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Thursday, March 209:00–09:45 Levin: Attractors of sequences of function systems and the relation to non-stationary subdivision09:45–10:10 Moosmüller: A smoothing procedure for Hermite subdivision schemes10:10–10:35 Lipovetsky: A weighted binary average of point-normal pairs in 2D and 3D with application to subdivision

schemes10:35–11:00 Coffee break11:00–11:25 Turati: Multivariate pseudo-splines and multigrid11:25–11:50 Volontè: Geometric conditions for curvature continuity of interpolatory planar subdivision curves15:00–15:30 Coffee & cake15:30–15:55 Romani: G1-continuity of non-stationary subdivision schemes at the limit points of extraordinary vertices
and faces15:55–16:20 Hüning and Wallner: Contractivity and convergence of refinement schemes in Riemannian geometry16:20–16:45 López-Ureña: New non-linear stationary subdivision scheme with trigonometric functions reproduction16:45–17:10 Mejstrik: Joint spectral radius and multiple subdivision

Friday, March 309:15–10:00 Floater: Polynomial interpolation on interlacing rectangular grids10:00–10:25 Cirillo: Barycentric rational Hermite interpolation with no poles and high rates of approximation10:25–10:50 Coffee break10:50–11:35 Sauer: A tale of couples and other syzygies11:35–11:45 Closing remarks
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Error analysis for filtered back projectionreconstructions fractional Sobolev spaces
Matthias Beckmann∗, Armin Iske

This talk concerns the approximation of bivariate functions by using the well-established filtered back projection (FBP) formula from computerized tomog-raphy, which allows us to reconstruct a bivariate function from given Radondata. The FBP formula, however, is numerically unstable. Therefore, suitablelow-pass filters of finite bandwidth and with a compactly supported windowfunction are employed to make the reconstruction by FBP less sensitive tonoise.The objective of this talk is to analyse the inherent FBP approximation errorwhich is incurred by the application of the chosen low-pass filter. To this end,we present error estimates in Sobolev spaces of fractional order. The obtainederror bounds depend on the bandwidth of the low-pass filter, on the flatnessof the filter’s window function at the origin, on the smoothness of the targetfunction, and on the order of the considered Sobolev norm. Finally, we proveconvergence for the approximate FBP reconstruction in the treated Sobolevnorms along with asymptotic convergence rates, as the filter’s bandwidth goesto infinity.
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Generalized orthogonal matching pursuit for multiplemeasurements
Florian Boßmann

Orthogonal matching pursuit (OMP) is a greedy algorithm that seeks to find asparse solution of the linear system
Ax = b,

i.e., a solution x containing only a small number of non-zero entries. Thesesolutions are of special interest in applications where the measured data b isinfluenced by only a few (unknown) entries of the parameter vector x . However,in many applications not only one data vector b, but multiple measurements bi,
i = 1, . . . , n are given. Now, the linear system

AX = B

has to be solved; here X and B are matrices. Still, we can assume that eachcolumn of X is sparse. Moreover, similar measurements will generate correlatedvectors bi, i = 1, . . . , n. Thus, we assume that the matrix X is structured. Gen-eralized orthogonal matching pursuit for multiple measurements is an algorithmdesigned to capture the underlying structure. This way, the approximation qual-ity of the solution can be enhanced and efficient post-processing of the data ispermitted.
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Barycentric rational Hermite interpolation with nopoles and high rates of approximation
Emiliano Cirillo

In this talk we study an iterative approach to the Hermite interpolation prob-lem, which first constructs an interpolant of the function values at n+ 1 nodesand then successively adds m correction terms to fit the data up to the m-thderivative. In the case of polynomial interpolation, this simply reproduces theclassical Hermite interpolant, but the approach is general enough to be usedin other settings. In particular, we focus on the family of barycentric ratio-nal Floater–Hormann interpolants, which are based on blending local polyno-mial interpolants of degree d with rational blending functions. For this fam-ily, the proposed method results in rational Hermite interpolants of degree(m+ 1)(n+ 1)− 1, which converge at the rate of O(h(m+1)(d+1)) as the mesh size
h converges to zero.
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Lissajous sampling and adaptive spectral filtering forthe reduction of the Gibbs phenomenon in MagneticParticle Imaging
Stefano De Marchi∗, Wolfgang Erb, Francesco Marchetti

