Non-Consistent Cell-Average Multiresolution Operators: The Case of the PPH Nonlinear Prediction Operator

R. Donat¹ Dioni F. Yáñez²

¹Universidad de Valencia, Spain

²Universidad Católica de Valencia, Spain

Applied Approximation, Signals, Images, Bernried, 2016

Multiresolution "à la Harten" Non-consistency. Strategy (AY) A family of non-consistent non-linear prediction operators Numerical examples and present work

Main focus

Construction of a MR prediction in cell-average context which avoids the Gibbs phenomenon in the discontinuities

Review Multiresolution "à la Harten"

- Decimation and prediction operators
- Cell-average and prediction based on polynomial interpolation

Non consistency. Strategy (AY)

- Motivation. Classical strategy (E1)
- Properties of the non-consistent operators

PPH non-linear prediction

- Motivation and definition
- Properties: order, stability and monotonicity
- Numerical examples

Operators

- Let V^k be a discrete space, where k is the level of resolution ($\uparrow k \equiv \uparrow$ resolution).
- Define transfer operators connecting consecutive levels,
 - **Decimation**, $\mathcal{D}_k^{k-1}: V^k \to V^{k-1}$, operator linear and onto
 - **Prediction**, $\mathcal{P}_{k-1}^k: V^{k-1} \to V^k$, no necessary linear

$$\bullet e^k = f^k - \mathcal{P}_{k-1}^k \mathcal{D}_k^{k-1} f^k$$

Classical Examples: MR based on polynomial interpolation

Theorem

$$\mathcal{D}_k^{k-1}\mathcal{P}_{k-1}^k = I_{V^{k-1}} \Longleftrightarrow e^k \in \mathcal{N}(\mathcal{D}_k^{k-1})$$

 $\dim \mathcal{N}(\mathcal{D}_k^{k-1}) = \dim V^k - \dim V^{k-1}$ If $\{\mu_i^k\}$ is a basis of $\mathcal{N}(\mathcal{D}_k^{k-1})$, therefore

$$\mathbf{e}^k = \sum \mathbf{d}_j^k \mu_j^k$$

Define the operators

Therefore,

$$f^k \stackrel{1:1}{\longleftrightarrow} \{f^{k-1}, d^k\}$$

Multi-scale decomposition

Repeat several times,

$$f^L \stackrel{\text{1:1}}{\longleftrightarrow} Mf^L = \{f^0, d^1, \dots, d^L\}$$

Definition (Order of the scheme)

Let p be a polynomial of degree r, i.e., $p(x) \in \Pi^r(\mathbb{R})$; and let p^k be the discretization on the level k. The multiresolution scheme $\{\mathcal{D}_k^{k-1}, \mathcal{P}_{k-1}^k\}$ has order r+1 if and only if

$$\mathcal{P}_{k-1}^{k}\mathcal{D}_{k}^{k-1}p^{k}=p^{k}$$
, for each resolution level k .

Definition (Stability of MR)

The reconstruction algorithm is stable with respect to the norm $||\cdot||$ if: $\exists C$ such that $\forall j_0 > 0$,

$$\forall (f^0, d^1, \dots, d^{j_0}) \mapsto f^{j_0},$$

 $(\hat{f}^0, \hat{d}^0, \dots, \hat{d}^{j_0}) \mapsto \hat{f}^{j_0}:$

$$||f^{j_0} - \hat{f}^{j_0}|| \le C \sup(||f^{j_0-1} - \hat{f}^{j_0-1}||, ||d^{j_0} - \hat{d}^{j_0}||).$$
 (1)

