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Padua points

The intersections of the Lissajous curve
v(t) = (cos nt, cos(n + 1)t), t € [0, 7], with itself and the
boundary of [—1,1]2.

Caliari, De Marchi, and M. Vianello (2005). ‘Bivariate Lagrange
interpolation on the square at new nodal sets'.



Examples, n=1, n =2
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Examples, n=3, n=4
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Properties

v

Two interlacing rectangular grids.

v

Unisolvent for polynomial interpolation of degree n.

The Lebesgue constant grows with minimal order O(log?(n)).

v

v

The associated cubature rule has degree of precision 2n — 1
with respect to the Chebyshev weighting.

Bos, Caliari, and De Marchi, Vianello, and Xu (2006). Bivariate
Lagrange interpolation at the Padua points: the generating curve
approach.



The cubature rule is

7r2/ / Xy x2 \/1 dxdy% Z waf (A),

AePad,,

with weights
1/2 if Alis a vertex point;
wa = m 1 if Ais an edge point;

2 if Ais an interior point.

This rule is exact for any polynomial p of degree < 2n — 1: one
can show that

1/l/lp(x ) ! ! dx d —1/7rq(t)dt
2 )y ) P V1I—x2\/1-y2 YTk 7

where

q(t) = p(cos nt,cos(n + 1)t),

and one can then apply the composite trapezoidal rule to gq.



Other point sets

Points sets with similar interpolation and cubature properties were
studied earlier in

Morrow and Patterson (1978), Construction of algebraic cubature
rules using polynomial ideal theory,

and

Yuan Xu (1996), Lagrange interpolation on Chebyshev points of
two variables.

In general, the associated polynomial space does not have total
degree, but has the form

N(L) = span{x'y’ : (i,j) € L}

for some lower set L C N3, meaning that if (k,/) € L and
(i,j) € N3 and (i,j) < (k,!) then (i,j) € L.



More recently, in

Erb, Kaethner, Ahlborg, and Buzug (2016), Bivariate Lagrange
interpolation at the node points of non-degenerate Lissajous
curves.

various families of point sets generated by Lissajous curves have
been shown to have similar properties to the Padua points.
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Changing the spacing of the points?

If we change the spacing of the Padua points, are they still
unisolvent? This question was studied in

Bos, De Marchi, Waldron (2009). On the Vandermonde
determinant of Padua-like points.

De Marchi and K. Usevich (2014), On certain multivariate
Vandermonde determinants whose variables separate.

Pierro de Carmago and De Marchi (2015). A few remarks on “On
certain Vandermonde determinants whose variables separate”.



New approach

Defining By = {(i,j) : 0 < i < k, 0 < j <[}, the point set is the
union of any two interlaced rectangular grids in R?,

U={(ui,v): (1)) € By}, X =106y : (7)) € Bmn}-

Interlacing implies that |m — p| <1 and |n—v| < 1. We will
assume without loss of generality that n < v.




Choose an associated polynomial space
Let K1 C Bpm,n be any lower set, let

KZZ{(iaj):(m_i7n_j)€Bm,n\K1}7 and
L=B,,U(Ki+(r+1,0)U(K+(0,v+1)).

Then L is also a lower set (in the special case that m =+ 1 we
must include the index pair (0, n) in Ki).

S = N W R
o = N W s
]

L)

S = N W ok
L)

L]

L)

Theorem
Given the values of a real function f on U U X, there is a unique
polynomial p € T(L) such that p=1f on UU X.



Tensor-product interpolation
Let us start by using tensor-product interpolation on U. Letting
a(x) = (x —uo)(x — u1)...(x — uy),
by) =y —w)ly —v1) ... (y =),

we can express any p € (L) uniquely as

p(x,y) = po(x,y) + a(x)p1(x, y) + b(y)p2(x; y),

where pg € M(B,.), p1 € M(K1), and py € TN(K>2). So let py be
the tensor-product interpolant to f on U, and we will have p = f
on UU X if we can find p; € N(K1) and p € M(K>) such that

a(xi)p1(xi, yj) + b(yj)p2(xi, ¥j) = gij.  (i,J) € Bm,n,

where
gij = f(xi,¥) — po(xi, y;)-



Newton form

To solve the equations let

p(y) = D cud(X)ly),

(k,))EKy

y)= Y dudk()ily),

(k,NEK>
for coefficients ¢y, diy € R, where ¢o(x) = 1o(y) = 1, and
Pk(x) = (x =x0)(x —x1) -+ (x = xk-1), k=1,

Vi) = —y)y—y) - (y—y-1), I>1



Then take divided differences

Applying the divided difference operator [xg, ..., X;; yo, ..., ¥j] to
each side of the equation, and simplying using the Leibniz rule,

gives
> akag+ Y. bydy=hy, (i,J) € Bm,n,
k:(kj)eKy 1:(i,1)€Ka
where
e oxila k< by 1<
ki .= . b/j = i
0, k>, 0, >,
and

hij = [x0, -, Xii Yo, - - - Yj1(f — po)-



Solution

Let (ir,jr), r=1,2,...,s, be the maximal points of Ki,
0<ii < - <is <m, n>j>--->js>0.

