

Roulets Rotational Anisotropic Wavelet Transform

Silja Gütschow

Chair of Digital Image Processing University of Passau

> Bernried February 28, 2017

- 2 Line Singularities and Wavefront Set
- 3 Integral Transforms and Singularity Detection
 - 4 Roulet Transform

Problem

- project with Micro-Epsilon GmbH & Co. KG
- in metal processing different cold rolls are used for producing metal bands with different thickness

Figure: product surface with chatter marks

Problem

- project with Micro-Epsilon GmbH & Co. KG
- in metal processing different cold rolls are used for producing metal bands with different thickness
- chatter marks occur when cold rolls are defect
- detect defect cold roll out of characteristics

Figure: product surface with chatter marks

Aim

Detection of

- line singularities in pictures
- with integral transform

In the following:

- tempered distribution $t \in S'({\rm I\!R}^2)$
- x is a regular point
- ▶ $\varphi \in \mathcal{C}^{\infty}_{\mathcal{C}}\left(\mathbb{R}^{2}
 ight)$ cutoff function, identically one in neighbourhood of x

4 / 21

tempered distribution $t \in S'(\mathbb{R}^n)$

x is a regular point

 φ cutoff function, identically one in an neighborhood of x

Definition

Then a pair $(x,\xi) \in \mathbb{R}^2 \times \mathbb{S}^1$ is a regular directed point if there exists cutoff function φ and a neighbourhood $W \subset \mathbb{S}^1$ of ξ such that for all $N \in \mathbb{N}$ there exists C_N with

Definition

The wavefront set WF(t) is the complement of the regular directed points.

Figure: time domain

Figure: frequency domain

Wavefront set of line singularity

For $\delta_{x_2=p+qx_1}$ the wavefront set is

$$WF(\delta_{x_2=p+qx_1}) = \{(x_1, x_2) | x_2 = p + qx_1\} \times \{-\frac{1}{q}\}$$

Figure: time domain

Figure: frequency domain

Aim

Integral transform that detects wavefront sets by coefficient decay rate.

C		C	
Sil	ıa.	Gutschov	v

construction of wavelet like transform

quasi-regular representation

$$(\pi_L(a,b)f)(x) = \delta(a)^{-\frac{1}{2}} f\left(\sigma_{a^{-1}}(x \circ b^{-1})\right)$$

construction of wavelet like transform

quasi-regular representation

$$(\pi_L(\mathbf{a}, \mathbf{b}) f)(\mathbf{x}) = \delta(\mathbf{a})^{-\frac{1}{2}} f\left(\sigma_{\mathbf{a}^{-1}}(\mathbf{x} \circ \mathbf{b}^{-1})\right)$$

induces integral transform

$$(T_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$$

2

construction of wavelet like transform

quasi-regular representation

$$(\pi_L(a,b)f)(x) = \delta(a)^{-\frac{1}{2}} f\left(\sigma_{a^{-1}}(x \circ b^{-1})\right)$$

induces integral transform

$$(T_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$$

When do integral transforms detect wavefront sets?

construction of wavelet like transform

quasi-regular representation

$$(\pi_L(a,b)f)(x) = \delta(a)^{-\frac{1}{2}} f\left(\sigma_{a^{-1}}(x \circ b^{-1})\right)$$

induces integral transform

$$(T_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$$

?

When do integral transforms detect regular directed points?

C	C	
Sili	a (auto	schow
	a out	

Theory of Fell, Führ, Voigtlaender¹

 ξ direction

¹Fell, Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

Silja Gütschow

Roulets

February 28, 2017

Theory of Fell, Führ, Voigtlaender¹

 ξ direction

¹Fell, Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

Silja Gütschow

Roulets

February 28, 2017

 $\begin{array}{l} \xi \mbox{ direction} \\ a_1,a_2 \in A \mbox{ matrix group} \\ V = \mbox{supp} \, \varphi, \, \varphi \mbox{ admissible function} \end{array}$

 $^1{\rm Fell},$ Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

O • • •		\sim					
5.1	10 1		111	cc	h	0	
- 51	la i			20		U	vv

$$\begin{split} \xi \mbox{ direction } \\ a_1, a_2 \in A \mbox{ matrix group } \\ V = \mbox{supp } \varphi, \ \varphi \mbox{ admissible function } \\ W \subset \mathbb{S}^1 \mbox{ neighbourhood of } \xi \\ R > 0 \end{split}$$