Numerical examples and present work

Cell-average analysis in 1D

•
$$X^k = \{x_j^k\}, \quad x_j^k = jh_k$$

 $j = 0, \dots, J_k \quad J_k h_k = 1, \quad h_k = 2^{-k} J_0,$

•
$$c_j^k = [x_{j-1}^k, x_j^k], \quad j = 1, \ldots, J_k$$

Definition

We define the discretization operator as,

$$f_j^k = \int_{c_i^k} f(x) dx, \quad j = 1, \dots, J_k$$

We define the decimation operator as,

$$(\mathcal{D}_k^{k-1}f^k)_j = \frac{1}{2}(f_{2j-1}^k + f_{2j}^k) = f_j^{k-1}, \quad j = 1, \dots, J_{k-1}$$

Prediction operator in 1D: MR based on polynomial interpolation

- We take $\Pi^{r}(\mathbb{R}) = \{ p(x) = \sum_{0 < l < r} a_{l} x^{l} : a_{l} \in \mathbb{R} \}$
- For each point x_i^{k-1} we have the polynomial,

$$p_j^r(x) = \sum_{l=0}^r a_l x^l$$

• The coefficients a_l will be determined with the r + 1 conditions:

$$f_{j-\frac{r}{2}+l}^{k-1} = \int_{c_{j-\frac{r}{2}+l}^{k-1}} p_j^r(x) dx \quad l = 0, \dots, r$$

Prediction operator in 1D: MR based on polynomial interpolation

$$\bullet$$
 $r=0$

$$\begin{cases} (\mathcal{P}_{k-1}^k f^{k-1})_{2j-1} = f_j^{k-1} \\ (\mathcal{P}_{k-1}^k f^{k-1})_{2j} = f_j^{k-1} \end{cases}$$

• r = 1 Chaikin's scheme [Non-consistent operator]

$$\begin{cases} (\mathcal{P}_{k-1}^k f^{k-1})_{2j-1} = \frac{3}{4} f_j^{k-1} + \frac{1}{4} f_{j-1}^{k-1} \\ (\mathcal{P}_{k-1}^k f^{k-1})_{2j} = \frac{3}{4} f_j^{k-1} + \frac{1}{4} f_{j+1}^{k-1} \end{cases}$$

• r = 2, CA scheme.

$$\begin{cases} (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j-1} = f_{j}^{k-1} + \frac{1}{8} (f_{j-1}^{k-1} - f_{j+1}^{k-1}) \\ (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} = f_{j}^{k-1} - \frac{1}{8} (f_{j-1}^{k-1} - f_{j+1}^{k-1}) \end{cases}$$

References

- F. ARÀNDIGA, R. DONAT, A. HARTEN (1998): "Multiresolution based on weighted averages of the hat function I: linear reconstruction technique", SIAM J. Numer. Anal., 36, 160-203
- F. ARÀNDIGA, R. DONAT (2000): "Nonlinear multiscale descompositions: The approach of A. Harten", *Numerical Algorithms*, 23, 175-216
- A. COHEN (2003): "Numerical Analysis of Wavelet Methods", Elsevier
- A. HARTEN (1993): "Discrete multiresolution analysis and generalized wavelets", J. Appl. Numer. Math., 12, 153–192
- A. HARTEN (1996): "Multiresolution Representation of data: General framework, SIAM J. Numer. Anal.", 33, 1205–1256

Making the details

We define the errors between f^k and the prediction as:

$$e_{2j-1}^{k} = f_{2j-1}^{k} - (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j-1}, \quad 1 \le j \le J_{k-1}$$

$$e_{2j}^{k} = f_{2j}^{k} - (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}, \quad 1 \le j \le J_{k-1}$$

$$f^{k} \equiv (f^{k-1}, e^{k})$$

$$(d_1^k)_j = \frac{1}{2}(e_{2j-1}^k - e_{2j}^k)$$

 $(d_0^k)_j = \frac{1}{2}(e_{2j-1}^k + e_{2j}^k)$

$$(d_1^k)_j = \frac{1}{2}(e_{2j-1}^k - e_{2j}^k)$$

 $(d_0^k)_j = \frac{1}{2}(e_{2j-1}^k + e_{2j}^k)$

The consistency property is:

