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Expansive matrices and wavelets

Definition
A matrix A ∈ GL(d ,R) is called expansive if all eigenvalues of A have
modulus > 1.

Definition

Let A be expansive. A function ψ ∈ S(Rd) is called an A-wavelet if ψ̂ is
compactly supported away from zero, and fulfills

∀ξ ∈ Rd \ {0} :
∑
j∈Z
|ψ̂((AT )−jξ)|2 = 1 .

A Schwartz function ϕ is called A-scaling function if

∀ξ ∈ Rd : |ϕ(ξ)|2 +
∑
j∈N
|ψ̂((AT )−jξ)|2 = 1 .

Note: A-wavelets and scaling functions always exist.
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Defining homogeneous anisotropic Besov spaces

Definition (M. Bownik, 2005)
A ∈ GL(d ,R) expansive matrix, ψ, φ an A-wavelet and scaling function,
respectively.

Let 0 < p, q <∞ and s ∈ R.
(a) For j ∈ Z, define ψj(x) = | det(A)|jψ(Ajx).

Given f ∈ S ′(Rd), let

‖f ‖Ḃαp,q(A) =
∥∥∥∥(|det(A)|jα ‖f ∗ ψj‖p

)
j∈Z

∥∥∥∥
`q

(1)

denote the homogeneous Besov quasi-norm. The homogeneous Besov
space Ḃαp,q(A) associated to A consists of all f with ‖f ‖Ḃαp,q(A) <∞.

We identify elements of Ḃαp,q(A) that only differ by a polynomial.
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We identify elements of Ḃαp,q(A) that only differ by a polynomial.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 5 / 32



Defining homogeneous anisotropic Besov spaces

Definition (M. Bownik, 2005)
A ∈ GL(d ,R) expansive matrix, ψ, φ an A-wavelet and scaling function,
respectively. Let 0 < p, q <∞ and s ∈ R.
(a) For j ∈ Z, define ψj(x) = | det(A)|jψ(Ajx).

Given f ∈ S ′(Rd), let
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Defining inhomogeneous anisotropic Besov spaces

Definition (M. Bownik, 2005)
(a) ...

(b) Define ψi
0 = ϕ, as well as ψi

j (x) = | det(A)|jψ(Ajx) for j ∈ N.
Given f ∈ S ′(Rd), define

‖f ‖Bαp,q(A) =
∥∥∥∥(|det(A)|jα

∥∥f ∗ ψi
j

∥∥
p

)
j∈N

∥∥∥∥
`q

(2)

The inhomogeneous anisotropic Besov space Bαp,q(A) associated to A
consists of all tempered distributions f with ‖f ‖Bαp,q(A) <∞.
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Aims of this talk

Known properties of anisotropic Besov spaces

The definition of Besov spaces is independent of the choice of wavelet.
Besov spaces are (quasi-)Banach spaces.
There exist alternative characterizations of anisotropic Besov spaces in
terms of atomic and molecular decompositions, local means, etc.

Main questions for this talk
Given two expansive matrices A,B , we call them homogeneously equivalent
(A ∼h B) whenever Ḃαp,q(A) = Ḃαp,q(B) holds for all 0 < p, q ≤ ∞, α ∈ R.
We define the notion of inhomogeneous equivalence(A ∼i B) analogously.
The relation A ∼i B is defined analogously .

Can one decide whether A ∼h B or A ∼i B holds?
Do ∼h and ∼i differ?
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(A ∼h B) whenever Ḃαp,q(A) = Ḃαp,q(B) holds for all 0 < p, q ≤ ∞, α ∈ R.

We define the notion of inhomogeneous equivalence(A ∼i B) analogously.
The relation A ∼i B is defined analogously .

Can one decide whether A ∼h B or A ∼i B holds?
Do ∼h and ∼i differ?

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 7 / 32



Aims of this talk

Known properties of anisotropic Besov spaces
The definition of Besov spaces is independent of the choice of wavelet.
Besov spaces are (quasi-)Banach spaces.
There exist alternative characterizations of anisotropic Besov spaces in
terms of atomic and molecular decompositions, local means, etc.

