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Shearlet Groups in Dimension 2

The original shearlet group in dimension 2 was introduced by Dahlke,
Kutyniok, Steidl, Teschke as

H =

{
±
(

a ab

0 a1/2

)
:

a > 0,
b ∈ R

}
=

{
±
(

a 0

0 a1/2

)(
1 b
0 1

)
:

a > 0,
b ∈ R

}
.

Motivation

The anisotropic scaling inherent in the dilation group gives rise to shearlet
systems whose approximation-theoretic properties improve on the classical
wavelets.
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Shearlet Transform in Dimension 2

G = R2 o H semidirect product of R2 and H with group law

(x , h) ◦ (y , g) = (x + hy , hg)

Unitary representation π of G on L2(R2)

[π(x , h)ψ](y) = | det(h)|−1/2ψ(h−1(y − x))

For ψ ∈ L2(R2) we define the continuous shearlet transform

Sψf : (x , h) 7→ 〈f , π(x , h)ψ〉

and the associated continuous shearlet system

S(ψ) := {π(x , h)ψ : (x , h) ∈ G}
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Shearlet Transform in Dimension 2

A function 0 6= ψ ∈ L2(R2) is called admissible shearlet if∫
G
|〈ψ, π(x , h)ψ〉|2 dµG (x , h) <∞.

For an admissible shearlet ψ the map

Sψ : L2(R2)→ L2(G ), f 7→ 〈f , π(·, ·)ψ〉

is a multiple of an isometry.This leads to the following weak inversion
formula

f =
1

Cψ

∫
G
Sψf (x , h)π(x , h)ψ dµG (x , h).
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Coorbit Theory

For measurable, locally bounded, submultiplicative weight v : H → (0,∞)
and p, q ∈ (0,∞) define the weighted mixed Lp-(quasi-)norm

‖f ‖Lp,qv
:=

(∫
H

(∫
R2

v(h)p |f (x , h)|p dx
)q/p dh

| det(h)|

)1/q

For a shearlet ψ define the coorbit space norm

‖f ‖Co(Lp,qv ) := ‖Sψf ‖Lp,qv
.

The coorbit space Co
(
Lp,qv (G )

)
is given as completion of{

f ∈ L2(R2) : Sψf ∈ Lp,qv (G )
}
.

Features of Coorbit theory

Consistency

Discretization
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Hartmut Führ, René Koch (RWTH Aachen) Shearlet Coorbit Spaces in Dimension 3 Bernried 2017 7 / 26



Coorbit Theory

For measurable, locally bounded, submultiplicative weight v : H → (0,∞)
and p, q ∈ (0,∞) define the weighted mixed Lp-(quasi-)norm

‖f ‖Lp,qv
:=

(∫
H

(∫
R2

v(h)p |f (x , h)|p dx
)q/p dh

| det(h)|

)1/q

For a shearlet ψ define the coorbit space norm

‖f ‖Co(Lp,qv ) := ‖Sψf ‖Lp,qv
.

The coorbit space Co
(
Lp,qv (G )

)
is given as completion of{

f ∈ L2(R2) : Sψf ∈ Lp,qv (G )
}
.

Features of Coorbit theory

Consistency

Discretization
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Shearlet Groups in Dimension 3

Standard Shearlet Group

Hλ1,λ2 :=

±
a ab ac

0 aλ1 0
0 0 aλ2

∣∣∣∣∣∣ a > 0,
b, c ∈ R

 < GL(3,R)

for λ1, λ2 ∈ R.

Toeplitz Shearlet Group

Hδ :=

±
a ab ac

0 a1−δ a1−δb
0 0 a1−2δ

∣∣∣∣∣∣ a > 0,
b, c ∈ R

 < GL(3,R)

for δ ∈ R.
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Shearlet Transform in Dimension 3

G δ := R3 o Hδ and Gλ1,λ2 := R3 o Hλ1,λ2 affine groups with group
law

(x , h) ◦ (y , g) = (x + hy , hg)

Unitary representation π of G δ and Gλ1,λ2 on L2(R3)

[π(x , h)ψ](y) = | det(h)|−1/2ψ(h−1(y − x))

For ψ ∈ L2(R3) and G ∈ {G δ,Gλ1,λ2} we define the continuous
shearlet transform

Sψf : (x , h) 7→ 〈f , π(x , h)ψ〉

and the associated continuous shearlet system

S(ψ) := {π(x , h)ψ : (x , h) ∈ G}
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Shearlet Coorbit Spaces in Dimension 3

A function 0 6= ψ ∈ L2(R3) is called admissible shearlet if∫
G
|〈ψ, π(x , h)ψ〉|2 dµG (x , h) <∞.

Similarly to the 2-dimensional case, we define for a shearlet ψ the coorbit
space norm

‖f ‖Co(Lp,qv ) := ‖Sψf ‖Lp,qv
.

The coorbit space Co
(
Lp,qv (G )

)
is given as completion of{

f ∈ L2(R3) : Sψf ∈ Lp,qv (G )
}
.
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Shearlet Coorbit Spaces in Dimension 3

Question

Do different shearlet groups induce different shearlet coorbit spaces?