$$\mathcal{D}_k^{k-1}\mathcal{P}_{k-1}^k=I_{V^{k-1}}\to\mathcal{D}_k^{k-1}e^k=0$$

$$(d_1^k)_j = \frac{1}{2}(e_{2j-1}^k - e_{2j}^k)$$

 $(d_0^k)_j = 0$

The consistency property is:

$$\mathcal{D}_{k}^{k-1}\mathcal{P}_{k-1}^{k} = I_{V^{k-1}} \to \mathcal{D}_{k}^{k-1}e^{k} = 0 \to f^{k} \equiv (f^{k-1}, d_{1}^{k})$$

$$(d_1^k)_j = \frac{1}{2}(e_{2j-1}^k - e_{2j}^k)$$

 $(d_0^k)_j = \frac{1}{2}(e_{2j-1}^k + e_{2j}^k)$

Non-consistency property:

$$\mathcal{D}_k^{k-1}\mathcal{P}_{k-1}^k \neq I_{V^{k-1}} \rightarrow \mathcal{D}_k^{k-1}e^k \neq 0$$

$$(d_1^k)_j = \frac{1}{2} (e_{2j-1}^k - e_{2j}^k)$$

$$(d_0^k)_j = f_j^{k-1} - (\mathcal{D}_k^{k-1} \mathcal{P}_{k-1}^k f^{k-1})_j = f_j^{k-1} - \xi_j^{k-1}$$

Non-consistency property:

$$\mathcal{D}_k^{k-1}\mathcal{P}_{k-1}^k \neq I_{V^{k-1}} \rightarrow \mathcal{D}_k^{k-1}e^k \neq 0 \rightarrow f^k \equiv (f^{k-1}, d_1^k)$$

$$f_{2j}^k = (\mathcal{P}_{k-1}^k f^{k-1})_{2j} + (\mathbf{d}_0^k)_j - (\mathbf{d}_1^k)_j$$

$$f_{2j}^{k} = (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} + f_{j}^{k-1} - \xi_{j}^{k-1} - (d_{1}^{k})_{j}$$

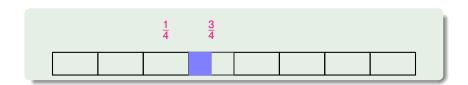
$$f_{2j}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} + f_{j}^{k-1} - \xi_{j}^{k-1}}_{(\check{\mathcal{P}}_{k-1}^{k} f^{k-1})_{2j}} \underbrace{-(d_{1}^{k})_{j}}_{\check{\mathbf{e}}_{2j}^{k}}$$

$$f_{2j-1}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j-1} + (d_{0}^{k})_{j}}_{(\check{\mathcal{P}}_{k-1}^{k} f^{k-1})_{2j-1}} + \underbrace{(d_{1}^{k})_{j}}_{\check{e}_{2j-1}^{k}} + \underbrace{(d_{1}^{k})_{j}}_{\check{e}_{2j}^{k}}$$

$$f_{2j}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} + (d_{0}^{k})_{j}}_{(\check{\mathcal{P}}_{k-1}^{k} f^{k-1})_{2j}} - \underbrace{(d_{1}^{k})_{j}}_{\check{e}_{2j}^{k}}$$

Motivation Strategy (E1) Strategy (AY)

Strategy (E1). Example, \mathcal{P}_{k-1}^k

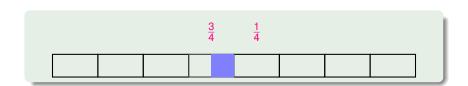


Strategy (E1). Example, $\check{\mathcal{P}}_{k-1}^{k}$

	1 8	1	$-\frac{1}{8}$		

Motivation Strategy (E1) Strategy (AY)

Strategy (E1). Example, \mathcal{P}_{k-1}^k



Motivation Strategy (E1) Strategy (AY)