Main questions for this talk
Given two expansive matrices A,B , we call them homogeneously equivalent
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Overview

1 Anisotropic Besov spaces

2 Decomposition spaces: Definition and properties

3 Rigidity theorem for decomposition spaces

4 Classifying anisotropic coverings
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Anisotropic coverings of frequency space

Decomposition spaces (Feichtinger/Gröbner)
Informal description: Cover the frequencies by a family of open relatively
compact sets.

Decompose functions using a subordinate partition of unity.
Introduce a norm by locally taking Lp-norms, and then globally combine
using weighted `q norm.
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Admissible coverings

Definition
Let O ⊂ Rd be open, and Q = (Qi )i∈I a family of open, subsets Qi ⊂ O
with compact closure in O.

(a) Q is an admissible covering of O, if
(i) Covering property: O =

⋃
i∈I Qi

(ii) Admissibility: supi∈I supj∈I ,Qi∩Qj 6=∅
λ(Qi )
λ(Qj )

<∞.

(b) Q is called an almost structured admissible covering (a.s.a.c.) if it is
an admissible covering, and there exist (Q ′i )i∈I , nonempty open
bounded sets and Ti ∈ GL(d ,R) and bi ∈ Rd with:
(i) For all i ∈ I : TiQ ′i + bi ⊂ Qi .
(ii) The quantity supi,j :Qi∩Qj 6=∅ ‖T

−1
i Tj‖ is finite.

(iii) The set {Q ′i : i ∈ I} is finite.
(iv) The family (TiQ

′
i + bi )i∈I is an admissible covering.

The tuple ((Ti )i∈I , (bi )i∈I , (Q
′
i )i∈I ) are called standardization of Q.
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Partitions of unity

Definition
Let Q = (Qi )i∈I denote an almost structured admissible covering with
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′
i )i∈I ).

Let 0 < p ≤ ∞. We call a family
(ϕi )i∈I of functions an Lp-BAPU with respect to Q if it has the following
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Weights associated to coverings

Definition
Let Q = (Qi )i∈I denote an admissible covering, and let v : I → R+ denote
a weight. The weight is called Q-moderate if

sup
i ,j∈I :Qi∩Qj 6=∅

v(i)

v(j)
<∞ .

Given 0 < q ≤ ∞, let `qv (I ) = {c = (ci )i∈I ∈ CI : (civ(i))i∈I ∈ `q(I )},
with the obvious (quasi-)norm.
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Definition of decomposition spaces

Definition (Feichtinger/Gröbner, Voigtlaender)
Given a.s.a.c. Q = (Qi )i∈I , a Q-moderate weight v , 0 ≤ p, q ≤ ∞.

Let
(ϕi )i∈I denote an Lp-BAPU associated to Q. Given u ∈ D′(O), we define
its decomposition space (quasi-)norm as

‖u‖D(Q,Lp ,`qv )
=
∥∥∥(‖F−1(ϕi · u)‖Lp

)
i∈I

∥∥∥
`qv
. (3)

The decomposition space D(Q, ,Lp, `qv ) is the space of all u ∈ D′(O) for
which this (quasi-)norm is finite.
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Properties of decomposition spaces

Theorem (Feichtinger/Gröbner)

D(Q, ,Lp, `qv ) is a quasi-Banach space, that is independent of the choice of
BAPU.

Central message: Frequency covering is the decisive feature!
Large variety of admissible coverings allows diverse ways of measuring
the decay. Describes homogeneous and inhomogeneous isotropic Besov
spaces, α-modulation spaces, shearlet and curvelet approximation
spaces, shearlet coorbit spaces (see upcoming talk by René Koch), and
anisotropic Besov spaces.
Decomposition spaces provide a unified framework for many
embedding results, either between different decomposition spaces, or
of decomposition spaces into well-known smoothness spaces such as
Sobolev spaces (F. Voigtlaender).
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Induced covering
Definition
Let A denote an expansive matrix. Let Q b Rd \ {0} be open, and such
that ⋃

j∈Z
AjQ = Rd \ {0} .