Polynomial interpolation and approximation methods on sampling points alongLissajous curves using Chebyshev series is an effective way for a fast imagereconstruction in Magnetic Particle Imaging (MPI). Due to the nature of spec-tral methods, a Gibbs phenomenon occurs in the reconstructed image if theunderlying function has discontinuities. A possible solution for this problemare spectral filtering methods acting on the coefficients of the approximatingpolynomial.In this work, we introduce Lissajous sampling and classical filtering tech-niques in one and several dimensions. We then present an adaptive spectralfiltering process for the reduction of the Gibbs phenomenon and for an improvedapproximation of the underlying function or image. In this adaptive filteringtechnique, the spectral filter depends on the distance of a spatial point to thenearest discontinuity. We show the effectiveness of this filtering approach intheory, in numerical simulations as well as in the application in Magnetic Par-ticle Imaging.
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Improved estimates for condition numbers of RBFinterpolation matrices
Benedikt Diederichs

Interpolation by radial basis functions is a classic topic in multivariate approxi-mation with many applications. In this problem, one encounters linear systemswith the kernel matrices of the radial basis functions and it is of some inter-est to have precise estimates for their condition number. Therefore, estimateshave been developed, to obtain bounds on the condition number in terms of theseparation radius of the interpolation points. We present new estimates, whichbuild upon extremal Fourier functions. We show that they are very close tooptimal.
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Wavelet decompositions of random forests
Oren Elisha∗, Shai Dekel

In this talk we introduce, in the setting of machine learning, a generalization ofwavelet analysis which is a popular approach to low dimensional structured sig-nal analysis. The wavelet decomposition of a Random Forest provides a sparseapproximation of any regression or classification high dimensional function atvarious levels of detail, with a concrete ordering of the Random Forest nodes:from ‘significant’ elements to nodes capturing only ‘insignificant’ noise. Moti-vated by function space theory, we use the wavelet decomposition to computenumerically a ‘weak-type’ smoothness index that captures the complexity of theunderlying function. As we show through extensive experimentation, this sparserepresentation facilitates a variety of applications such as improved regressionfor difficult datasets, a novel approach to feature importance, resilience to noisyor irrelevant features, compression of ensembles, etc. the talk is based on [1].
References[1] Elisha, O. and Dekel, S. (2016). Wavelet decompositions of Random Forests-smoothness analysis, sparse approximation and applications. Journal of Ma-
chine Learning Research, 17.198 (2016): 1-38.
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Polynomial interpolation on interlacing rectangulargrids
Michael S. Floater

In this talk we review some of the remarkable properties of Padua points andrelated point sets consisting of pairs of interlacing rectangular grids.In particular, Padua points, defined in the domain [−1, 1]2, are unisolvent forpolynomial interpolation of full degree N . The Lebesgue constant grows withminimal order O(log2(N)) and the associated cubature rule has degree of preci-sion 2N − 1 with respect to the Chebyshev weighting. Similar properties havebeen established by Morrow and Patterson, Xu, and Erb et al. for similar pairsof interlacing rectangular grids, with respect to suitable spaces of polynomialsthat are no longer full, but in some cases close to full. In all these grids, thepoints have some kind of Chebyshev spacing in each coordinate direction.We will then go on to focus purely on unisolvence and study the unisolvenceof interlacing pairs of rectangular grids in which the spacing of the points ineach coordinate direction is arbitrary. We will break this problem down us-ing a combination of tensor-product interpolation, Newton interpolation, and aproperty of divided difference matrices.
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The classification of anisotropic Besov spaces
Hartmut Führ