 $^1{\rm Fell},$ Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

Silja Gütschow

$$\begin{split} \xi \mbox{ direction } \\ a_1, a_2 \in A \mbox{ matrix group } \\ V = \mbox{supp } \varphi, \ \varphi \mbox{ admissible function } \\ W \subset \mathbb{S}^1 \mbox{ neighbourhood of } \xi \\ R > 0 \end{split}$$

- \blacktriangleright transform has to distinguish between different ξ
- description with K_i and K_o

¹Fell, Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

$$\begin{split} \xi \mbox{ direction } \\ a_1, a_2 \in A \mbox{ matrix group } \\ V = \mbox{supp } \varphi, \ \varphi \mbox{ admissible function } \\ W \subset \mathbb{S}^1 \mbox{ neighbourhood of } \xi \\ R > 0 \end{split}$$

- \blacktriangleright transform has to distinguish between different ξ
- description with K_i and K_o

$$K_i(V, W, R) := \left\{ a \in A | a^{-T} V \subset C(W; R) \right\}$$

$$K_o(V, W, R) := \left\{ a \in A | a^{-T} V \cap C(W; R) \neq \emptyset \right\}$$

¹Fell, Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

under appropriate conditions the following are equivalent

- (x,ξ) is a regular directed point of t
- ▶ local fast decay for $a \in K_o(W, V, R)$: $|W_{\psi_n}u(y, a)| \leq C_N ||a||^N$

²Fell,Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

Silja Gütschow

under appropriate conditions the following are equivalent

- (x,ξ) is a regular directed point of t
- ▶ local fast decay for $a \in K_o(W, V, R)$: $|W_{\psi}u(y, a)| \leq C_N ||a||^N$

Two Cases

 $^2\mathsf{Fell},\mathsf{F}\ddot{u}\mathsf{hr},$ Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

Silja Gütschow

under appropriate conditions the following are equivalent

- (x,ξ) is a regular directed point of t
- ▶ local fast decay for $a \in K_o(W, V, R)$: $|W_{\psi}u(y, a)| \le C_N ||a||^N$

Two Cases

- characterisation with one wavelet
 - 1. shearlet group

 $^2\mathsf{Fell},\mathsf{F}\ddot{u}\mathsf{hr},$ Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

Silja Gütschow

under appropriate conditions the following are equivalent

- (x,ξ) is a regular directed point of t
- ▶ local fast decay for $a \in K_o(W, V_n, R)$: $|W_{\psi_n} t(y, a)| \leq C_N ||a||^N$

Two Cases

- characterisation with one wavelet
 - 1. shearlet group
- necessary to change wavelet for characterisation
 - 1. similitude group
 - 2. diagonal group

²Fell,Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

Silja Gütschow

under appropriate conditions the following are equivalent

- (x,ξ) is a regular directed point of t
- ▶ local fast decay for $a \in K_o(W, V_n, R)$: $|W_{\psi_n} t(y, a)| \leq C_N ||a||^N$

Two Cases

- characterisation with one wavelet
 - 1. shearlet group
- necessary to change wavelet for characterisation
 - 1. similitude group
 - 2. diagonal group

mixed case

²Fell,Führ, Voigtlaender, Resolution of the wavefront set using general continuous wavelet transforms, J. Fourier Anal. Appl., 2014

quasi-regular representation

$$(\pi_L(a,b)f)(x) = \delta(a)^{-\frac{1}{2}} f(\sigma_{a^{-1}}(x \circ b^{-1}))$$

integral transform: $(R_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$

quasi-regular representation

$$(\pi_L(a,b)f)(x) = \delta(a)^{-\frac{1}{2}} f(\sigma_{a^{-1}}(x \circ b^{-1}))$$

integral transform: $(R_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$

• choice for *b*:
•
$$B_{tra} = \left\{ \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right) : b_1, b_2 \in \mathrm{I\!R} \right\}$$