Then QA = (AjQ)j∈Z is called the homogeneous covering induced by A.

Letting Q i
j = AjQ, for j ≥ 1, and choosing Q i

0 open, relatively compact
such that ⋃

j∈N
Q i

j = Rd

defines Qi
A, the inhomogeneous covering induced by A.

Intuition

Qj = ψ̂j
−1

(C \ {0}) , Q i
j = ψ̂i

j

−1
(C \ {0})

and the wavelet systems are BAPUs.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 15 / 32



Induced covering
Definition
Let A denote an expansive matrix. Let Q b Rd \ {0} be open, and such
that ⋃

j∈Z
AjQ = Rd \ {0} .

Then QA = (AjQ)j∈Z is called the homogeneous covering induced by A.
Letting Q i

j = AjQ, for j ≥ 1, and choosing Q i
0 open, relatively compact

such that ⋃
j∈N

Q i
j = Rd

defines Qi
A, the inhomogeneous covering induced by A.

Intuition

Qj = ψ̂j
−1

(C \ {0}) , Q i
j = ψ̂i

j

−1
(C \ {0})

and the wavelet systems are BAPUs.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 15 / 32



Induced covering
Definition
Let A denote an expansive matrix. Let Q b Rd \ {0} be open, and such
that ⋃

j∈Z
AjQ = Rd \ {0} .

Then QA = (AjQ)j∈Z is called the homogeneous covering induced by A.
Letting Q i

j = AjQ, for j ≥ 1, and choosing Q i
0 open, relatively compact

such that ⋃
j∈N

Q i
j = Rd

defines Qi
A, the inhomogeneous covering induced by A.

Intuition

Qj = ψ̂j
−1

(C \ {0}) , Q i
j = ψ̂i

j

−1
(C \ {0})

and the wavelet systems are BAPUs.
H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 15 / 32



Anisotropic Besov spaces as decomposition spaces
Theorem

Let A denote an expansive matrix, and QA a homogeneous covering
induced by AT .

For α ∈ Z, define

vα,A : Z→ R+ , vα,A(j) = |det(A)|jα .

Denote by ρ : S ′(Rd)→ D′(Rd) the restriction map. Then ρ ◦ F is a
topological isomorphism

ρ ◦ F : Ḃαp,q(A)→ D(QA,Lp, `qvα,A) .

Similarly, if Qi
A denote an inhomogeneous covering induced by AT , then

ρ ◦ F : Bαp,q(A)→ D(Qi
A,L

p, `qvα,A) .

is a topological isomorphism, as well. Here vα,A denotes the restriction of
the weight for the homogeneous setting to N0.
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Overview

1 Anisotropic Besov spaces

2 Decomposition spaces: Definition and properties

3 Rigidity theorem for decomposition spaces

4 Classifying anisotropic coverings
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Comparing coverings and weights

Definition
Admissible coverings Q = (Qi )i∈I and P = (Pj)j∈J are weakly equivalent if

sup
i∈I
|{j ∈ J : Qi ∩ Pj 6= ∅}|+ sup

j∈J
|{i ∈ I : Qi ∩ Pj 6= ∅}| <∞ .

Weights v on I and w on J are equivalent if

sup
i ,j ,Qi∩Pj 6=∅

v(i)

w(j)
+

w(j)

v(i)
<∞ .
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A rigidity theorem

Theorem (Feichtinger/Gröbner, 1985; F. Voigtlaender, 2016)
Let P = (Pi )i∈I ,Q = (Qj)j∈J denote a.s.a.c.’s, consisting of pathwise
connected sets.Let v1 be an admissible weight on I , and v2 an admissible
weight on J. Let (p1, q1, p2, q2) 6= (2, 2, 2, 2). Then the following are
equivalent:
(a) D(P, Lp1 , `q1v1 ) = D(Q, Lp2 , `

q2
v2 ).

(b) (p1, q1) = (p2, q2), v1 and v2 are equivalent, and P and Q are weakly
equivalent.

