

イロト イロト イヨト イヨト

Definition

Admissible coverings $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ are weakly equivalent

Definition

Admissible coverings $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ are weakly equivalent if

$$\sup_{i\in I} |\{j\in J: Q_i\cap P_j\neq \emptyset\}| + \sup_{j\in J} |\{i\in I: Q_i\cap P_j\neq \emptyset\}| < \infty .$$

イロト イポト イヨト イヨト

Definition

Admissible coverings $Q = (Q_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J}$ are weakly equivalent if

$$\sup_{i \in I} |\{j \in J : Q_i \cap P_j \neq \emptyset\}| + \sup_{j \in J} |\{i \in I : Q_i \cap P_j \neq \emptyset\}| < \infty .$$

Weights v on I and w on J are equivalent if

$$\sup_{i,j,Q_i\cap P_j\neq\emptyset}\frac{v(i)}{w(j)}+\frac{w(j)}{v(i)}<\infty \ .$$

H. Führ (RWTH Aachen)

< 口 > < 同 >

IM 2017 18 / 32

A E < A E </p>

ि २००

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ E → Q @
IM 2017 19 / 32

<ロト < 団ト < 巨ト < 巨ト</p>

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J.

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J. Let $(p_1, q_1, p_2, q_2) \neq (2, 2, 2, 2)$.

Anisotropic Besov spaces

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J. Let $(p_1, q_1, p_2, q_2) \neq (2, 2, 2, 2)$. Then the following are equivalent:

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J. Let $(p_1, q_1, p_2, q_2) \neq (2, 2, 2, 2)$. Then the following are equivalent:

(a) $\mathcal{D}(\mathcal{P}, L^{p_1}, \ell^{q_1}_{\nu_1}) = \mathcal{D}(\mathcal{Q}, L^{p_2}, \ell^{q_2}_{\nu_2}).$

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J. Let $(p_1, q_1, p_2, q_2) \neq (2, 2, 2, 2)$. Then the following are equivalent:

(a)
$$\mathcal{D}(\mathcal{P}, L^{p_1}, \ell^{q_1}_{\nu_1}) = \mathcal{D}(\mathcal{Q}, L^{p_2}, \ell^{q_2}_{\nu_2}).$$

(b) $(p_1, q_1) = (p_2, q_2), v_1 \text{ and } v_2 \text{ are equivalent,}$

< ロト < 同ト < ヨト < ヨト

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J. Let $(p_1, q_1, p_2, q_2) \neq (2, 2, 2, 2)$. Then the following are equivalent:

(a)
$$\mathcal{D}(\mathcal{P}, L^{p_1}, \ell^{q_1}_{\nu_1}) = \mathcal{D}(\mathcal{Q}, L^{p_2}, \ell^{q_2}_{\nu_2}).$$

(b) $(p_1, q_1) = (p_2, q_2)$, v_1 and v_2 are equivalent, and \mathcal{P} and \mathcal{Q} are weakly equivalent.

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}$, $\mathcal{Q} = (Q_j)_{j \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J. Let $(p_1, q_1, p_2, q_2) \neq (2, 2, 2, 2)$. Then the following are equivalent:

(a)
$$\mathcal{D}(\mathcal{P}, L^{p_1}, \ell^{q_1}_{\nu_1}) = \mathcal{D}(\mathcal{Q}, L^{p_2}, \ell^{q_2}_{\nu_2}).$$

- (b) $(p_1, q_1) = (p_2, q_2)$, v_1 and v_2 are equivalent, and \mathcal{P} and \mathcal{Q} are weakly equivalent.
- (c) For all $(p,q)\in [1,\infty]^2$ and all pairs v_1,v_2 of equivalent weights,

$$\mathcal{D}(\mathcal{P}, L^p, \ell^q_{v_1}) = \mathcal{D}(\mathcal{Q}, L^p, \ell^q_{v_2})$$
.