quasi-regular representation

$$(\pi_L(\mathbf{a}, \mathbf{b}) f)(\mathbf{x}) = \delta(\mathbf{a})^{-\frac{1}{2}} f\left(\sigma_{\mathbf{a}^{-1}}(\mathbf{x} \circ \mathbf{b}^{-1})\right)$$

integral transform: $(R_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$

choices for matrix group A:

$$\bullet \ A_{dil} = \left\{ \left(\begin{array}{cc} s_1 & 0 \\ 0 & s_2 \end{array} \right) : s_1, s_2 \in \mathrm{I\!R} \setminus \{0\} \right\}$$

choice for b:
B_{tra} = {
$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} : b_1, b_2 \in \mathbb{R}$$

quasi-regular representation

$$(\pi_L(\mathbf{a},\mathbf{b})f)(\mathbf{x}) = \delta(\mathbf{a})^{-\frac{1}{2}} f\left(\sigma_{\mathbf{a}^{-1}}(\mathbf{x} \circ \mathbf{b}^{-1})\right)$$

integral transform: $(R_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$

choices for matrix group A:

•
$$A_{dil} = \left\{ \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} : s_1, s_2 \in \mathbb{R} \setminus \{0\} \right\}$$
 composition:
• $A_{rot} = \left\{ \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} : \theta \in [0, 2\pi) \right\}$ group

choice for b:

$$\blacktriangleright \quad B_{tra} = \left\{ \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right) : b_1, b_2 \in \mathrm{I\!R} \right\}$$

quasi-regular representation

$$(\pi_L(\mathbf{a},\mathbf{b})f)(\mathbf{x}) = \delta(\mathbf{a})^{-\frac{1}{2}} f\left(\sigma_{\mathbf{a}^{-1}}(\mathbf{x} \circ \mathbf{b}^{-1})\right)$$

integral transform: $(R_{\varphi}f)(a,b) = \langle f, \pi(a,b)\varphi \rangle$

choices for matrix group A:

$$A_{dil} = \left\{ \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} : s_1, s_2 \in \mathbb{R} \setminus \{0\} \right\}$$

$$A_{rot} = \left\{ \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} : \theta \in [0, 2\pi) \right\}$$
needle-like structure?

choice for b:

$$\blacktriangleright \quad B_{tra} = \left\{ \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right) : b_1, b_2 \in \mathrm{I\!R} \right\}$$

`

Heuristic: Action of A_{dil} in $\widehat{\mathbb{R}}^2$

C		C	
SI	ıa.	Gutso	now
_			

Silja Gütschow

February 28, 2017

Heuristic: Action of $A_{dil}A_{rot}$ in $\widehat{\mathbb{R}}^2$

Figure: Three scalings in x and y direction with different rotations

Silja Gütschow	
----------------	--

Figure: different rotations
Heuristic: Action of $A_{rot}A_{dil}$ in $\widehat{\mathbb{R}}^2$

Figure: Different scalings in x and y direction with different rotations

C		C
- 51	la.	Gutschow
	J –	

Sets K_i^T and K_o^T $K_i^T(W, V, R) := \left\{ tm | t \in T, m \in M, (tm)^{-T} V \subset C(W, R) \right\}$ $K_o^T(W, V, R) := \left\{ tm | t \in T, m \in M, (tm)^{-T} V \cap C(W, R) \neq \emptyset \right\}$

Sets K_i^T and K_o^T $K_i^T(W, V, R) := \left\{ tm | t \in T, m \in M, (tm)^{-T} V \subset C(W, R) \right\}$ $K_o^T(W, V, R) := \left\{ tm | t \in T, m \in M, (tm)^{-T} V \cap C(W, R) \neq \emptyset \right\}$

Result

under appropriate conditions the following are equivalent

- (x,ξ) is a regular directed point of u
- ▶ local fast decay for $a \in K_o^T(W, V, R)$: $|W_{\psi}u(y, a)| \leq C_N ||a||^N$

Sets K_i^T and K_o^T $K_i^T(W, V, R) := \left\{ tm | t \in T, m \in M, (tm)^{-T} V \subset C(W, R) \right\}$ $K_o^T(W, V, R) := \left\{ tm | t \in T, m \in M, (tm)^{-T} V \cap C(W, R) \neq \emptyset \right\}$