As a means to understanding the associated coorbit spaces

Co
(
Lp,qv (R3 o Hλ1,λ2)

)
Co
(
Lp,qv (R3 o Hδ)

)
better, our next aim is to identify them with certain decomposition spaces.

Dual Action and Dual Orbit

The dual action is given by H ×R3 → R3, (h, ξ) 7→ h−tξ and for a shearlet
group this action has a unique open dual orbit H−tξ0 = O = R∗ × R2.

If supp ψ̂ ⊂ U, then supp Ŝψf (·, h) ⊂ h−tU.
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Idea

Cover the frequencies in O = R∗ × R2 by a family of open sets by means
of the dual action.

Decompose functions with a subordinate partition of
unity.Measure the inverse Fourier transforms of these individual pieces
locally with an Lp-norm and then globally in a weighted `q-norm.

Definition (Decomposition Space)

Let p, q ∈ (0,∞), Q = (Qi )i∈I a covering of O and u : I → R>0 a discrete
weight. Then define for a suitable partition of unity (ϕi )i∈I subordinate to
Q the norm

‖f ‖D(Q,Lp ,`qu) =
∥∥∥ (ui · ‖F−1(ϕi f )‖Lp

)
i∈I

∥∥∥
`q

and the space

D(Q, Lp, `qu) =
{
f ∈ D′(O) : ‖f ‖D(Q,Lp ,`qu) <∞

}
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unity.Measure the inverse Fourier transforms of these individual pieces
locally with an Lp-norm and then globally in a weighted `q-norm.

Definition (Decomposition Space)

Let p, q ∈ (0,∞), Q = (Qi )i∈I a covering of O and u : I → R>0 a discrete
weight.

Then define for a suitable partition of unity (ϕi )i∈I subordinate to
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Hartmut Führ, René Koch (RWTH Aachen) Shearlet Coorbit Spaces in Dimension 3 Bernried 2017 14 / 26



Idea

Cover the frequencies in O = R∗ × R2 by a family of open sets by means
of the dual action. Decompose functions with a subordinate partition of
unity.Measure the inverse Fourier transforms of these individual pieces
locally with an Lp-norm and then globally in a weighted `q-norm.

Definition (Decomposition Space)

Let p, q ∈ (0,∞), Q = (Qi )i∈I a covering of O and u : I → R>0 a discrete
weight. Then define for a suitable partition of unity (ϕi )i∈I subordinate to
Q the norm

‖f ‖D(Q,Lp ,`qu) =
∥∥∥ (ui · ‖F−1(ϕi f )‖Lp

)
i∈I

∥∥∥
`q

and the space

D(Q, Lp, `qu) =
{
f ∈ D′(O) : ‖f ‖D(Q,Lp ,`qu) <∞

}
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Decomposition Spaces

Definition (induced covering)

The family Q = (h−Ti Q)i∈I is a covering of O induced by H if

Q covers O
Q ⊂ O is open with Q ⊂ O compact

The set of Elements (hi )i∈I is well-spread in H,i.e.

(hiV )i∈I is pairwise disjoint for a suitable unit neighborhood V ⊂ H
(hiU)i∈I covers H for some precompact unit neighborhood U ⊂ H

Intuition: The relevant aspect of the group H for the coorbit space is this
covering.
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Decomposition Spaces

Let Q be a covering induced by H and define the discrete weight
u = (ui )i∈I by

ui := | det(hi )|
1
2
− 1

q v(hi ) for i ∈ I .

Theorem (Führ, Voigtlaender)

The Fourier transform

F : Co(Lp,qv (G ))→ D(Q, Lp, `qu)

is an isomorphism of (quasi) Banach spaces.
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Rigidity of Decomposition Spaces

Let Q = (Qi )i∈I and P = (Pj)j∈J be two induced coverings (potentially
induced by different groups!).

Definition (Intersection Sets)

Define the intersection sets of Q and P for i ∈ I and j ∈ J by

Ij := {i ∈ I : Qi ∩ Pj 6= ∅} and Ji := {j ∈ J : Qi ∩ Pj 6= ∅} .

Definition (Weak Equivalence)

We call the coverings Q and P weakly equivalent if

sup
j∈J
|Ij | <∞ and sup

i∈I
|Ji | <∞.
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Rigidity of Decomposition Spaces

Rigidity Theorem (Voigtlaender)

Let Q = (Qi )i∈I and P = (Pj)j∈J be induced coverings,

p1, p2, q1, q2 ∈ (0,∞) and u = (ui )i∈I , u
′ = (u′j)j∈J discrete weights. If

D (Q, Lp1 , `q1
u ) = D

(
P, Lp2 , `q2

u′
)
,

then

i) p1 = p2 and q1 = q2,

ii) there is C > 0 with C−1ui ≤ u′j ≤ Cui for all i ∈ I , j ∈ J such that
Qi ∩ Pj 6= ∅,

iii) in the case (p1, q1) 6= (2, 2) the coverings Q,P are weakly equivalent.
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Hartmut Führ, René Koch (RWTH Aachen) Shearlet Coorbit Spaces in Dimension 3 Bernried 2017 19 / 26