< ロト < 同ト < ヨト < ヨト

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016) Let $\mathcal{P} = (P_i)_{i \in I}, \mathcal{Q} = (Q_i)_{i \in J}$ denote a.s.a.c.'s, consisting of pathwise connected sets.Let v_1 be an admissible weight on I, and v_2 an admissible weight on J. Let $(p_1, q_1, p_2, q_2) \neq (2, 2, 2, 2)$. Then the following are equivalent:

(a)
$$\mathcal{D}(\mathcal{P}, L^{p_1}, \ell^{q_1}_{\nu_1}) = \mathcal{D}(\mathcal{Q}, L^{p_2}, \ell^{q_2}_{\nu_2}).$$

- (b) $(p_1, q_1) = (p_2, q_2)$, v_1 and v_2 are equivalent, and \mathcal{P} and \mathcal{Q} are weakly equivalent.
- (c) For all $(p,q) \in [1,\infty]^2$ and all pairs v_1, v_2 of equivalent weights,

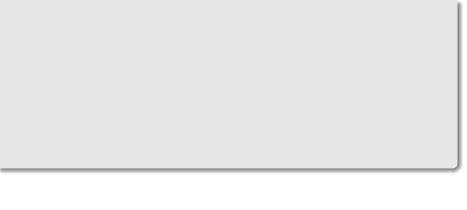
$$\mathcal{D}(\mathcal{P}, L^p, \ell^q_{v_1}) = \mathcal{D}(\mathcal{Q}, L^p, \ell^q_{v_2})$$
.

Note: If v denotes the constant weight, then $\mathcal{D}(\mathcal{P}, L^2, \ell_v^2) = L^2(\mathbb{R}^d)$, for every a.s.a.c. covering \mathcal{P} .

H. Führ (RWTH Aachen)

Sac

イロト イポト イヨト イヨト



H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ E → Q へ C
IM 2017 20 / 32

イロト イロト イヨト イヨト

H. Führ (RWTH Aachen)

The scales (B^α_{p,q}(A))_{p,q,α} and (B^α_{p,q}(B))_{p,q,α} coincide iff they coincide for one nontrivial pair of exponents.

- The scales (B^α_{p,q}(A))_{p,q,α} and (B^α_{p,q}(B))_{p,q,α} coincide iff they coincide for one nontrivial pair of exponents.
- Given two expansive matrices A, B, we have

- The scales $(\dot{B}^{\alpha}_{p,q}(A))_{p,q,\alpha}$ and $(\dot{B}^{\alpha}_{p,q}(B))_{p,q,\alpha}$ coincide iff they coincide for one nontrivial pair of exponents.
- Given two expansive matrices A, B, we have
 - $A \sim_h B$ iff the induced homogeneous coverings Q_{A^T} and Q_{B^T} are weakly equivalent.

20 / 32

- The scales (B^α_{p,q}(A))_{p,q,α} and (B^α_{p,q}(B))_{p,q,α} coincide iff they coincide for one nontrivial pair of exponents.
- Given two expansive matrices A, B, we have
 - $A \sim_h B$ iff the induced homogeneous coverings Q_{A^T} and Q_{B^T} are weakly equivalent.
 - $A \sim_B B$ iff the induced inhomogeneous coverings $Q_{A^{\tau}}^i$ and $Q_{B^{\tau}}^i$ are weakly equivalent.

- The scales $(\dot{B}^{\alpha}_{p,q}(A))_{p,q,\alpha}$ and $(\dot{B}^{\alpha}_{p,q}(B))_{p,q,\alpha}$ coincide iff they coincide for one nontrivial pair of exponents.
- Given two expansive matrices A, B, we have
 - $A \sim_h B$ iff the induced homogeneous coverings Q_{A^T} and Q_{B^T} are weakly equivalent.
 - A ~_B B iff the induced inhomogeneous coverings $Q_{A^{T}}^{i}$ and $Q_{B^{T}}^{i}$ are weakly equivalent.
- A ~_h B is equivalent to the property that A, B induce the same scale of anisotropic Hardy spaces (~→ M. Bownik).

