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Outline

 Construction of a class of biorthogonal wavelet filters

associated to a Nonstationary (NS) 

Multiresolution Analysis (MRA)

scale-dependent filters

 Test of nonstationary wavelet filters in image processing  

applications

 Guidelines for future research



Nice wavelet properties

 Compact support local information

 Vanishing moments detection of

singularities

 MRA fast implementation

(filter bank)

New nonstationary wavelet families

change of support length and/or number of vanishing moments

at any scale level while preserving MRA 

[Conti-Gori-P 2007, Gori-P 2008, P 2016]



Nonstationary refinement masks

For fixed  and increasing j (scale level),  the filter taps change: 

they are  concentrated in a small support for small j,

while they converge to the limit mask { lim
𝑗→∞

𝑎𝛼
(𝑛,𝑗)

} for large j

but

the  number of vanishing moments is fixed except for the limit mask

The mask coefficients {𝒂𝜶
𝒏,𝒋

, 𝜶 ∈ 𝒁} depend

on the scale level j through the real parameter 
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Nonstationary refinement masks

j  + 

( degree 1 B-spline mask)
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Example: n = 3

( degree 3 B-spline mask)



Nonstationary refinable functions

 = 1.5

The higher  the faster the convergence

to the smoother B-spline

 = 4



Nonstationary refinement symbols
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The symbol of any mask is defined as the Laurent polynomial
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Biorthogonal nonstationary filters

Non stationary

decomposition scheme reconstruction scheme

since



Biorthogonal nonstationary filters

Set  N = n-1  and 

Express the symbol in terms of trigonometric polynomials






 j2

Express the dual in the same form

?



Biorthogonal nonstationary filters

From the biorthogonality condition in terms of symbols
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Biorthogonal nonstationary filters

1. Rewrite the Bézout identity

2. Consider the Taylor expansion of the right hand side with respect to y

to compute the first q terms of

where

They are the first q terms of
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Biorthogonal nonstationary filters

hence

h

h
 h,

h=0

3. Compute the (q+1)-th term:  the term yq of the Taylor expansion

that can be rewritten as

h

h
h=0

 h 

 



Biorthogonal nonstationary filters

that is

and then the dual symbol is
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Biorthogonal nonstationary filters
For example, for N=1

j=0,…,6     =1.5



Biorthogonal nonstationary filters
For example, for N=2

j=0,…,6     =1.2



Some results
Compaction Properties:    better PSNR  at the same rate (PSNR = 10 log10

2552

𝑀𝑆𝐸
)

Lena image rate = 10%



Some results

Compaction Properties:    better PSNR  at the same rate



Some results

Compaction Properties:    better PSNR  at the same rate

Barbara image rate = 10%



Some results

Compaction Properties:    better PSNR  at the same rate



Some applications: image compression
Comparison with SPIHT : comparable PSNR

PSNR = 30.29 db    

ns-bior1.3

PSNR = 30.50 db    

SPIHT

rate = 0.50 bpp



Some applications: image compression
The Structural SIMilarity index

well correlated with Human Perception

same PSNR 

SSIM = 0.9570
SSIM = 0.3941



Some applications: image compression
Comparison with SPIHT : comparable PSNR and better visual quality

PSNR = 30.29 db    

SSIM =  0.8808
ns-bior1.3

PSNR = 30.50 db    

SSIM =  0.8689

SPIHT

rate = 0.50 bpp



Some applications: image compression
Comparison with SPIHT : comparable PSNR and better visual quality

PSNR = 27.53 db    

SSIM =  0. 8148
ns-bior1.5

PSNR = 27.71 db    

SSIM =  0. 8044

SPIHT

rate = 0.30 bpp

L=6



Some applications: image compression
Comparison with SPIHT : smaller PSNR and comparable visual quality

PSNR = 32.25 db    

SSIM =  0. 8693
rate = 0.20 bppPSNR = 31.59 db    

SSIM =  0. 8690ns-bior1.5 SPIHT



Some applications: image compression
Comparison with SPIHT : smaller PSNR and comparable visual quality

PSNR = 32.25 db    

SSIM =  0. 8693
rate = 0.20 bppPSNR = 31.49 db    

SSIM =  0. 8689

ns-bior2.4 SPIHT



Some applications: image compression

Comparison with SPIHT : comparable PSNR and better visual quality

Cameraman image



Some applications: image compression

Comparison with SPIHT : smaller PSNR and comparable visual quality

Lena image



Some applications: edge detection
Ns-filters: better performance than the B-spline filters they converge to

ns-bior1.3                            bior1.3                             bior3.3

L=3

=1.6

N_coeff = 5658 (8.5%)

good localization

corner reconstruction



Some applications: edge detection

L=3

=1.6

N_coeff = 1632 (2.5%)

ns-bior1.3                            bior1.3                             bior3.3

Ns-filters: better performance than the b-spline filters they converge to

lack of spurious edges

corners without

interruptions



Conclusions
1. NS multiresolution analysis is a general framework for generating

new families of wavelets

2. NS wavelets provide more flexibility (support, number of vanishing

moments, easy and fast implementation)      

3. NS filters are useful in image processing problems: 

- improvement of compaction properties w.r.t. the stationary

limit case

- better visual quality

Future research

• Optimal  / Adaptive 

• Interscale relationship in novel algorithms for image processing 

(compression,  denoising, feature extraction, etc.)
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town of Gaeta.

Topics

Topics include Algebraic and 
Differential Geometry, Computer 
Aided Design, Curve and Surface 
Design, Finite Elements, NURBS 
and Isogeometric Analysis, 
Refinability, Approximation Theory, 
Subdivision, Wavelets and 
Multiresolution Methods…. 
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