Rigidity of Decomposition Spaces

Rigidity Theorem (Voigtlaender)

Let Q = (Qi )i∈I and P = (Pj)j∈J be induced coverings,
p1, p2, q1, q2 ∈ (0,∞) and u = (ui )i∈I , u

′ = (u′j)j∈J discrete weights. If

D (Q, Lp1 , `q1
u ) = D

(
P, Lp2 , `q2

u′
)
,

then

i) p1 = p2 and q1 = q2,

ii) there is C > 0 with C−1ui ≤ u′j ≤ Cui for all i ∈ I , j ∈ J such that
Qi ∩ Pj 6= ∅,

iii) in the case (p1, q1) 6= (2, 2) the coverings Q,P are weakly equivalent.
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Comparison of Shearlet Coorbit Spaces in Dimension 3

Question

Do different shearlet groups induce different shearlet coorbit spaces?

Strategy

In order to answer this question, we

find a well-spread family in Hδ and Hλ1,λ2 ,

compute the induced coverings and

check whether they are weakly equivalent.

Hartmut Führ, René Koch (RWTH Aachen) Shearlet Coorbit Spaces in Dimension 3 Bernried 2017 21 / 26



Comparison of Shearlet Coorbit Spaces in Dimension 3

Question

Do different shearlet groups induce different shearlet coorbit spaces?

Strategy

In order to answer this question, we

find a well-spread family in Hδ and Hλ1,λ2 ,

compute the induced coverings and

check whether they are weakly equivalent.
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Comparison of Shearlet Coorbit Spaces in Dimension 3

For definiteness we will focus on the class of groups

Hλ1,λ2 :=

±
a ab ac

0 aλ1 0
0 0 aλ2

∣∣∣∣∣∣ a > 0,
b, c ∈ R


for λ1, λ2 ∈ R.

Well-spread set in Hλ1,λ2

For n,m1,m2 ∈ Z and ε ∈ {±1} define

Bλ1,λ2
n,m1,m2,ε := ε

2n 2nm1 2nm2

0 2nλ1 0
0 0 2nλ2


Since Q = (h−Ti Q)i∈I , more important is

Aλ1,λ2
n,m1,m2,ε :=

(
Bλ1,λ2
−n,−m1,−m2,ε

)−T
=
(
Bλ1,λ2
n,m1,m2,ε

)T
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Comparison of Shearlet Coorbit Spaces in Dimension 3

Induced Covering

For

Q :=
{

(x , y , z)T ∈ R3 : x ∈ (1/2, 2) and y/x , z/x ∈ (−1, 1)
}

an induced covering of O = R∗ × R2 induced by Hλ1,λ2 is given by

Qλ1,λ2 :=
(
Qλ1,λ2

n,m1,m2,ε

)
(n,m1,m2,ε)∈Z3×{±1}

:=
(
Aλ1,λ2
n,m1,m2,εQ

)
(n,m1,m2,ε)∈Z3×{±1}

=

ε
x
y
z

 :

x ∈ 2n(1/2, 2)

y/x ∈ 2n(λ1−1) [m1 + (−1, 1)]

z/x ∈ 2n(λ2−1) [m2 + (−1, 1)]




(n,m1,m2,ε)
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)
(n,m1,m2,ε)∈Z3×{±1}

:=
(
Aλ1,λ2
n,m1,m2,εQ

)
(n,m1,m2,ε)∈Z3×{±1}

=

ε
x
y
z

 :

x ∈ 2n(1/2, 2)

y/x ∈ 2n(λ1−1) [m1 + (−1, 1)]

z/x ∈ 2n(λ2−1) [m2 + (−1, 1)]




(n,m1,m2,ε)
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Comparison of Shearlet Coorbit Spaces in Dimension 3

Theorem

Shearlet coorbit spaces with respect to different shearlet groups in
dimension three give rise to different coorbit spaces (for (p, q) 6= (2, 2)).

Sketch of Proof:
1 We identify the coorbit spaces associated to the groups Hλ1,λ2 and

Hλ′1,λ
′
2 with certain decomposition spaces.

2 Because of the rigidity theorem it suffices to show that coverings
induced by different shearlet groups are not weakly equivalent.

3 In order to achieve this we determine conditions that ensure

Qλ1,λ2
n,m1,m2,ε ∩ Q

λ′1,λ
′
2

n′,m′
1,m

′
2,ε

′ 6= ∅.

4 These conditions allow the construction of a sequence
(j(k))k∈N ∈ Z3 × {±1} such that∣∣∣{(n,m1,m2, ε) : Qλ1,λ2

n,m1,m2,ε ∩ Q
λ′1,λ

′
2

j(k) 6= ∅
}∣∣∣ −−−→

k→∞
∞.
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Comparison of Shearlet Coorbit Spaces in Dimension 3

Similar reasoning can be used for the comparison of the groups Hλ1,λ2 and
Hδ.

Main point

Different shearlet groups lead to an essentially different covering of the
dual orbit through the dual action.
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