< ロト < 同ト < ヨト < ヨト

Overview

Anisotropic Besov spaces

2 Decomposition spaces: Definition and properties

3 Rigidity theorem for decomposition spaces



ORWITH

< 口 > < 同 >

- b

ØR	WT	Н		
	5	Q	Q	

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ E → Q @
IM 2017 22 / 32

イロト イポト イヨト イヨト

• Let A, B be expansive.

©RWTH २००

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ 重 ♪ 重 少 Q @ IM 2017 22 / 32

イロト イポト イヨト イヨト

- Let A, B be expansive.
- For R > 1, define the annulus

$$C_R = \{\xi \in \mathbb{R}^d : R^{-1} < \|\xi\| < R\}$$
.

©RWTH २००

イロト イロト イヨト イヨト

- Let A, B be expansive.
- For R > 1, define the annulus

$$C_R = \{\xi \in \mathbb{R}^d : R^{-1} < \|\xi\| < R\}$$
.

• Compute, for $i, j \in \mathbb{Z}$,

$$I_{j} = \{i \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\} , \ J_{i} = \{j \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\}$$

イロト イロト イヨト イヨト

- Let A, B be expansive.
- For R > 1, define the annulus

$$C_R = \{\xi \in \mathbb{R}^d : R^{-1} < \|\xi\| < R\}$$
.

• Compute, for $i, j \in \mathbb{Z}$,

$$I_{j} = \{i \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\} , \ J_{i} = \{j \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\}$$

• $A^T \sim_h B^T$ iff the cardinalities of these sets are bounded.

< ロ ト < 団 ト < 三 ト < 三 ト</p>

- Let A, B be expansive.
- For R > 1, define the annulus

$$C_R = \{\xi \in \mathbb{R}^d : R^{-1} < \|\xi\| < R\}$$
.

• Compute, for $i, j \in \mathbb{Z}$,

$$I_{j} = \{i \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\} , \ J_{i} = \{j \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\}$$

A^T ∼_h B^T iff the cardinalities of these sets are bounded.
A^T ∼_i B^T has similar formulation.

(日) (同) (三) (三)

- Let A, B be expansive.
- For R > 1, define the annulus

$$C_R = \{\xi \in \mathbb{R}^d : R^{-1} < \|\xi\| < R\}$$
.

• Compute, for $i, j \in \mathbb{Z}$,

$$I_{j} = \{i \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\} , \ J_{i} = \{j \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\}$$

- $A^T \sim_h B^T$ iff the cardinalities of these sets are bounded.
- $A^T \sim_i B^T$ has similar formulation.
- Fairly obvious: $A^T \sim_h (A^T)^k$, for $k \in \mathbb{N}$.

H. Führ (RWTH Aachen)

IM 2017 22 / 32

(日) (同) (三) (三)

- Let A, B be expansive.
- For R > 1, define the annulus

$$C_R = \{\xi \in \mathbb{R}^d : R^{-1} < \|\xi\| < R\}$$
.

• Compute, for $i, j \in \mathbb{Z}$,

$$I_{j} = \{i \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\} , \ J_{i} = \{j \in \mathbb{Z} : A^{j}C_{R} \cap B^{i}C_{R} \neq \emptyset\}$$

- $A^T \sim_h B^T$ iff the cardinalities of these sets are bounded.
- $A^T \sim_i B^T$ has similar formulation.
- Fairly obvious: $A^T \sim_h (A^T)^k$, for $k \in \mathbb{N}$.
- Simple exercise: Checking $A \sim_h B$ or $A \sim_i B$ for A, B diagonal.

< ロト < 同ト < ヨト < ヨト

⊘R₩THाः : ୬९९

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ 重 ト 重 ∽ ९ ୯ IM 2017 23 / 32

イロト イポト イヨト イヨト

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A and B be two expansive matrices.