Strategy (E1). Example, $\check{\mathcal{P}}_{k-1}^{k}$

$$-\frac{1}{8}$$
 1 $\frac{1}{8}$

$$f_{2j}^k = (\mathcal{P}_{k-1}^k f^{k-1})_{2j} + (d_0)_j^k - (d_1^k)_{i,j}$$

$$f_{2j}^{k} = (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} + f_{j}^{k-1} - \xi_{j}^{k-1} - (d_{1}^{k})_{i,j}$$

$$f_{2j}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}}_{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}} \underbrace{+ f_{j}^{k-1} - \xi_{j}^{k-1} - (d_{1}^{k})_{j}}_{e_{2j}^{k}}$$

$$f_{2j-1}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j-1}}_{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}} + \underbrace{(d_{0}^{k})_{j} + (d_{1}^{k})_{j}}_{e_{2j-1}^{k}}$$

$$f_{2j}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}}_{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}} + \underbrace{(d_{0}^{k})_{j} - (d_{1}^{k})_{j}}_{e_{2j}^{k}}$$

Strategy (E1) vs Strategy (AY)

Cell (2j):
(E1)
$$f_{2j}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} + f_{j}^{k-1} - \xi_{j}^{k-1}}_{(\check{\mathcal{P}}_{k-1}^{k} f^{k-1})_{2j}} \underbrace{-(d_{1}^{k})_{j}}_{\check{\mathcal{E}}_{2i,2j}^{k}}$$
(AY)
$$f_{2j}^{k} = \underbrace{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}}_{(\mathcal{P}_{k-1}^{k} f^{k-1})_{2j}} + \underbrace{f_{j}^{k-1} - \xi_{j}^{k-1} - (d_{1}^{k})_{j}}_{e_{2j}^{k}}$$

Strategy (E1) vs Strategy (AY). Algorithm

Inverse transform (E1) 2D

$$\begin{split} \varepsilon &= (\varepsilon_k) \text{ and } 0 \le \kappa \le 1 \\ \text{for } & k = 1, \dots, L \\ \text{for } & j = 1, \dots, J_{k-1} \\ \hat{\xi}_j^{k-1} &= (\mathcal{D}_k^{k-1} \mathcal{P}_{k-1}^k \hat{f}^{k-1})_j \\ (d_0^k)_j &= \hat{f}_{i,j}^{k-1} - \hat{\xi}_j^{k-1} \\ (d_0^k)_j &= \operatorname{tr}((d_0^k)_j, \kappa \varepsilon_{k-1}) \\ \hat{f}_{2j-1}^k &= (\mathcal{P}_{k-1}^k \hat{f}^{k-1})_{2j-1} + (d_0^k)_j + (\hat{d}_1^k)_j \\ \hat{f}_{2j}^k &= (\mathcal{P}_{k-1}^k \hat{f}^{k-1})_{2j-1} + (d_0^k)_j - (\hat{d}_1^k)_j \end{split}$$

Aràndiga and Yáñez (2016): "Non-consistent cell-average MR operators with application to image processing." *Applied Mathematics and Computation*

Strategy (E1) vs Strategy (AY). Algorithm

Inverse transform (AY) 2D

$$\begin{split} \varepsilon &= (\varepsilon_k) \text{ and } 0 \le \kappa \le 1 \\ \text{for } & k = 1, \dots, L \\ \text{for } & j = 1, \dots, J_{k-1} \\ \hat{\xi}_j^{k-1} &= (\mathcal{D}_k^{k-1} \mathcal{P}_{k-1}^k \hat{f}^{k-1})_j \\ (d_0^k)_j &= \hat{f}_{i,j}^{k-1} - \hat{\xi}_j^{k-1} \\ (\hat{d}_0^k)_j &= \operatorname{tr}((d_0^k)_j, \kappa \varepsilon_{k-1}) \\ \hat{f}_{2j-1}^k &= (\mathcal{P}_{k-1}^k \hat{f}^{k-1})_{2j-1} + (\hat{d}_0^k)_j + (\hat{d}_1^k)_j \\ \hat{f}_{2j}^k &= (\mathcal{P}_{k-1}^k \hat{f}^{k-1})_{2j-1} + (\hat{d}_0^k)_j - (\hat{d}_1^k)_j \end{split}$$

