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Goals&Method

Motivations

Goal: Construction of interpolating surfaces of good quality from meshes
with arbitrary manifold topology

4
A

Initial meshes Interpolatory scheme
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Goals&Method

Motivations

How? Using approximating subdivision schemes with a preprocessing step
on the control mesh by means of the limit stencil of the scheme.
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Goals&Method

Motivations

And to gain flexibility? The use of the preprocessing step together with
non-stationary subdivision rules let us gain two shape parameters.
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Goals&Method Univariate case ase Numerical Examples

Motivations

And to gain flexibility? The use of the preprocessing step together with
non-stationary subdivision rules let us gain two shape parameters.
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Goals&Method

The general algorithm

Input: Initial control points P(©)
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The general algorithm

Input: Initial control points P(©)

o Apply once the subdivision rules to P(%) to compute the points HOF
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The general algorithm

Input: Initial control points P(©)

@ Apply once the subdivision rules to P to compute the points HOF

o Compute the limit positions £
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The general algorithm

Input: Initial control points P(©)

o Apply once the subdivision rules to P(%) to compute the points PO,
e Compute the limit positions £ — We need the limit stencil!
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Goals&Method

The general algorithm

Input: Initial control points P(©)

o Apply once the subdivision rules to P(%) to compute the points PO,
e Compute the limit positions £ — We need the limit stencil!

o Compute the new control points Q(® as

Q” =P +a(P? - L), ack
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The general algorithm

Input: Initial control points P(©)

o Apply once the subdivision rules to P(%) to compute the points PO,
e Compute the limit positions £ — We need the limit stencil!
o Compute the new control points Q(® as

Q” =P +a(P? - L), ack

@ Apply the subdivision scheme to the control points Q.
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Goals&Method

The general algorithm

Input: Initial control points P(©)

o Apply once the subdivision rules to P(%) to compute the points PO,
e Compute the limit positions £ — We need the limit stencil!

o Compute the new control points Q(® as

Q” =P +a(P? - L), ack

@ Apply the subdivision scheme to the control points Q.

Output: A limit curve/surface interpolating the initial control points P,
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Goals&Method

Limit stencils of stationary schemes

The subdivision rules could be written in a matrix form, where the
subdivision matrix S is the same at each subdivision level

p(k+1) — gp(k) — gk+1p(0).

» Eigen-decomposition of S

M0 ..o
pltl) — gh1p(0) — YDA+ P(©) where prii— | M7 0
o .. o ,\ﬁﬂ
» For the convergence of the scheme 1 =)o < A;, Vi=1,...,n—1 and
Vo = 1
~ T
1o o oy
lim PAD — [0 O - Olyp@ = yoqglPO@ = | 0 | PO,
k—+00 D 0 :
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Goals&Method

Limit stencils of non-stationary schemes

The subdivision rules could be written in a matrix form, where the
subdivision matrix Sy depends on the subdivision level

pktt) — 5P =5 . 51 -.... PO,

The limit stencil has to be derived from the subdivision process.
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Goals&Method

Limit stencils of non-stationary schemes

The subdivision rules could be written in a matrix form, where the
subdivision matrix Sy depends on the subdivision level

pktt) — 5P =5 . 51 -.... PO,
The limit stencil has to be derived from the subdivision process.

How?
@ geometrical point of view: study the evolution of the position of the
vertices;

@ algebraic point of view: study the behavior of the subdivision matrices
at different subdivision levels.

Limit stencils of non-stationary approximating schemes and their applications Paola Novara



Goals&Method

Outline

We illustrate our strategy to compute the limit stencil of
e primal/dual univariate non-stationary subdivision schemes,

e primal/dual bivariate non-stationary subdivision schemes.
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Goals&Method

Outline

We illustrate our strategy to compute the limit stencil of
e primal/dual univariate non-stationary subdivision schemes,

e primal/dual bivariate non-stationary subdivision schemes.

We test the method on some examples
@ a non-stationary version of Chaikin's scheme,

@ two non-stationary versions of cubic B-splines.
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Goals&Method

Outline

We illustrate our strategy to compute the limit stencil of
e primal/dual univariate non-stationary subdivision schemes,

e primal/dual bivariate non-stationary subdivision schemes.

We test the method on some examples
@ a non-stationary version of Chaikin's scheme,

@ two non-stationary versions of cubic B-splines.

@ a non-stationary version of Doo-Sabin's scheme,

@ the non-stationary version of Catmull-Clark’s scheme proposed by
Fang, W. Ma, G. Wang, (2014) — work in progress!

Limit stencils of non-stationary approximating schemes and their applications Paola Novara



Univariate case

Limit stencil of primal /dual univariate subdivision schemes

» Primal schemes: we study the evolution of the central point.

[Cubic B-splines]

» Dual schemes: we study the evolution of the points on the central edge.

T

[Chaikin's scheme]
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Univariate case

Limit stencil of univariate subdivision schemes

» From the subdivision rules compute the subdivision matrix Sp.
» To find the limit stencil we study lim, .. H?:o Sy
» Eigen-decomposition of Sy

k k
lim Hsg: lim HVngWg
k—+o00 k—+o00
=0 =0

» Expand [[f_, ViD/W; as

k
H VeDy Wy = Vi (DeWi Vi1 ... VoDo) Wo.
(=0

Tk

» Compute limy_ o Vi T Wo.
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Univariate case

A non-stationary version of Chaikin's scheme

Subdivision rules [M. Fang, W. Ma, G. Wang, 2010]

PETY = wP + (1 - wP,
P = (= w)P® + wPl

A A
with wy = 5o, v =} <e12k+1 te 12k+1>, A € [0,7) UiR*.