The homogeneous anisotropic Besov spaces Ḃαp,q(A) are defined in terms ofwavelet coefficient decay over a wavelet system (DAjTkψ)j∈Z,k∈Zd ⊂ L2(Rd), withsuitably chosen mother wavelet ψ. Here the dilation matrix A is chosen to be
expansive, i.e., all eigenvalues of A have modulus > 1. For A = 2 ·Ed, the Besovspaces are just the usual, isotropic ones. Prior to the work presented here, thedependence of the scale of spaces Ḃp,qα (A) on the choice of the dilation matrixwas poorly understood.In the talk, I completely characterize when two expansive matrices induce thesame scale of anisotropic Besov spaces, and I answer the analogous questionfor the related case of inhomogeneous anisotropic Besov spaces. While theseresults are of independent interest, their proof can also be seen as a case studyin the use of decomposition spaces for the investigation of function spaces, andthe talk aims at explaining these aspects.Very briefly, decomposition spaces are smoothness spaces whose normsquantify Fourier decay. The chief ingredient in the definition of a scale ofdecomposition spaces is an underlying covering of the frequency space. Recentresults due to Voigtlaender allow to decide when two frequency coverings yieldthe same scale of decomposition spaces, by directly comparing the coverings.This approach can be brought to bear on the case of anisotropic Besov spaces,where it leads to a complete classification of expansive matrices. In a similarspirit, the related talk by René Koch uses the decomposition space approach tocompare the approximation-theoretic properties of different shearlet construc-tions in dimension three.
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Roulet transformRotational anisotropic wavelet transformation
Silja Gütschow

Most integral transforms, like the Wavelet- or Shearlet Transform, are inducedby the quasi-regular representation of semidirect products. It is mostly knownunder which conditions these types of transforms detect wavefront sets of tem-pered distributions. Here this theory will be extended to a new transform, the
Roulet Transform. The properties of this transform will be presented.One possible application for the Roulet Transform is the detection of chattermarks in automotive fabrication.
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Contractivity and convergence of refinement schemesin Riemannian geometry
Svenja Hüning, Johannes Wallner

We are interested in the convergence analysis of subdivision schemes in Rie-mannian geometry which are algorithms producing limit curves by refining dis-crete sets of points. So far, convergence results could be proven for certainclasses of refinement rules and/or special kinds of Riemannian manifolds. Ex-amples are interpolatory subdivision schemes and schemes with only positivemask coefficients. Another approach to obtain convergence statements is toshow convergence only for ’dense enough‘ input data using so-called proximityconditions.In this talk we extend a known convergence result (which applies to allinput data) to refinement schemes whose mask contains negative coefficients.For that purpose we study the Riemannian center of mass on Cartan-Hadamardmanifolds and prove a contractivity condition depending only on the mask co-efficients of the subdivision scheme.
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Scattered data approximation by weighted kernels
Armin Iske

Radial kernels are popular tools for multivariate scattered data approximation,where the utility of kernel-based reconstructions from generalized Hermite-Birkhoff data has been demonstrated in many applications. The approximationof images from scattered Radon data is only one relevant example. As we show,however, standard kernel-based reconstruction methods fail to work for thisparticular application. Therefore, we first explain limitations of radial kernels,before we propose weighted positive definite kernels, which are symmetric butnot radially symmetric. We discuss the characterization and construction ofweighted positive definite kernels in general, before we provide concrete ex-amples. This leads us to a larger class of flexible kernel-based approximationschemes, which work for image reconstruction from scattered Radon data andother relevant applications.
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Analysis of shearlet coorbit spaces in dimension three
Hartmut Führ, René Koch∗

Shearlet groups have received much attention lately since their associatedshearlet transform is superior to the usual wavelet approach in the represen-tation and encoding of anisotropic features of multidimensional data. Thesegroups can be used to define classes of certain smoothness spaces, called shear-let coorbit spaces. Coorbit spaces can be understood as spaces of signals whichcan be well approximated by the shearlet system, and the smoothness of theirelements corresponds to the decay of an associated transform. We will considershearlet groups in dimension three with the following structure
±

a ab ac0 aλ1 00 0 aλ2

 : a > 0
b, c ∈
R

 and
±

a ab ac0 a1−δ a1−δb0 0 a1−2δ
 : a > 0

b, c ∈
R


for λ1, λ2, δ ∈ R and examine their associated coorbit spaces.The study and comparison of shearlet coorbit spaces associated to differentshearlet groups relies on an alternative description of these spaces as decom-position spaces. This approach allows us to identify which properties of thegroups are decisive for the structure of the related coorbit spaces and is anexample for the application of a decomposition space viewpoint to investigatefunction spaces.This talk serves as a case study in the systematic application of decom-position spaces for the investigation of smoothness spaces. We will see thatshearlet coorbit spaces with respect to different shearlet groups are in almostall cases isomorphic to different decomposition spaces.
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A new cubature formula for functions with singularityin the disc, with error bound
Ognyan Kounchev