Aràndiga and Yáñez (2016): "Non-consistent cell-average MR operators with application to image processing." *Applied Mathematics and Computation*

Amat, Dadourian, Liandrat, Ruiz, Trillo (2010): "On a class of L¹-stable nonlinear cell-average MR schemes." *Journal of Comput. and Applied Mathematics*

$$\begin{cases} (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j-1} = f_{j}^{k-1} + \frac{1}{8} (f_{j-1}^{k-1} - f_{j+1}^{k-1}) \\ (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} = f_{j}^{k-1} + \frac{1}{8} (f_{j-1}^{k-1} - f_{j+1}^{k-1}) \end{cases}$$

where $\Delta f_j^k = f_j^k - f_{j-1}^k$ where $M_2(x, y) = \varepsilon_2(x, y) \frac{1}{2}(x + y)$ with

$$\varepsilon_2(x,y) = \left| \frac{sign(x) + sign(y)}{2} \right| \left(1 - \left| \frac{x - y}{x + y} \right|^2 \right), \forall x, y \in \mathbb{R} \setminus \{0\};$$

$$\varepsilon_2(x,0) = 0, \ \forall \ x \in \mathbb{R}; \qquad \varepsilon_2(0,y) = 0, \ \forall \ y \in \mathbb{R}.$$

Serna and Marquina (2004)

Amat, Dadourian, Liandrat, Ruiz, Trillo (2010): "On a class of L¹-stable nonlinear cell-average MR schemes." *Journal of Comput. and Applied Mathematics*

$$\begin{cases} (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j-1} = f_{j}^{k-1} - \frac{1}{4} \left(\frac{\Delta f_{j}^{k} + \Delta f_{j+1}^{k}}{2} \right) \\ (\mathcal{P}_{k-1}^{k} f^{k-1})_{2j} = f_{j}^{k-1} + \frac{1}{4} \left(\frac{\Delta f_{j}^{k} + \Delta f_{j+1}^{k}}{2} \right) \end{cases}$$

where
$$\Delta f_j^k = f_j^k - f_{j-1}^k$$
 where $M_2(x,y) = \varepsilon_2(x,y) \frac{1}{2}(x+y)$ with

$$\varepsilon_2(x,y) = \left| \frac{sign(x) + sign(y)}{2} \right| \left(1 - \left| \frac{x - y}{x + y} \right|^2 \right), \forall \ x, y \in \mathbb{R} \setminus \{0\}$$

$$\varepsilon_2(x,0) = 0, \ \forall \ x \in \mathbb{R}; \qquad \varepsilon_2(0,y) = 0, \ \forall \ y \in \mathbb{R}.$$

Amat, Dadourian, Liandrat, Ruiz, Trillo (2010): "On a class of L¹-stable nonlinear cell-average MR schemes." *Journal of Comput. and Applied Mathematics*

$$\begin{cases} (\mathcal{P}_{k-1}^k f^{k-1})_{2j-1} = f_j^{k-1} - \frac{1}{4} M_2(\Delta f_j^k, \Delta f_{j+1}^k) \\ (\mathcal{P}_{k-1}^k f^{k-1})_{2j} = f_j^{k-1} + \frac{1}{4} M_2(\Delta f_j^k, \Delta f_{j+1}^k) \end{cases}$$
 where $\Delta f_j^k = f_j^k - f_{j-1}^k$ where $M_2(x, y) = \varepsilon_2(x, y) \frac{1}{2}(x + y)$ with
$$\varepsilon_2(x, y) = \left| \frac{sign(x) + sign(y)}{2} \right| \left(1 - \left| \frac{x - y}{x + y} \right|^2 \right), \forall \ x, y \in \mathbb{R} \setminus \{0\};$$

$$\varepsilon_2(x, 0) = 0, \ \forall \ x \in \mathbb{R}; \qquad \varepsilon_2(0, y) = 0, \ \forall \ y \in \mathbb{R}.$$

