Limit stencils of non-stationary approximating schemes and their applications

Paola Novara

Department of Science and High Technology, University of Insubria, Italy

Joint work with:

Lucia Romani, University of Milano-Bicocca, Italy

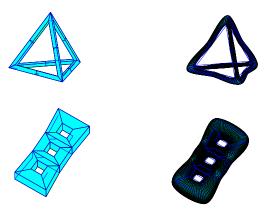
Workshop on "Applied Approximation, Signals and Images"

Bernierd, February 29 - March 4, 2016

Paola Novara

Motivations

Goal: Construction of interpolating surfaces of *good quality* from meshes with arbitrary manifold topology



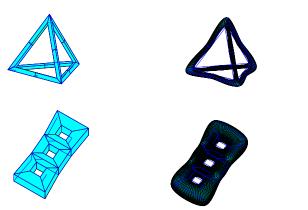
Initial meshes

Interpolatory scheme

Goals& Method

Motivations

Goal: Construction of interpolating surfaces of good quality from meshes with arbitrary manifold topology



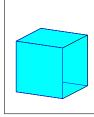
Interpolatory scheme

New method

Goals&Method Univariate case Bivariate case Numerical Examples

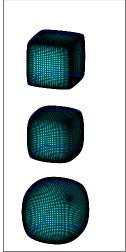
Motivations

How? Using approximating subdivision schemes with a *preprocessing step* on the control mesh by means of the limit stencil of the scheme.



Motivations

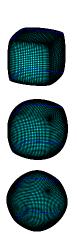
And to gain flexibility? The use of the preprocessing step together with *non-stationary subdivision rules* let us gain two shape parameters.

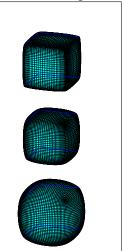


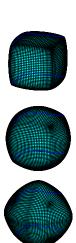
Goals&Method Univariate case Bivariate case Numerical Examples

Motivations

And to gain flexibility? The use of the preprocessing step together with *non-stationary subdivision rules* let us gain two shape parameters.







Paola Novara

Input: Initial control points $P^{(0)}$

• Apply once the subdivision rules to $\mathbf{P}^{(0)}$ to compute the points $\tilde{\mathbf{P}}^{(0)}$;

Input: Initial control points $P^{(0)}$

- Apply once the subdivision rules to $\mathbf{P}^{(0)}$ to compute the points $\tilde{\mathbf{P}}^{(0)}$;
- ullet Compute the limit positions $\mathcal{ ilde{L}}$

Input: Initial control points $P^{(0)}$

- Apply once the subdivision rules to $\mathbf{P}^{(0)}$ to compute the points $\tilde{\mathbf{P}}^{(0)}$;
- ullet Compute the limit positions $ilde{\mathcal{L}} \longrightarrow$ We need the limit stencil!

Input: Initial control points $P^{(0)}$

- Apply once the subdivision rules to ${\bf P}^{(0)}$ to compute the points ${\bf \tilde P}^{(0)}$;
- ullet Compute the limit positions $ilde{\mathcal{L}} \longrightarrow \mathsf{We}$ need the limit stencil!
- Compute the new control points $\mathbf{Q}^{(0)}$ as

$$Q_i^{(0)} = P_i^{(0)} + \alpha (\tilde{P}_i^{(0)} - \tilde{\mathcal{L}}_i), \qquad \alpha \in \mathbb{R};$$

Input: Initial control points $P^{(0)}$

- Apply once the subdivision rules to ${\bf P}^{(0)}$ to compute the points $\tilde{{\bf P}}^{(0)}$;
- ullet Compute the limit positions $ilde{\mathcal{L}} \longrightarrow \mathsf{We}$ need the limit stencil!
- ullet Compute the new control points ${f Q}^{(0)}$ as

$$Q_i^{(0)} = P_i^{(0)} + \alpha (\tilde{P}_i^{(0)} - \tilde{\mathcal{L}}_i), \qquad \alpha \in \mathbb{R};$$

• Apply the subdivision scheme to the control points $\mathbf{Q}^{(0)}$.

Input: Initial control points $P^{(0)}$

- Apply once the subdivision rules to $\mathbf{P}^{(0)}$ to compute the points $\tilde{\mathbf{P}}^{(0)}$;
- ullet Compute the limit positions $ilde{\mathcal{L}} \longrightarrow \mathsf{We}$ need the limit stencil!
- ullet Compute the new control points ${f Q}^{(0)}$ as

$$Q_i^{(0)} = P_i^{(0)} + \alpha (\tilde{P}_i^{(0)} - \tilde{\mathcal{L}}_i), \qquad \alpha \in \mathbb{R};$$

• Apply the subdivision scheme to the control points $\mathbf{Q}^{(0)}$.