We construct a new cubature formula for the disc which is applicable to functionshaving singularity in the disc. The crux of the formula is that we are able towrite an error bound for a wide class of functions with singularities, and thiserror bound is completely constructive. In a certain sense, our formula and theerror bound are a generalization of the one-dimensional quadrature formula ofGauss-Jacobi where the singularities are lying on the boundary of the interval.The main results have been announced in https://arxiv.org/abs/1509.00283 andhttps://arxiv.org/abs/1509.00060 .
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Attractors of sequences of function systems and therelation to non-stationary subdivision
David Levin

Iterated Function Systems (IFSs) have been at the heart of fractal geometryalmost from its origin, and several generalizations for the notion of IFS havebeen suggested. Subdivision schemes are widely used in computer graphicsand attempts have been made to link limits generated by subdivision schemesto fractals generated by IFSs. With an eye towards establishing connectionbetween non-stationary subdivision schemes and fractals, this talk introducesthe notion of ”trajectories of maps defined by function systems” which may beconsidered as a new generalization of the traditional IFS. The significance andthe convergence properties of ’forward’ and ’backward’ trajectories is presented.Unlike the ordinary fractals which are self-similar at different scales, the at-tractors of these trajectories may have different structures at different scales.
This is a joint work with Nira Dyn, Tel Aviv University, and Puthan VeeduViswanathan, IIT Delhi.
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A weighted binary average of point-normal pairs in 2Dand 3D with application to subdivision schemes
Evgeny Lipovetsky

Subdivision is a well-known and established method for generating smoothcurves/surfaces from discrete data by repeated refinements. The typical inputfor such a process is a mesh of vertices. In this talk we propose to refine 2D or3D data consisting of vertices of a polygon and a normal at each vertex. We firstpresent our core refinement procedure - the 2D circle average, which is a non-linear weighted average of two points and their corresponding normals. Wemodify linear subdivision schemes refining points, to schemes refining point-normal pairs, by replacing the weighted binary arithmetic means in a linearsubdivision scheme, by circle averages with the same weights. We investigatethe so modified Lane-Riesenfeld algorithm and the 4-point scheme. We showC1 smoothness of the limit curves in 2D for each of these modified schemes.Next, a generalization of the circle average to 3D is presented and someexperimental results are demonstrated in 3D.This is work is part of my research towards Ph.D under the supervision ofNira Dyn.

16



New non-linear stationary subdivision scheme withtrigonometric functions reproduction
Rosa Donat, Sergio López-Ureña∗

Reproduction of trigonometric functions is an interesting property for some ap-plications of subdivision schemes, like in CAGD. The reproduction of exponentialpolynomials, which is a more general space, is a depth studied property [1,3],and we can achieve it using linear non-stationary subdivision schemes.There is a unique four points linear and non-stationary subdivision schemereproducing
F (γ) := span{1, exp(iγt), exp(−iγt)} = span{1, cos(γt), sin(γt)}, i = √−1,for each γ value. However, we need to know γ to define such subdivision scheme.In this talk we show how to define a four-points non-linear and stationary sub-division scheme reproducing F (γ) which does not depend of γ. Consequently,this non-linear subdivision scheme reproduces F (γ) for several γ values.Moreover, we can proof that it is convergent, monotonicity preserving and,in monotone zones, it has forth order of approximation after-one-step. Usingthe proximity theory [2,4], we can also proof its stability, smoothness and theapproximation order.