Serna and Marquina (2004)

New family of operators

$$\begin{cases} (\mathcal{P}_{k-1}^{k}f^{k-1})_{2j-1} = f_{j}^{k-1} + \frac{1}{8}(f_{j-1}^{k-1} - f_{j+1}^{k-1}) \\ (\mathcal{P}_{k-1}^{k}f^{k-1})_{2j} = f_{j}^{k-1} + \frac{1}{8}(f_{j-1}^{k-1} - f_{j+1}^{k-1}) \end{cases}$$
where $\Delta f_{j}^{k} = f_{j}^{k} - f_{j-1}^{k}$ where $D_{2}(x, y) = \varepsilon_{2}(x, y) \frac{1}{2}(x - y)$ with
$$\varepsilon_{2}(x, y) = \left| \frac{sign(x) + sign(y)}{2} \right| \left(1 - \left| \frac{x - y}{x + y} \right|^{2} \right), \forall x, y \in \mathbb{R} \setminus \{0\};$$

$$\varepsilon_{2}(x, 0) = 0, \ \forall \ x \in \mathbb{R}; \qquad \varepsilon_{2}(0, y) = 0, \ \forall \ y \in \mathbb{R}.$$

New family of operators

$$\begin{cases} (\mathcal{P}_{k-1}^{k}f^{k-1})_{2j-1} = \frac{3}{4}f_{j}^{k-1} + \frac{1}{4}f_{j-1}^{k-1} - \frac{1}{4}(\frac{\Delta f_{j+1}^{k} - \Delta f_{j}^{k}}{2}) \\ (\mathcal{P}_{k-1}^{k}f^{k-1})_{2j} = \frac{3}{4}f_{j}^{k-1} + \frac{1}{4}f_{j+1}^{k-1} - \frac{1}{4}(\frac{\Delta f_{j+1}^{k} - \Delta f_{j}^{k}}{2}) \end{cases}$$
 where $\Delta f_{j}^{k} = f_{j}^{k} - f_{j-1}^{k}$ where $D_{2}(x, y) = \varepsilon_{2}(x, y) \frac{1}{2}(x - y)$ with
$$\varepsilon_{2}(x, y) = \left| \frac{sign(x) + sign(y)}{2} \right| \left(1 - \left| \frac{x - y}{x + y} \right|^{2} \right), \forall x, y \in \mathbb{R} \setminus \{0\};$$

$$\varepsilon_{2}(x, 0) = 0, \ \forall \ x \in \mathbb{R}; \qquad \varepsilon_{2}(0, y) = 0, \ \forall \ y \in \mathbb{R}.$$

New family of operators

$$\begin{cases} (\mathcal{P}_{k-1}^{k}f^{k-1})_{2j-1} = \frac{3}{4}f_{j}^{k-1} + \frac{1}{4}f_{j-1}^{k-1} - \frac{1}{4}D_{2}(\Delta f_{j+1}^{k}, \Delta f_{j}^{k}) \\ (\mathcal{P}_{k-1}^{k}f^{k-1})_{2j} = \frac{3}{4}f_{j}^{k-1} + \frac{1}{4}f_{j+1}^{k-1} - \frac{1}{4}D_{2}(\Delta f_{j+1}^{k}, \Delta f_{j}^{k}) \end{cases}$$
where $\Delta f_{j}^{k} = f_{j}^{k} - f_{j-1}^{k}$ where $D_{2}(x, y) = \varepsilon_{2}(x, y) \frac{1}{2}(x - y)$ with
$$\varepsilon_{2}(x, y) = \left| \frac{sign(x) + sign(y)}{2} \right| \left(1 - \left| \frac{x - y}{x + y} \right|^{2} \right), \forall \ x, y \in \mathbb{R} \setminus \{0\};$$

$$\varepsilon_{2}(x, 0) = 0, \ \forall \ x \in \mathbb{R}; \qquad \varepsilon_{2}(0, y) = 0, \ \forall \ y \in \mathbb{R}.$$