< 口 > < 同 >

∃ ► < ∃ ►</p>

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A and B be two expansive matrices. Let

$$\epsilon = \epsilon(A, B) = rac{\mathsf{ln}(|\det(A)|)}{\mathsf{ln}(|\det(B)|)}$$

RWTH

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 23 / 32

∃ ► < ∃ ►</p>

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A and B be two expansive matrices. Let

$$\epsilon = \epsilon(A, B) = rac{\mathsf{ln}(|\det(A)|)}{\mathsf{ln}(|\det(B)|)}$$

(a)
$$A^T \sim_h B^T$$
 iff $\sup_{k \in \mathbb{Z}} \left\| A^{-k} B^{\lfloor \epsilon k \rfloor} \right\| < \infty$.

RWTH

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 23 / 32

A E F A E F

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A and B be two expansive matrices. Let

$$\epsilon = \epsilon(A, B) = rac{\mathsf{ln}(|\det(A)|)}{\mathsf{ln}(|\det(B)|)}$$

(a)
$$A^T \sim_h B^T$$
 iff $\sup_{k \in \mathbb{Z}} ||A^{-k}B^{\lfloor \epsilon k \rfloor}|| < \infty$.
(b) $A^T \sim_i B^T$ iff $\sup_{k \in \mathbb{N}} ||A^{-k}B^{\lfloor \epsilon k \rfloor}|| < \infty$.

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

< 口 > < 同 >

IM 2017 23 / 32

∃ ► < ∃ ►</p>

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A and B be two expansive matrices. Let

$$\epsilon = \epsilon(A, B) = rac{\mathsf{ln}(|\det(A)|)}{\mathsf{ln}(|\det(B)|)}$$

(a)
$$A^T \sim_h B^T$$
 iff $\sup_{k \in \mathbb{Z}} ||A^{-k}B^{\lfloor \epsilon k \rfloor}|| < \infty$.
(b) $A^T \sim_i B^T$ iff $\sup_{k \in \mathbb{N}} ||A^{-k}B^{\lfloor \epsilon k \rfloor}|| < \infty$.

Corollary

 $A \sim_h B$ implies $A \sim_i B$.

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 23 / 32

< ロ > < 同 > < 回 > < 回 >

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A and B be two expansive matrices. Let

$$\epsilon = \epsilon(A, B) = rac{\mathsf{ln}(|\det(A)|)}{\mathsf{ln}(|\det(B)|)}$$

(a)
$$A^T \sim_h B^T$$
 iff $\sup_{k \in \mathbb{Z}} ||A^{-k}B^{\lfloor \epsilon k \rfloor}|| < \infty$.
(b) $A^T \sim_i B^T$ iff $\sup_{k \in \mathbb{N}} ||A^{-k}B^{\lfloor \epsilon k \rfloor}|| < \infty$.

Corollary

 $A \sim_h B$ implies $A \sim_i B$. The converse holds if A, B are diagonal.

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 23 / 32

< ロト < 同ト < ヨト < ヨト

Definition

Given a matrix $A \in \mathbb{C}^{d \times d}$, we define for r > 0 and $m \in \mathbb{N}_0$

$$E(A,r,m) = \operatorname{span} \left(\bigcup_{|\lambda|=r} \operatorname{Ker}(A - \lambda I_d)^m \cup \bigcup_{|\lambda| < r} \operatorname{Ker}(A - \lambda I_d)^d \right) \ .$$

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 24 / 32

Definition

Given a matrix $A \in \mathbb{C}^{d imes d}$, we define for r > 0 and $m \in \mathbb{N}_0$

$$E(A, r, m) = \operatorname{span}\left(\bigcup_{|\lambda|=r} \operatorname{Ker}(A - \lambda I_d)^m \cup \bigcup_{|\lambda|< r} \operatorname{Ker}(A - \lambda I_d)^d\right)$$

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A, B denote expansive matrices, $\epsilon = \epsilon(A, B)$.

(日) (同) (三) (三)

Definition

Given a matrix $A \in \mathbb{C}^{d imes d}$, we define for r > 0 and $m \in \mathbb{N}_0$

$$E(A, r, m) = \operatorname{span}\left(\bigcup_{|\lambda|=r} \operatorname{Ker}(A - \lambda I_d)^m \cup \bigcup_{|\lambda|< r} \operatorname{Ker}(A - \lambda I_d)^d\right)$$

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A, B denote expansive matrices, $\epsilon = \epsilon(A, B)$. (a) If $A^T \sim_i B^T$, then for all $\forall r > 0, \forall m \in \mathbb{N}$: $E(A^{-1}, r^{\epsilon}, m) = E(B^{-1}, r, m)$.