Acknowledgments. Supported by the research project MTM2014-54388(Ministry of Economy and Competitivity, MINECO, Spain) and the FPU14/02216grant (Ministry of Education and Culture and Sports, MECD, Spain).
References[1] Costanza Conti and Lucia Romani. Algebraic conditions on non-stationarysubdivision symbols for exponential polynomial reproduction. J. Comput. Appl.
Math., 236(4):543–556, September 2011.[2] Tom Duchamp, Gang Xie, and Thomas Yu. A necessary and sufficient prox-imity condition for smoothness equivalence of nonlinear subdivision schemes.
Foundations of Computational Mathematics, 16(5):1069–1114, 2016.[3] Nira Dyn, David Levin, and Ariel Luzzatto. Exponentials reproducing sub-division schemes. Foundations of Computational Mathematics, 3(2):187–206,2003.[4] Philipp Grohs. Stability of manifold-valued subdivision schemes and multi-scale transformations. Constructive Approximation, 32(3):569–596, 2010.
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G2-continuity and patches on surface transitions
Florian Lorenz

The talk will address the Cn/Gn-continuity of surface transitions in CAD-systems. By means of least squares it is possible to develop stable algorithms toevaluate the continuity quantitatively even at almost singular points. Moreover,an algorithm will be presented to join two surface patches with G2-continuityby using appropriate shape-parameters and minimizing an energy functional ofthe form ∫
[Fu]

∫
[Fv ]
Fuu(u, v )22 + 2Fuv (u, v )22 + Fvv (u, v )22dvdu.
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Scattered data approximation on submanifolds:(combined) ambient approaches
Lars-Benjamin Maier

The talk will cover novel approaches to certain problems of approximation theoryon submanifolds both with and without boundary. An emphasis will be seton certain aspects of scattered data approximation in various forms and onfunctional minimization techniques in ambient and intrinsic settings.We will present convergence behaviour and practical results for sparse, dense,locally sparse and clustered scattered data approximation problems, includingtechniques for filling holes in data and approaches for local refinement. Wewill especially provide enhanced results on optimal convergence of the AmbientB-Spline-Method (ABM), thereby verifying an open conjecture on that question.
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Self-referentiality, fractels, and applications
Peter Massopust

We introduce the concept of self-referentiality and fractels for functions and dis-cuss their analytic and algebraic properties. We also consider the representa-tion of polynomials and analytic functions using fractels, and the consequencesof these representations in numerical analysis.
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Joint spectral radius and multiple subdivision
Thomas Mejstrik

Multivariate multiple subdivision schemes were introduced and analysed in [3]with applications discussed in [2]. Multiple Subdivision is a generalization ofnon-stationary subdivision with finitely many masks of bounded support andvarying dilations. In this talk, we unify the convergence analysis from [3] withthe convergence analysis from [1]. In particular we show the JSR-approach isapplicable in the concept of multiple subdivision and that the characterizationof convergence from Sauer are useful for the characterization of convergence inthe non-stationary setting.
References[1] Maria Charina, Costanza Conti, Nicola Guglielmi, and Vladimir Protasov.Regularity of non- stationary subdivision: a matrix approach. Numerische
Mathematik,1–40, 2016.[2] Mariantonia Cotronei, Daniele Ghisi, Milvia Rossini, and Tomas Sauer. Ananisotropic directional subdivision and multiresolution scheme. Advances in
Computational Mathematics, 41(3):709–726, 2015.[3] Tomas Sauer. Curves and Surfaces: 7th International Conference, Avignon,
France, June 24 - 30, 2010, Revised Selected Papers, chapter Multiple Subdi-vision Schemes, 612–628. Springer, Berlin, Heidelberg, 2012.
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A Smoothing Procedure for Hermite SubdivisionSchemes
Caroline Moosmüller

In this talk we study the regularity of curves generated by Hermite subdivisionschemes. In particular, we are interested in increasing this regularity. In scalarsubdivision, it is well known that a scheme which produces C ` limit curvescan be transformed to a new scheme producing C `+1 limit curves by multiply-ing the scheme’s symbol with the smoothing factor z+12 . We present a similarsmoothing procedure for Hermite subdivision schemes, approaching this prob-lem algebraically by manipulating the symbol of a given scheme. The algorithmpresented in this talk allows to construct Hermite subdivision schemes of arbi-trarily high regularity from Hermite schemes whose Taylor scheme is at least
C 0.This talk is based on a joint work with Nira Dyn.
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A class of non-stationary biorthogonal wavelet filters
Vittoria Bruni, Mariantonia Cotronei, Francesca Pitolli∗