Output: A limit curve/surface interpolating the initial control points $P^{(0)}$.

Input: Initial control points $P^{(0)}$

- Apply once the subdivision rules to $\mathbf{P}^{(0)}$ to compute the points $\tilde{\mathbf{P}}^{(0)}$;
- ullet Compute the limit positions $ilde{\mathcal{L}} \longrightarrow \mathsf{We}$ need the limit stencil!
- ullet Compute the new control points ${f Q}^{(0)}$ as

$$Q_i^{(0)} = P_i^{(0)} + \alpha (\tilde{P}_i^{(0)} - \tilde{\mathcal{L}}_i), \qquad \alpha \in \mathbb{R};$$

• Apply the subdivision scheme to the control points $\mathbf{Q}^{(0)}$.

Output: A limit curve/surface interpolating the initial control points $P^{(0)}$.

Limit stencils of stationary schemes

The subdivision rules could be written in a matrix form, where the subdivision matrix S is the same at each subdivision level

$$\mathbf{P}^{(k+1)} = S\mathbf{P}^{(k)} = S^{k+1}\mathbf{P}^{(0)}.$$

► Eigen-decomposition of *S*

$$\mathbf{P}^{(k+1)} = S^{k+1}\mathbf{P}^{(0)} = VD^{k+1}W\mathbf{P}^{(0)}, \text{ where } D^{k+1} = \begin{pmatrix} \lambda_0^{k+1} & 0 & \cdots & 0 \\ 0 & \lambda_1^{k+1} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_{n-1}^{k+1} \end{pmatrix}.$$

▶ For the convergence of the scheme $1=\lambda_0<\lambda_i,\, \forall i=1,\ldots,n-1$ and $\mathbf{v}_0=\mathbf{1}$

$$\lim_{k \to +\infty} \mathbf{P}^{(k+1)} = V \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 \end{pmatrix} W \mathbf{P}^{(0)} = \mathbf{v}_0 \tilde{\mathbf{w}}_0^T \mathbf{P}^{(0)} = \begin{pmatrix} \tilde{\mathbf{w}}_0^T \\ \tilde{\mathbf{w}}_0^T \\ \vdots \\ \tilde{\mathbf{w}}_0^T \end{pmatrix} \mathbf{P}^{(0)}.$$

Limit stencils of non-stationary schemes

The subdivision rules could be written in a matrix form, where the subdivision matrix S_k depends on the subdivision level

$$\mathbf{P}^{(k+1)} = S_k \mathbf{P}^{(k)} = S_k \cdot S_{k-1} \cdot \ldots \cdot S_0 \mathbf{P}^{(0)}.$$

The limit stencil has to be derived from the subdivision process.

How?

- geometrical point of view: study the evolution of the position of the vertices;
- algebraic point of view: study the behavior of the subdivision matrices at different subdivision levels.

Limit stencils of non-stationary schemes

The subdivision rules could be written in a matrix form, where the subdivision matrix S_k depends on the subdivision level

$$\mathbf{P}^{(k+1)} = S_k \mathbf{P}^{(k)} = S_k \cdot S_{k-1} \cdot \ldots \cdot S_0 \mathbf{P}^{(0)}.$$

The limit stencil has to be derived from the subdivision process.

How?

- geometrical point of view: study the evolution of the position of the vertices;
- algebraic point of view: study the behavior of the subdivision matrices at different subdivision levels.

Outline

We illustrate our strategy to compute the limit stencil of

- primal/dual univariate non-stationary subdivision schemes,
- primal/dual bivariate non-stationary subdivision schemes.

We test the method on some examples

- a non-stationary version of Chaikin's scheme,
- two non-stationary versions of cubic B-splines.

Outline

We illustrate our strategy to compute the limit stencil of

- primal/dual univariate non-stationary subdivision schemes,
- primal/dual bivariate non-stationary subdivision schemes.

We test the method on some examples

- a non-stationary version of Chaikin's scheme,
- two non-stationary versions of cubic B-splines.
- a non-stationary version of Doo-Sabin's scheme,
- the non-stationary version of Catmull-Clark's scheme proposed by Fang, W. Ma, G. Wang, (2014) → work in progress!

Outline

We illustrate our strategy to compute the limit stencil of

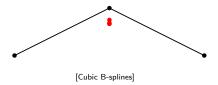
- primal/dual univariate non-stationary subdivision schemes,
- primal/dual bivariate non-stationary subdivision schemes.