H. Führ (RWTH Aachen)

(日) (同) (三) (三)

Definition

Given a matrix $A \in \mathbb{C}^{d \times d}$, we define for r > 0 and $m \in \mathbb{N}_0$

$$E(A, r, m) = \operatorname{span}\left(\bigcup_{|\lambda|=r} \operatorname{Ker}(A - \lambda I_d)^m \cup \bigcup_{|\lambda|< r} \operatorname{Ker}(A - \lambda I_d)^d\right)$$

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A, B denote expansive matrices,
$$\epsilon = \epsilon(A, B)$$
.
(a) If $A^T \sim_i B^T$, then for all $\forall r > 0, \forall m \in \mathbb{N}$:
 $E(A^{-1}, r^{\epsilon}, m) = E(B^{-1}, r, m)$.
(b) If $A^T \sim_h B^T$, then $\forall r > 1, \forall m \in \mathbb{N}$:
 $\operatorname{span}\left(\bigcup_{|\lambda|=r^{\epsilon}} \operatorname{Ker}(A - \lambda I_d)^m\right) = \operatorname{span}\left(\bigcup_{|\lambda|=r} \operatorname{Ker}(B - \lambda I_d)^m\right)$.

イロト イロト イヨト イヨト

WRANI M

Sac

.

Definition

Let $B \in GL(d, \mathbb{R})$ be expansive. We call B in expansive normal form if B has only positive eigenvalues, and det(B) = 2.

< 口 > < 同 >

ヨト

Definition

Let $B \in GL(d, \mathbb{R})$ be expansive. We call B in expansive normal form if B has only positive eigenvalues, and det(B) = 2.

Theorem (HF & J. Cheshmavar)

Let A denote an expansive matrix. There exists a unique matrix A' in expansive normal form such that $A \sim_h A'$. We call A' the expansive normal form of A.

Definition

Let $B \in GL(d, \mathbb{R})$ be expansive. We call B in expansive normal form if B has only positive eigenvalues, and det(B) = 2.

Theorem (HF & J. Cheshmavar)

Let A denote an expansive matrix. There exists a unique matrix A' in expansive normal form such that $A \sim_h A'$. We call A' the expansive normal form of A.

Strategy for deciding $A \sim_h B$

Given A, B, compute expansive normal forms A', B', and compare.

H. Führ (RWTH Aachen)

< ロト < 同ト < ヨト < ヨト

IM 2017

25 / 32

Definition

Let $B \in GL(d, \mathbb{R})$ be expansive. We call B in expansive normal form if B has only positive eigenvalues, and det(B) = 2.

Theorem (HF & J. Cheshmavar)

Let A denote an expansive matrix. There exists a unique matrix A' in expansive normal form such that $A \sim_h A'$. We call A' the expansive normal form of A.

Strategy for deciding $A \sim_h B$

Given A, B, compute expansive normal forms A', B', and compare. Once the spectra of A, B are known, this can be carried out using standard linear algebra methods.

< ロ > < 同 > < 回 > < 回 >

ORWTH

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 26 / 32

< ロ > < 回 > < 回 > < 回 > < 回 >

• W.l.o.g. A has only one eigenvalue λ , and that is non-real.