(c) For all (p, q) ∈ [1,∞]2 and all pairs v1, v2 of equivalent weights,

D(P, Lp, `qv1) = D(Q, L
p, `qv2) .

Note: If v denotes the constant weight, then D(P, L2, `2v ) = L2(Rd), for
every a.s.a.c. covering P.
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Upshot for anisotropic Besov spaces

The scales (Ḃαp,q(A))p,q,α and (Ḃαp,q(B))p,q,α coincide iff they coincide
for one nontrivial pair of exponents.
Given two expansive matrices A,B , we have

I A ∼h B iff the induced homogeneous coverings QAT and QBT are
weakly equivalent.

I A ∼B B iff the induced inhomogeneous coverings Qi
AT and Qi

BT are
weakly equivalent.

A ∼h B is equivalent to the property that A,B induce the same scale
of anisotropic Hardy spaces ( M. Bownik).
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Overview

1 Anisotropic Besov spaces

2 Decomposition spaces: Definition and properties

3 Rigidity theorem for decomposition spaces

4 Classifying anisotropic coverings
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The challenge in more concrete terms

Let A,B be expansive.
For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.
AT ∼i B

T has similar formulation.
Fairly obvious: AT ∼h (AT )k , for k ∈ N.
Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



The challenge in more concrete terms

Let A,B be expansive.

For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.
AT ∼i B

T has similar formulation.
Fairly obvious: AT ∼h (AT )k , for k ∈ N.
Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



The challenge in more concrete terms

Let A,B be expansive.
For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.
AT ∼i B

T has similar formulation.
Fairly obvious: AT ∼h (AT )k , for k ∈ N.
Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



The challenge in more concrete terms

Let A,B be expansive.
For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.
AT ∼i B

T has similar formulation.
Fairly obvious: AT ∼h (AT )k , for k ∈ N.
Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



The challenge in more concrete terms

Let A,B be expansive.
For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.

AT ∼i B
T has similar formulation.

Fairly obvious: AT ∼h (AT )k , for k ∈ N.
Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



The challenge in more concrete terms

Let A,B be expansive.
For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.
AT ∼i B

T has similar formulation.

Fairly obvious: AT ∼h (AT )k , for k ∈ N.
Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



The challenge in more concrete terms

Let A,B be expansive.
For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.
AT ∼i B

T has similar formulation.
Fairly obvious: AT ∼h (AT )k , for k ∈ N.

Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



The challenge in more concrete terms

Let A,B be expansive.
For R > 1, define the annulus

CR = {ξ ∈ Rd : R−1 < ‖ξ‖ < R} .

Compute, for i , j ∈ Z,

Ij = {i ∈ Z : AjCR ∩ B iCR 6= ∅} , Ji = {j ∈ Z : AjCR ∩ B iCR 6= ∅}

AT ∼h BT iff the cardinalities of these sets are bounded.
AT ∼i B

T has similar formulation.
Fairly obvious: AT ∼h (AT )k , for k ∈ N.
Simple exercise: Checking A ∼h B or A ∼i B for A,B diagonal.

H. Führ (RWTH Aachen) Anisotropic Besov spaces IM 2017 22 / 32



A characterization using matrix norms

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A and B be two expansive matrices. Let

ε = ε(A,B) =
ln(|det(A)|)
ln(|det(B)|)

(a) AT ∼h BT iff supk∈Z
∥∥A−kBbεkc∥∥ <∞.

(b) AT ∼i B
T iff supk∈N

∥∥A−kBbεkc∥∥ <∞.

Corollary
A ∼h B implies A ∼i B . The converse holds if A,B are diagonal.
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Generalized eigenspaces

Definition
Given a matrix A ∈ Cd×d , we define for r > 0 and m ∈ N0

E (A, r ,m) = span

 ⋃
|λ|=r

Ker(A− λId)m ∪
⋃
|λ|<r

Ker(A− λId)d
 .

Lemma (M. Bownik; HF & J. Cheshmavar)

Let A,B denote expansive matrices, ε = ε(A,B).
(a) If AT ∼i B

T , then for all ∀r > 0,∀m ∈ N:
E (A−1, r ε,m) = E (B−1, r ,m) .