Subdivision matrix:

(1= wy Wi
5k_< Wi 1—Wk>

Limit Stencil: [3, 3]
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Univariate case

Two non-stationary versions of cubic B-splines

Subdivision rules [Romani et al. 2016]

P%g - %I(D/E)f) * (1(k) %) o 4 R
Pyivy = 2P +3Pig.
Subdivision matrix
1 1 0
S a2k 1 2ak Qi
o 11
Limit Stencil: |55, 7, 337 ]
o ifay=—=2—<, Ae[0,7)UiRT, v =cot(2) (* — cot A
1-+cos <2k’>1> [ ) (2) ()\ )
P G 20H))

23 (k+1)  AERY, 5
) = -

1
S FO))EN where
2-O2) and g(A) = 1+ 252
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Bivariate case

Limit stencil of primal bivariate subdivision schemes

Py al T ST P
k+1 K
PS ) c| Mok Myx -+ My_1k PE) )
ngﬂ) = €| My a1k Mok -+ Myox ng)
(k+1) | M Mg o M ()
pN_1 C 1,k 2,k 0,k pN_1

s

with a € R, r,c € RP*! M, € RP<P P c R P ¢ Rex1,

> The k-level subdivision matrix SI"! is an
hybrid block-circulant matrix.

» Dimension of S,[(N] € R(PN+1)x(pN+1)
increases with N, the eigen-decomposition
becomes computationally difficult.
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Bivariate case

Limit stencil of primal bivariate subdivision schemes

» We transform S,EN] in a block-circulant matrix

Rox FRik - Rw-1k
Ryn— R - Ry a T
v N—1,k ok N—2,k , (Fr
R, = : : , with R o = % M
Rik Rk -+ FRok
» We apply the discrete Fourier transform to obtain
Sok O .- 0
am_ | O w0 Suk =Yg R, ,
g : : WitthO,...,N—l,w:eL/T\;‘.
0 0o .- §N717k

» We focus on §07k since it contains the dominant eigenvalue \g and the
eigenvector vog = 1

N—-1
Sox = Z R = (a Nl\_/;T > c R(PF)x(p+1)
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Bivariate case

Limit stencil of primal bivariate subdivision scheme

> We study limy H?:o §0,(; using the eigen-decomposition of S\.o,g

k k

li S0 = i V,D,W,.

Jim I Soe = Jim [T veD:ws
=0 (=0

» We expand H?:o VyD,W, as

k
H VeDy Wy = Vi (DeWi Vi1 ... VoDo) Wo.
(=0

Ty

» We compute Z = limy_, o Vi T Wp.

721 Nzl S
> 7 — ( 1:1 Ml ) preserves the structure of Sp .

» The limit stencil is [z11,2] ,...,2]].
A,_/

N times
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Bivariate case

Limit stencil of dual bivariate subdivision schemes

k41 K
PEJ:I) Mok Mgk -+ My_1x P(()k)
p{kd) | Mok Mok o M2k p{)
Ps\’l‘jll) Mk Moy -+ Mo P%‘Zl

with M; . € RPP P ¢ rpx1,

» The k-level subdivision matrix is a

block-circulant matrix.
» Dimension of SIEN] € RPNXPN jncreases
with N, the eigen-decomposition becomes

computationally difficult.
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Bivariate case

Limit stencil of dual bivariate subdivision schemes

» We apply the discrete Fourier transform to obtain

5“0’1( 0o .- 0
& & N—-1 i
§[N] _ O Sl,k e 0 SI/,k = ZJ:O ijkwﬂ/’ omi
k : LT : withv=0,.... N—1l,w=enN.
0 0 - Sn_1xk

» We focus on ~§0,k since it contains the dominant eigenvalue \g and the
eigenvector v = 1

N-1
§O,k = Z M,'J( € RP*P,
i=0

> We study limy_, 1 H?:o §07g using the eigen-decomposition of §o,g

k k
lim Sor = lim V,D,W,.
k—>+oo}1) 0. k—)—i—ooéI‘_J(; LEerre
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Bivariate case

Limit stencil of dual non-stationary schemes

» We expand H?:o ViDyW; as

k
H VeDy Wy = Vi (DeWi Vi1 ... VoDo) Wo.
(=0 ey

Tk

Nzl
» We compute Z = limy oo Vik TxWo = ( : )
NzZ,—

» The limit stencil is [z ...,z ].
~———

N times
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Bivariate case

A non-stationary version of Doo-Sabin’s scheme

Subdivision rules [Fang, W. Ma, G. Wang, 2014]

k+1 k k k k k k N k
P — o0+ AP, + P2 0 sty
0=1,....N,

(k) 14+Nv(1+v (k) _ Nwy+2 (k) _ 1
where CYN = W7 N 2N(1,i::/k)§7 fYN N(1+Vk)§’ and

D

vie =1 (ele te zk+1> X € [0,7) UiR™.

First transformed block of the subdivision matrix:
~§O,k =1

Limit Stencil: [ﬁ, een %]
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Numerical Examples

The general algorithm

Input: Initial control points P(©)

o Apply once the subdivision rules to P(®) to compute the points P(9);
o Compute the limit positions £;

e Compute the new control points Q(® as

QY =Py (PO — £, acR

@ Apply the subdivision scheme to the control points Q.

Output: A limit curve/surface interpolating the initial control points PO,
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Numerical Examples

A non-stationary version of Chaikin's scheme
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Numerical Examples

A non-stationary version of cubic B-spline

a=1.2
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Goals&Method Univariate case Bivariate case Numerical Examples

A non-stationary version of Doo-Sabin’s scheme

a=1.5
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Numerical Examples
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Thank you for your attention!
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