ORWTH 590

14 h

• W.l.o.g. A has only one eigenvalue λ , and that is non-real. • Given $z \in \mathbb{C}$, write

$$M_z = \left(egin{array}{cc} \operatorname{Re}(z) & \operatorname{Im}(z) \ -\operatorname{Im}(z) & \operatorname{Re}(z) \end{array}
ight) \; .$$

ORWTH Sac

14 h

イロト イロト イヨト イ

W.I.o.g. A has only one eigenvalue λ, and that is non-real.
Given z ∈ C, write

$$M_z = \left(egin{array}{cc} \operatorname{Re}(z) & \operatorname{Im}(z) \\ -\operatorname{Im}(z) & \operatorname{Re}(z) \end{array}
ight) \; .$$

With a suitable matrix C, we get

$$CAC^{-1} = \begin{pmatrix} M_{\lambda} & M_{z_1} & & & \\ & M_{\lambda} & M_{z_2} & & & \\ & & \ddots & \ddots & & \\ & & & M_{\lambda} & M_{z_{d/2-1}} \\ & & & & M_{\lambda} \end{pmatrix} ,$$

with $z_1, z_2 \ldots \in \{0, 1\} \subset \mathbb{C}$.

H. Führ (RWTH Aachen)

イロト イポト イヨト イ

ARAM

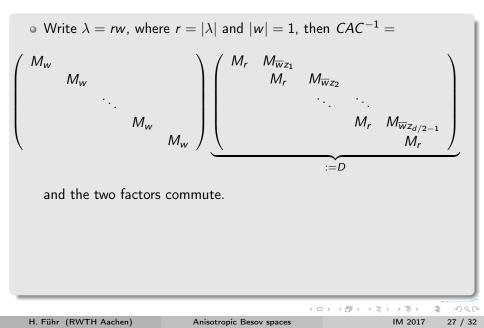
H. Führ (RWTH Aachen)

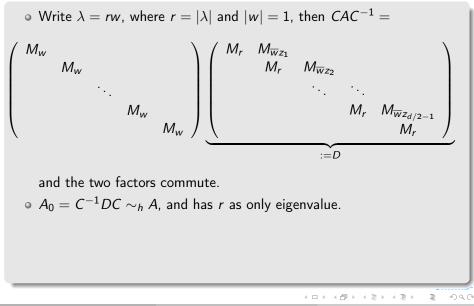
Anisotropic Besov spaces

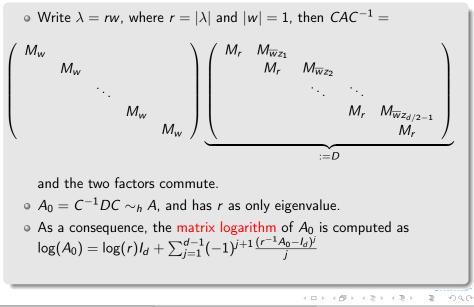
IM 2017 27 / 32

ヨー つへで

▲□▶ ▲圖▶ ★臣▶ ★臣▶



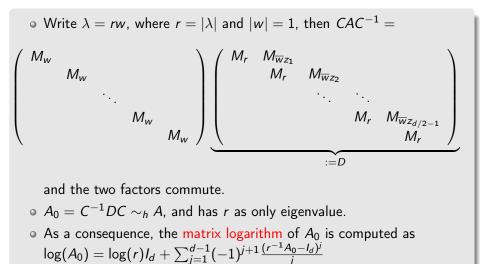




H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 27 / 32



• Define $A' = \exp(s \log(A_0))$, where $s = \ln(2)/d \ln(r)$.

H. Führ (RWTH Aachen)

IM 2017 27 / 32

Sac

・ロト ・ 日 ・ ・ ヨ ・

E 990

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

IM 2017 28 / 32

イロト イロト イヨト イヨト

• Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.

1

イロト イポト イヨト イ

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)

14 h

Sac

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)
- Hence, w.l.o.g., A, B have the same, single eigenvalue $\lambda > 0$.

Sac

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)
- Hence, w.l.o.g., A, B have the same, single eigenvalue $\lambda > 0$.
- Write $B = \lambda (I_d + N_B), A^{-1} = \lambda^{-1} (I_d + N_A)$, with N_A, N_B nilpotent matrices.