Result

under appropriate conditions the following are equivalent

- (x,ξ) is a regular directed point of u
- ▶ local fast decay for $a \in K_o^T(W, V, R)$: $|W_{\psi}u(y, a)| \leq C_N ||a||^N$

Proof possible for

- A_{rot}A_{dil}: fits not into setting
- A_{dil}A_{rot}: fits into setting

Definition

Consider

- $\psi \in L_2\left({\rm I\!R}^2
 ight)$ admissible for $A_{\it sim}$
- $f \in L_2(\mathbb{R}^2)$
- ▶ $s_1, s_2 \in {\rm I\!R} \setminus \{0\}, \alpha \in [0, 2\pi)$ and $b \in {\rm I\!R}^2$

The roulet transform is given by

$$R_{\psi}f(s,\alpha,b) = \int_{\mathrm{I\!R}^2} f(x) \,\overline{\psi_{s,\alpha,b}(x)} dx,$$

with

$$\psi_{\boldsymbol{s},\alpha,\boldsymbol{b}}\left(\boldsymbol{x}\right) = |\boldsymbol{s}_{1}\boldsymbol{s}_{2}|^{-\frac{1}{2}}\psi\left(\boldsymbol{R}_{\alpha}^{-1}\boldsymbol{A}_{\boldsymbol{s}}^{-1}\left(\boldsymbol{x}-\boldsymbol{b}\right)\right).$$

Tensor product wavelets

$$\begin{split} \psi_1, \psi_2 \text{ are 1D wavelets} \Rightarrow \int_{\hat{\mathbb{R}}^2} \frac{|\hat{\psi}(\xi_1, \xi_2)|^2}{|\xi_1^2 + \xi_2^2|} d\xi_1 d\xi_2 < \infty, \\ \psi(x, y) = \psi_1(x) \psi_2(y) \end{split}$$

where

Frequency Domain

Figure: support of roulets

C		C
- 51	ia.	Gutschow
· · · ·	14	outsenon

February 28, 2017

Theorem [G.] Let $g(x) = \delta_{x_2=qx_1}(x)$ for $q \neq 0$. For $-b_1 = qb_2$, $p = \frac{\cos(\alpha)}{\sin(\alpha)}$ and $s_1 \ge \frac{s_2\cos(\alpha)}{\cos(\alpha) - \sqrt{s_2}}$ $RAW_{\psi}g(s, \alpha, b) \sim |s_1|^{-\frac{1}{2}}$, for $s_1 \to 0$,

otherwise $RAW_{\psi}g(s, \alpha, b)$ decays rapidly.

Theorem [G.] Let $g(x) = \delta_{x_2=qx_1}(x)$ for $q \neq 0$. For $-b_1 = qb_2$, $p = \frac{\cos(\alpha)}{\sin(\alpha)}$ and $s_1 \ge \frac{s_2\cos(\alpha)}{\cos(\alpha) - \sqrt{s_2}}$ $RAW_{\psi}g(s, \alpha, b) \sim |s_1|^{-\frac{1}{2}}, \text{ for } s_1 \to 0,$

otherwise $RAW_{\psi}g(s, \alpha, b)$ decays rapidly.

Remarks

- 1. depending on α : choose s_2 sufficient small
- 2. $RAW_{\psi}g(s, \alpha, b)$ is divergent on the singularity

~		O		
5.1	10	(_ 1 1 1	cc	DOW
511	la i	Gui	-3C	

~		O		
5.1	10	(_ 1 1 1	cc	DOW
511	la i	Gui	-3C	

C		-						
Sili	12	(-	11	te	C	h	0	
July	a	9	u	-	~		9	

~		O		
5.1	10	(_ 1 1 1	cc	DOW
511	la i	Gui	-3C	

C		-						
Sili	12	(-	11	te	C	h	0	
July	a	9	u	-	~		9	

~		0.00		
51	10	(_11±	cch	
511		Gut	SCI	1000
	_			

Back to Application

C		~··			
SIL	Ia I	511	TSC	ho	w
<u> </u>					
Back to Application

Improvements

- wavelet like transform with rotation and anisotropic scaling
- detection of line singularities
- fast implementation with FFT

Thank you for your attention!