Order of approximation

If
$$S_{\text{WMD}} = \mathcal{P}_{k-1}^k$$
. For any function $f \in \mathcal{C}^3(\mathbb{R})$, $h > 0$ and $f^0 = \{f(jh)\}_{j \in \mathbb{Z}}$ then if $\Delta f_{j+1}^{k-1} \Delta f_j^{k-1} > 0$ for all $j = 1, \ldots, J_{k-1} - 1$, $k \in \mathbb{N}$,

$$|(S_{\mathsf{WMD}}f^0)_j - f(j\frac{h}{2})| \leq \mathcal{O}(h^3),$$

otherwise

$$|(S_{\mathsf{WMD}}f^0)_j - f(j\frac{h}{2})| \leq \mathcal{O}(h^2),$$

Theorem

Harizanov and Oswald (2010): Stability of non-linear and multiscale transforms. Constructive Approximation Let S_{NL} be a non-linear subdivision scheme defined by:

$$(S_{NL}f)_j = (Sf)_j + F(\delta f)_j,$$

with δ a linear and continuous operator in I^{∞} and F a non-linear operator in I^{∞} . If S_{NL} , F and δ satisfy that

$$\exists M > 0 : \forall d \in I^{\infty} ||F(d)||_{\infty} \le M||d||_{\infty}$$
 (2)

$$\exists L > 0, \exists c < 1 : \forall f \in I^{\infty} ||\delta S_{NL}^{L}(f)||_{\infty} \le c||\delta(f)||_{\infty}$$
 (3)

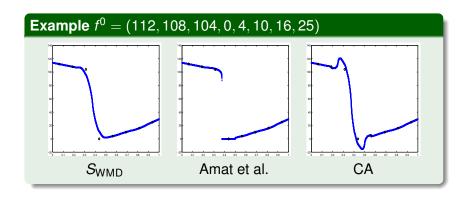
then the subdivision scheme S_{NL} is convergent.

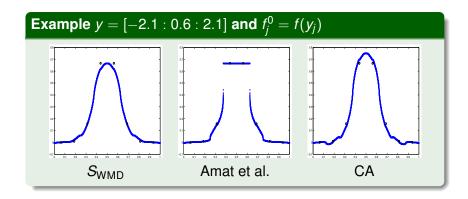
Convergence of the subdivision scheme

The subdivision scheme S_{WMD} is convergent.

Monotonicity preservation

Under certain conditions, the subdivision scheme $S_{\rm WMD}$ preserves the monotony of the points





New family of operators: Some properties of the MR scheme

Stability of the MR scheme

$$||f^{k} - \hat{f}^{k}||_{\infty} \le 2||f^{k-1} - \hat{f}^{k-1}||_{\infty} + ||d_{0}^{k} - \hat{d}_{0}^{k}||_{\infty} + ||d_{1}^{k} - \hat{d}_{1}^{k}||_{\infty}$$

$$||f^{k} - \hat{f}^{k}||_{1} \le 2||f^{k-1} - \hat{f}^{k-1}||_{1} + ||d_{0}^{k} - \hat{d}_{0}^{k}||_{1} + ||d_{1}^{k} - \hat{d}_{1}^{k}||_{1}$$

Order of the MR scheme

The prediction operator, \mathcal{P}_{k-1}^k , reproduces the polynomials of degree 1 in cell-average context.