14 h

イロト イポト イヨト イ

Sac

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)
- Hence, w.l.o.g., A, B have the same, single eigenvalue $\lambda > 0$.
- Write $B = \lambda (I_d + N_B), A^{-1} = \lambda^{-1} (I_d + N_A)$, with N_A, N_B nilpotent matrices.
- It follows that

$$A^{-k} = \lambda^{-k} P_k , B^k = \lambda^k Q_k ,$$

Sac

< ロト < 同ト < ヨト < ヨト

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)
- Hence, w.l.o.g., A, B have the same, single eigenvalue $\lambda > 0$.
- Write $B = \lambda (I_d + N_B), A^{-1} = \lambda^{-1} (I_d + N_A)$, with N_A, N_B nilpotent matrices.
- It follows that

$$A^{-k} = \lambda^{-k} P_k , B^k = \lambda^k Q_k , A^{-k} B^k = P_k Q_k ,$$

where P_k , Q_k are matrices whose entries are polynomials in k.

H. Führ (RWTH Aachen)

Sac

< ロト < 同ト < ヨト < ヨト

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)
- Hence, w.l.o.g., A, B have the same, single eigenvalue $\lambda > 0$.
- Write $B = \lambda (I_d + N_B), A^{-1} = \lambda^{-1} (I_d + N_A)$, with N_A, N_B nilpotent matrices.
- It follows that

$$A^{-k} = \lambda^{-k} P_k , B^k = \lambda^k Q_k , A^{-k} B^k = P_k Q_k ,$$

where P_k , Q_k are matrices whose entries are polynomials in k. • By assumption, $\mathbb{N} \ni k \mapsto ||A^{-k}B^k|| = ||P_kQ_k||$ is bounded.

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

Э IM 2017 28 / 32

Sac

(日) (同) (三) (三)

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)
- Hence, w.l.o.g., A, B have the same, single eigenvalue $\lambda > 0$.
- Write $B = \lambda (I_d + N_B), A^{-1} = \lambda^{-1} (I_d + N_A)$, with N_A, N_B nilpotent matrices.
- It follows that

$$A^{-k} = \lambda^{-k} P_k , B^k = \lambda^k Q_k , A^{-k} B^k = P_k Q_k ,$$

where P_k , Q_k are matrices whose entries are polynomials in k. • By assumption, $\mathbb{N} \ni k \mapsto ||A^{-k}B^k|| = ||P_kQ_k||$ is bounded. • If the polynomial map $k \mapsto P_k Q_k$ is bounded, it is constant.

H. Führ (RWTH Aachen)

Sac

(日) (同) (三) (三)

- Let A, B denote two matrices in expansive normal form, with $A \sim_h B$.
- Then $\epsilon(A, B) = 1$, and A, B have the same eigenvalues and associated generalized eigenspaces. (See Lemma above.)
- Hence, w.l.o.g., A, B have the same, single eigenvalue $\lambda > 0$.
- Write $B = \lambda (I_d + N_B), A^{-1} = \lambda^{-1} (I_d + N_A)$, with N_A, N_B nilpotent matrices.
- It follows that

$$A^{-k} = \lambda^{-k} P_k , B^k = \lambda^k Q_k , A^{-k} B^k = P_k Q_k ,$$

where P_k , Q_k are matrices whose entries are polynomials in k.

- By assumption, $\mathbb{N} \ni k \mapsto ||A^{-k}B^k|| = ||P_kQ_k||$ is bounded.
- If the polynomial map $k \mapsto P_k Q_k$ is bounded, it is constant.
- $A^{-1}B^1 = A^{-2}B^2$ implies A = B.

Sac

(日) (同) (三) (三)

The inhomogeneous case

Theorem (HF & J. Cheshmavar)

Let A, B be in expansive normal form.

The inhomogeneous case

Theorem (HF & J. Cheshmavar)

Let A, B be in expansive normal form. Let $\lambda_1 > \lambda_2 > ... > \lambda_k$ denote the distinct eigenvalues of A, and assume that A has the block diagonal form

$$A = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & & J_k \end{pmatrix}$$

,

such that $\forall 1 \leq i \leq k$: $(J_i - \lambda_i I_{d_i})^d = 0$.