We analyze the properties of a family of non-stationary biorthogonal waveletsystems and investigate their use in signal and image processing methods.Particular attention is devoted to their ability in compacting image information(image sparsification). In fact, the good trade-off between number of vanishingmoments and support length of the involved filters emphasizes the persistencyproperty of the wavelet coefficients along scales allowing a better detectionof singularity points in piecewise regular signals. The performance of suchnon-stationary filters in classical image processing problems, e.g. image com-pression or edge localization, is illustrated.
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Automatic differentiation with Matlab
Ulrich Reif

Automatic differentiation is a technique to compute derivatives of functions bymeans of operator overloading. Unlike finite differences, it is exact up to round-off errors, and unlike symbolic differentiation, is is able to differentiate theoutcome of algorithms, almost independent of their complexity. We present animplementation of automatic differentiation under Matlab and discuss some ofits features and limitations.

24



G1-continuity of non-stationary subdivision schemesat the limit points of extraordinary vertices and faces
Lucia Romani

In this talk we generalize the theoretical results published in [1].Specifically, we provide a general criterion to establish convergence and G1-continuity of a bivariate non-stationary subdivision scheme when the initialpolygonal mesh contains extraordinary vertices and/or extraordinary faces.This work is in collaboration with Costanza Conti (University of Florence), MarcoDonatelli and Paola Novara (University of Insubria, Como).
References[1] M.K. Jena, P. Shunmugaraj, P.C. Das, A non-stationary subdivision scheme forgeneralizing trigonometric spline surfaces to arbitrary meshes, Computer AidedGeometric Design 20 (2003), 61-77.
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Optimal spline spaces of higher degree for L2 n-widths
Michael S. Floater, Espen Sande∗

Building on previous work by Melkman and Micchelli, we will discuss howone can derive optimal subspaces for Kolmogorov n-widths in the L2 norm withrespect to sets of functions defined by kernels. This enables us to prove the exis-tence of optimal spline subspaces of arbitrarily high degree for certain classesof functions in Sobolev spaces of importance in finite element methods. Weconstruct these spline spaces explicitly in special cases.
References[1] A. A. Melkman and C. A. Micchelli, Spline spaces are optimal for L2 n-width,Illinois J. Math. 22 (1978), 541-564.[2] Michael S. Floater, Espen Sande, Optimal spline spaces of higher degree for
L2 n-widths, Journal of Approximation Theory 216 (2017), 1-15.
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A tale of couples and other syzygies
Tomas Sauer

In contrast to the univariate case, finding point configurations in Rs that allowfor unique interpolation by polynomials of total degree at most n is becomingnontrivial for s ≥ 2, being not a matter of counting any more, but a geometricissue, cf. [5]. Early on people developed methods to construct such ”correct”sets, the two most well–known one based on intersections of lines are due toRadon–Berzolari [1] as well as the geometric characterization GCn of degree
n due to Chung and Yao [2]. In 1982 [4] Gasca and Maeztu conjectured thatall bivariate point sets satisfying the GCn condition are in fact the outcomeof the Radon–Berzolari construction. So far, this conjecture has been provedby mainly combinatoric arguments up to degree n = 5, [6]. Recently, HalSchenck [3] pointed out an approach based on substantial algebraic geometry, inparticular the Hilbert–Burch theorem, that relates the Gasca–Maeztu conjectureto properties of a certain matrix of syzygies.This talk, based on joint work with Jesus Carnicer (Zaragoza) surveys theconcepts and gives an elementary approach to the syzygy matrix and its mean-ing for the existence of so-called maximal lines.
References[1] L. Berzolari, Sulla determinazione di una curva o di una superficie algebrica
e su algune questioni di postulazione, Lomb. Ist. Rend. 47 (1914), 556–564.[2] K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpola-
tion, SIAM J. Num. Anal. 14 (1977), 735–743.[3] N. Fieldsteel and H. Schenck, Polynomial interpolation in higher dimension:
From simplicial complexes to GC sets, (2016), Preprint.[4] M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in Rk ,Numer. Math. 39 (1982), 1–14.[5] M. Gasca and T. Sauer, Polynomial interpolation in several variables, Ad-vances Comput. Math. 12 (2000), 377–410.[6] H. Hakopian, K. Jetter, and G. Zimmermann, The Gasca-Maeztu conjecture
for n = 5, Numer. Math. 127 (2014), 685–713.
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Automatic spline fitting of planar curvilinear profiles indigital images using the Hough transform
Daniela Schenone