Some examples

$$(\hat{d}_1^k)_j = \begin{cases} (d_1^k)_j, & \text{if } |(d_1^k)_j| \ge \varepsilon_k; \\ 0, & \text{if } |(d_1^k)_j| < \varepsilon_k; \end{cases}$$

with

$$\varepsilon_{k-1} = \begin{cases} \frac{\varepsilon_k}{2}, & \text{if } \varepsilon_k \ge 1/2; \\ 1/2, & \text{if } \varepsilon_k < 1/2 \end{cases}$$

$$(\hat{d}_0^k)_j = \left\{ \begin{array}{ll} (d_0^k)_j, & \text{if } |(d_0^k)_j| \geq \kappa \varepsilon_{k-1}; \\ 0, & \text{if } |(d_0^k)_j| < \kappa \varepsilon_{k-1}; \end{array} \right.$$

with $\kappa = 0.3$.

- PSNR = Peak signal noise ratio ↑ PSNR ≡ ↑ quality
- NNZ = Non-zero elements \uparrow NNZ $\equiv \downarrow$ compression

		$\varepsilon = 8$			$\varepsilon = 16$		
_	ℓ_1	PSNR	NNZ	 ℓ_1	PSNR	NNZ	
CA	3.024	36.10	20085	 4.204	32.75	8930	
WMD	3.028	36.07	20087	4.195	32.73	8930	
PPH	3.108	35.81	20815	4.312	32.40	9303	
	$\varepsilon = 32$			$\varepsilon = 40$			
		$\varepsilon = 32$			$\varepsilon = 40$		
-	ℓ_1	arepsilon=32 PSNR	NNZ	 ℓ_1	$\varepsilon = 40$ PSNR	NNZ	
CA -	ℓ ₁ 5.755			 ℓ ₁ 6.298		NNZ 2651	
CA WMD	5.755	PSNR	NNZ	 	PSNR		
_	5.755 5.732	PSNR 29.58	NNZ 3616	 6.298	PSNR 28.68	2651	

Original image

CA

WMD

PPH

Original image

CA

WMD

PPH

Numerical experiments: Image barbara with L=4

	$\varepsilon = 8$				$\varepsilon = 16$	
ℓ_1	PSNR	NNZ		ℓ_1	PSNR	NNZ
3.482	34.95	49152		5.739	30.16	26454
3.488	34.92	49153		5.746	30.11	26456
3.573	34.64	52316		5.955	29.69	27615
	$\varepsilon = 32$				$\varepsilon = 40$	
ℓ_1	PSNR	NNZ		ℓ_1	PSNR	NNZ
8.857	26.14	10888		10.107	24.96	6968
8.895	26.07	10888		10.154	24.90	6968
9.111	25.71	10654		10.308	24.59	6731
	3.482 3.488 3.573 \$\ell_1\$ 8.857 8.895	$\begin{array}{ccc} \ell_1 & \text{PSNR} \\ 3.482 & 34.95 \\ 3.488 & 34.92 \\ 3.573 & 34.64 \\ & \varepsilon = 32 \\ \ell_1 & \text{PSNR} \\ 8.857 & 26.14 \\ 8.895 & 26.07 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		$\varepsilon = 8$			$\varepsilon = 16$	
	ℓ_{1}	PSNR	NNZ	ℓ_{1}	PSNR	NNZ
CA	0.477	45.37	6685	 1.284	38.32	3136
WMD	0.396	45.73	6685	1.093	38.70	3136
PPH	0.117	48.57	3521	0.372	40.97	2149
		$\varepsilon = 32$			$\varepsilon = 40$	
-	ℓ_1	arepsilon=32	NNZ	 ℓ_1	arepsilon = 40	NNZ
CA	ℓ ₁ 2.043		NNZ 1679	 ℓ ₁ 2.410		NNZ 1261
CA WMD		PSNR 34.83		 - 1	PSNR	
_	2.043 1.712	PSNR 34.83	1679	 2.410	PSNR 33.43	1261

Present work

- Prove the stability in ℓ^2
- Use the schemes in other applications as signal denoising
- Generalize the method using a scheme with a major number of cells
- Introduce properties to generalize the function D_2

Thank you!

Present work

- Prove the stability in ℓ^2
- Use the schemes in other applications as signal denoising
- Generalize the method using a scheme with a major number of cells
- Introduce properties to generalize the function D_2

Thank you!