Assume that (0,n) € K1 and (m,0) ¢ K (the remaining cases are
similar). Then j3 = n and is < m and K has maximal points
(m—i,—1n—jiy1—1),r=1,...,s—=1,and (m—is—1,n).
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For each r =1,2,...,s apply two steps.
(i) For j = jry1+1,...,j, solve

n—jo—1

Ir
E axiCxj = hij — E bjdi,
k=0 /=0

a=1,...,r, i=m—iy,...,Mm—lIgp_1—1,
for the unknowns cpj, ..., .
(i) Fori=m—ip11,...,m— i, — 1, solve

n ./r+1*

I
§ bjdy = hjj — E 3ki Ckjs
k=0

a=1....r, j=jas1+1,...

for the unknowns djg,...,djn—j 1.

7./0(7
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Odd-numbered blocks find rows of c-coefficients, even-numbered
blocks find columns of d-coefficients.



For general m, consider the divided difference matrix

a .-+ a [X07'~~7Xm]a [melﬂxfn]a [Xm]a
0,m m,m [X()7 o ,Xm,1]2 s [mel]a 0
A= = -
2,0 - dmo [x0]a 0 . 0

Let A, be the upper left submatrix of A of dimension r 4+ 1,
r=0,1,...,m.

For any choice of the lower set Ki, the linear system is solvable if
all these submatrices are non-singular (and the same for B).



Example

For m= 2,

[Xo, X1, x2]a [Xl, x2]a [Xg]a
A= | [x0,xi]a [x1]a 0
[Xo]a 0 0

We need to show that the three submatrices

A1: [X07X17X2]a [X17X2]3

Ao = [[x0, X1, x2]a] , [x0, x1]a [xi]a |’

and A, = A are non-singular.



Proof of solvability

Since
a(x) = (x — uo)(x — u1) -~ (x = up),

and since the grids are interlaced, for example,
Up < Xo < up < Xx3<---,

it follows that the values a(xp), a(x1), ..., a(xm) alternate in sign.



Consider first Ag

Ap consists of the single element

m
[x0,. .., xm]a = Z Qi
k=0

where
m
-1
ax = alxi) [ [0 —x) "
j=0
i#k
Since xp, X1, . - - , Xm are increasing, the product alternates in sign
with k, and it follows that qq, g1, . . ., gm have the same sign, and
SO
[x0, ..., Xm|a #0,

and Ag is non-singular.



General submatrix A,

For general r, there is an explicit formula for the determinant of A,.
Lemma
Forr=20,1,... , m,

2
det Ar = Z Dk07k1,_,_7k, QkoGky = 9k,
0<ko<ka<:--<kr<m

and
Dig kiyoo ke = H (XK — Xk;)-

0<i<j<r

Since qo, - . -, gm have the same sign, det A, # 0.



Example

When m = 2,
_ a(xo0) _ a(x1) _ a(x2)
P oo —x) PTG —x) BT e —x)(e —x)

The determinant of A; is

[0, x1,x2]a  [x1, x2]a
[x0,x1]2 [xi]a

Qo+ q1+ q2 (a —x0)g1 + (2 — x0)q2
(X0 — x2)qo + (x1 — x2)q1 (x1 —x0)(x1 — x2)qn

=(x — Xo)QCIoCh + (e — XO)QCquz + (x — X1)2q1q2.



Proof in general case
Ar = [aj,m—ilij=0,..r, and we can express the elements as

Bmai = > Gi(xk)i (%),

k=0
where
$j(x) = (x = x0)(x = x1) - - (x = xj-1),
$i(x) = (X = xm)(x = Xm—1) -+ (X = Xm—i11)-
Thus, A, = BC where
B = [¢i(x)]i=o,. .- k=0,...m» C = [6;(x)qk]k=o,....mj=0,...r-
By the Cauchy-Binet theorem,

Ar| = Z |9i(xk;) i j=0,....r

0<ko<ki<--<kr<m

¢j(ka)qk; ’i,j:O,...,r,

and the proof is completed by observing that

|¢A5i(Xk,-)|i,j:0,...,r = [0j(xi;)|ij=0,...r = |X/I;j|i,j:0,...,r = Dig ky, ke