The Hough transform is a well-established technique used in image analysis anddigital image processing to recognize shapes in images with noisy backgrounds.One of the drawbacks of this technique is the need to identify a potentiallyapproximating family of curves before the recognition algorithm can start.The goal of this talk is thus to develop an innovative procedure for the au-tomated recognition of both closed and open curvilinear profiles in 2D digitalimages, without knowing neither a family of predefined curves nor a predefinedlook-up table of a prototypal shape. Our method provides a G1 continuousspline curve -eventually containing C 0 junctions where cusps occur- which ap-proximates the sought profile. Moreover, as in the case of the standard Houghtransform, the developed method retains robustness with respect to backgroundnoise.This work is in collaboration with Costanza Conti (University of Florence)and Lucia Romani (University of Milano-Bicocca, Italy).
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Multivariate pseudo-splines and multigrid
Valentina Turati

In this talk we introduce a new family of multivariate pseudo-splines withanisotropic dilation. We analyze their generation/reproduction properties andconvergence. We explain the connection between anisotropic subdivision andmultigrid and apply our results for numerical solution of anisotropic Laplacian.
This work is in collaboration with Maria Charina (University of Vienna),Marco Donatelli (University of Insubria - Como) and Lucia Romani (Universityof Milano-Bicocca).
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Semi-regular wavelet tight frames: a fail of the UEP
Alberto Viscardi

Ron and Shen’s unitary extension principle (UEP [4] [3]) is a well known toolfor the construction of wavelet tight frames in the shift-invariant setting and isbased on factorization of trigonometric polynomials. In [1] and [2], Chui, He andStöckler developed a generalization of UEP for the non-shift-invariant settingthat recasts the problem into a symmetric factorization of S − PSPT , where
P is a refinement matrix and S is an approximation of the inverse Gramian ofthe family of P-refinable functions. For the B-spline case S−PSPT is positivesemi-definite and always leads to a wavelet tight frame with one vanishingmoment. In this talk I will focus on semi-regular subdivisions defined on theknot partition −h1N ∪ {0} ∪ h2N with h1, h2 ≥ 0. If we consider the first orderapproximation of the inverse Gramian we get S = I , which corresponds to thestandard UEP. However, there exist subdivision schemes for which I − PPT isindefinite and, thus, the UEP construction fails.
References[1] Charles K. Chui, Wenjie He, and Joachim Stöckler. Nonstationary tightwavelet frames. I. Bounded intervals. Appl. Comput. Harmon. Anal., 17(2):141–197, 2004.[2] Charles K. Chui, Wenjie He, and Joachim Stöckler. Nonstationary tightwavelet frames. II. Unbounded intervals. Appl. Comput. Harmon. Anal.,18(1):25–66, 2005.[3] Amos Ron and Zuowei Shen. Affine systems in L2(Rd). II. Dual systems. J.
Fourier Anal. Appl., 3(5):617–637, 1997. Dedicated to the memory of Richard J.Duffin.[4] Amos Ron and Zuowei Shen. Affine systems in L2(Rd): the analysis of theanalysis operator. J. Funct. Anal., 148(2):408–447, 1997.
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Geometric conditions for curvature continuity ofinterpolatory planar subdivision curves
Kai Hormann, Elena Volontè∗

Subdivision schemes are an iterative process for generating curves, that aresmooth up to pixel accuracy. The most common subdivision schemes used incomputer graphics are linear schemes where at each iteration the new pointsare a linear combination of the points from the previous step. Linear schemes arewell investigated because linearity allows to study easily the convergence andsmoothness of the limit curve. Differently, in this presentation we concentrate onnon-linear schemes, where new points are computed via geometric construction.Such schemes generate limit curves that take into account the geometry of thestarting control polygon. To study convergence and smoothness in this case wesubstitute analytic continuity Cn with geometric continuity Gn, which means weconsider tangents instead of first derivatives and curvature instead of secondderivatives. In this talk we present sufficient conditions, which guarantee thata generic interpolatory non-linear subdivision scheme converges and gives G2-continuous limit curves.
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