The inhomogeneous case

Theorem (HF & J. Cheshmavar)

Let A, B be in expansive normal form. Let $\lambda_1 > \lambda_2 > \ldots > \lambda_k$ denote the distinct eigenvalues of A, and assume that A has the block diagonal form

$$A = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & & J_k \end{pmatrix}$$

•

such that $\forall 1 \leq i \leq k : (J_i - \lambda_i I_{d_i})^d = 0$. Then $A^T \sim_i B^T$ if and only if

$$B = \left(egin{array}{cccc} J_1 & * & * & * \\ & J_2 & * & * \\ & & \ddots & * \\ & & & & J_k \end{array}
ight)$$

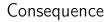
ि ति आगम

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ E シ Q ()
IM 2017 30 / 32

▲□ → ▲檀 → ▲ 臣 → ▲ 臣 →



 A ~_i B can be computationally decided with standard linear algebra methods, once the eigenvalues of A and B are known.

- A ~_i B can be computationally decided with standard linear algebra methods, once the eigenvalues of A and B are known.
- The matrices

$$A = \left(\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array}\right) \ , \ B = \left(\begin{array}{cc} 3 & 0 \\ 1 & 2 \end{array}\right)$$

fulfill $A \sim_i B$

Image: Image:

- A ~_i B can be computationally decided with standard linear algebra methods, once the eigenvalues of A and B are known.
- The matrices

$$A = \left(\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array}\right) \ , \ B = \left(\begin{array}{cc} 3 & 0 \\ 1 & 2 \end{array}\right)$$

fulfill $A \sim_i B$, but $A \not\sim_h B$.

< 口 > < 同 >

- A ~_i B can be computationally decided with standard linear algebra methods, once the eigenvalues of A and B are known.
- The matrices

$$A = \left(\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array}\right) \ , \ B = \left(\begin{array}{cc} 3 & 0 \\ 1 & 2 \end{array}\right)$$

fulfill $A \sim_i B$, but $A \not\sim_h B$.

• If A, B are expansive diagonal matrices with positive entries, then $A \sim_h B$ iff $A = B^{\epsilon}$, for some $\epsilon > 0$.

ि त्र आगमे कि

H. Führ (RWTH Aachen)

Anisotropic Besov spaces

▲ E → Q @
IM 2017 31 / 32

<ロト < 団ト < 巨ト < 巨ト</p>

 Main results of the talk: Decomposition space description of anisotropic Besov spaces, and resulting classification of dilation matrices.

- Main results of the talk: Decomposition space description of anisotropic Besov spaces, and resulting classification of dilation matrices.
- Further consequences of the decomposition space description: Sharp embedding theorems into Sobolev spaces, or other Besov spaces (anisotropic and isotropic). (Not yet fully explored.)

- Main results of the talk: Decomposition space description of anisotropic Besov spaces, and resulting classification of dilation matrices.
- Further consequences of the decomposition space description: Sharp embedding theorems into Sobolev spaces, or other Besov spaces (anisotropic and isotropic). (Not yet fully explored.)
- The present talk presents a case study of the power of decomposition space methods for the analysis of function spaces defined in terms of families of convolution products.

References

- M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003).
- M. Bownik, Atomic and molecular decompositions of anisotropic Besov spaces, Math. Z. 250, 539–571 (2005)
- H. Feichtinger, P. Gröbner, Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97-120 (1985)
- HF, J. Cheshmavar, A classification of anisotropic Besov spaces. Peprint, 2016, available under https://arxiv.org/abs/1609.06083
- F. Voigtlaender: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. Ph.D. Thesis, RWTH Aachen, 2015
- F. Voigtlaender, Embeddings of decomposition spaces. Preprint, available under http://arxiv.org/abs/1605.09705
- F. Voigtlaender, Embeddings of decomposition spaces into Sobolev and BV spaces. Preprint, available under http://arxiv.org/abs/1601.02201
- H.G. Feichtinger, F. Voigtlaender From Frazier-Jawerth characterizations of Besov spaces to wavelets and decomposition spaces. Preprint, available under http://arxiv.org/abs/1606.04924

< ロト < 同ト < ヨト < ヨト