(b) If AT ∼h BT , then ∀r > 1,∀m ∈ N:
span

(⋃
|λ|=rε Ker(A− λId)m

)
= span

(⋃
|λ|=r Ker(B − λId)m

)
.
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A normal form for expansive matrices

Definition
Let B ∈ GL(d ,R) be expansive. We call B in expansive normal form if B
has only positive eigenvalues, and det(B) = 2.

Theorem (HF & J. Cheshmavar)
Let A denote an expansive matrix. There exists a unique matrix A′ in
expansive normal form such that A ∼h A′.
We call A′ the expansive normal form of A.

Strategy for deciding A ∼h B

Given A,B , compute expansive normal forms A′,B ′, and compare.
Once the spectra of A,B are known, this can be carried out using standard
linear algebra methods.
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Proof: Existence

W.l.o.g. A has only one eigenvalue λ, and that is non-real.
Given z ∈ C, write

Mz =

(
Re(z) Im(z)
−Im(z) Re(z)

)
.

With a suitable matrix C , we get

CAC−1 =


Mλ Mz1

Mλ Mz2
. . . . . .

Mλ Mzd/2−1

Mλ

 ,

with z1, z2 . . . ∈ {0, 1} ⊂ C.
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Proof: Existence

Write λ = rw , where r = |λ| and |w | = 1, then CAC−1 =
Mw

Mw

. . .
Mw

Mw




Mr Mwz1

Mr Mwz2
. . . . . .

Mr Mwzd/2−1

Mr


︸ ︷︷ ︸

:=D

and the two factors commute.
A0 = C−1DC ∼h A, and has r as only eigenvalue.
As a consequence, the matrix logarithm of A0 is computed as
log(A0) = log(r)Id +

∑d−1
j=1 (−1)j+1 (r−1A0−Id )j

j

Define A′ = exp(s log(A0)), where s = ln(2)/d ln(r).
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Proof: Uniqueness

Let A,B denote two matrices in expansive normal form, with A ∼h B .
Then ε(A,B) = 1, and A,B have the same eigenvalues and associated
generalized eigenspaces. (See Lemma above.)
Hence, w.l.o.g., A,B have the same, single eigenvalue λ > 0.
Write B = λ(Id + NB),A

−1 = λ−1(Id + NA), with NA,NB nilpotent
matrices.
It follows that

A−k = λ−kPk ,B
k = λkQk ,A

−kBk = PkQk ,

where Pk ,Qk are matrices whose entries are polynomials in k .
By assumption, N 3 k 7→ ‖A−kBk‖ = ‖PkQk‖ is bounded.
If the polynomial map k 7→ PkQk is bounded, it is constant.
A−1B1 = A−2B2 implies A = B .
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The inhomogeneous case
Theorem (HF & J. Cheshmavar)
Let A,B be in expansive normal form.

Let λ1 > λ2 > . . . > λk denote the
distinct eigenvalues of A, and assume that A has the block diagonal form

A =


J1

J2
. . .

Jk

 ,

such that ∀1 ≤ i ≤ k : (Ji − λi Idi )d = 0 .
Then AT ∼i B

T if and only if

B =


J1 ∗ ∗ ∗

J2 ∗ ∗
. . . ∗

Jk

 .
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Consequence

A ∼i B can be computationally decided with standard linear algebra
methods, once the eigenvalues of A and B are known.
The matrices

A =

(
3 0
0 2

)
, B =

(
3 0
1 2

)
fulfill A ∼i B , but A 6∼h B .
If A,B are expansive diagonal matrices with positive entries, then
A ∼h B iff A = Bε, for some ε > 0.
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Concluding remarks

Main results of the talk: Decomposition space description of
anisotropic Besov spaces, and resulting classification of dilation
matrices.
Further consequences of the decomposition space description: Sharp
embedding theorems into Sobolev spaces, or other Besov spaces
(anisotropic and isotropic). (Not yet fully explored.)
The present talk presents a case study of the power of decomposition
space methods for the analysis of function spaces defined in terms of
families of convolution products.
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