We test the method on some examples

- a non-stationary version of Chaikin's scheme,
- two non-stationary versions of cubic B-splines.
- a non-stationary version of Doo-Sabin's scheme,
- the non-stationary version of Catmull-Clark's scheme proposed by Fang, W. Ma, G. Wang, (2014) \longrightarrow work in progress!

Limit stencil of primal/dual univariate subdivision schemes

▶ Primal schemes: we study the evolution of the central point.



➤ Dual schemes: we study the evolution of the points on the central edge.

Limit stencil of univariate subdivision schemes

- ▶ From the subdivision rules compute the subdivision matrix S_{ℓ} .
- ▶ To find the limit stencil we study $\lim_{k\to+\infty}\prod_{\ell=0}^k S_\ell$
- ▶ Eigen-decomposition of S_ℓ

$$\lim_{k\to+\infty}\prod_{\ell=0}^k S_\ell = \lim_{k\to+\infty}\prod_{\ell=0}^k V_\ell D_\ell W_\ell$$

► Expand $\prod_{\ell=0}^k V_\ell D_\ell W_\ell$ as

$$\prod_{\ell=0}^k V_\ell D_\ell W_\ell = V_k \underbrace{\left(D_k W_k V_{k-1} \dots V_0 D_0\right)}_{T_k} W_0.$$

ightharpoonup Compute $\lim_{k\to+\infty} V_k T_k W_0$.

A non-stationary version of Chaikin's scheme

Subdivision rules [M. Fang, W. Ma, G. Wang, 2010]

$$P_{2i}^{(k+1)} = w_k P_{i-1}^{(k)} + (1 - w_k) P_i^{(k)},$$

$$P_{2i+1}^{(k+1)} = (1 - w_k) P_i^{(k)} + w_k P_{i+1}^{(k)}$$

with
$$w_k = \frac{1}{2(1+v_k)}$$
, $v_k = \frac{1}{2} \left(e^{i\frac{\lambda}{2^{k+1}}} + e^{-i\frac{\lambda}{2^{k+1}}} \right)$, $\lambda \in [0,\pi) \cup i\mathbb{R}^+$.

Subdivision matrix:

$$S_k = \begin{pmatrix} 1 - w_k & w_k \\ w_k & 1 - w_k \end{pmatrix}$$

Limit Stencil: $\left[\frac{1}{2}, \frac{1}{2}\right]$

Two non-stationary versions of cubic B-splines

Subdivision rules [Romani et al. 2016]

$$P_{2i}^{(k)} = \frac{\alpha_k}{8} P_{i-1}^{(k)} + \left(1 - \frac{\alpha_k}{4}\right) P_i^{(k)} + \frac{\alpha_k}{8} P_{i+1}^{(k)},$$

$$P_{2i+1}^{(k)} = \frac{1}{2} P_i^{(k)} + \frac{1}{2} P_{i+1}^{(k)}.$$

Subdivision matrix:

$$S_k = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{\alpha_k}{8} & 1 - \frac{\alpha_k}{4} & \frac{\alpha_k}{8}\\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Limit Stencil:
$$\left[\frac{1-\gamma}{2}, \gamma, \frac{1-\gamma}{2}\right]$$

• if
$$\alpha_k = \frac{2}{1+\cos\left(\frac{\lambda}{2k+1}\right)}$$
, $\lambda \in [0,\pi) \cup i\mathbb{R}^+$, $\gamma = \cot\left(\frac{\lambda}{2}\right)\left(\frac{1}{\lambda} - \cot\lambda\right)$;

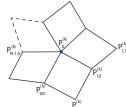
• if
$$\alpha_k = \frac{k+2(1-2^{(\lambda+1)})}{2^{\lambda}(k+1)}$$
, $\lambda \in \mathbb{R}^+$, $\gamma = \frac{1}{2(1-f(\lambda))^{g(\lambda)}}$ where $f(\lambda) = \frac{1}{2} - 2^{-(\lambda+2)}$ and $g(\lambda) = 1 + \frac{2^{-\lambda} - 1}{2^{\lambda+1} - 1}$.

Limit stencil of primal bivariate subdivision schemes

$$\begin{pmatrix} P_0^{(k+1)} \\ P_0^{(k+1)} \\ P_1^{(k+1)} \\ \vdots \\ P_{N-1}^{(k+1)} \end{pmatrix} = \underbrace{\begin{pmatrix} a & \mathbf{r}^T & \mathbf{r}^T & \dots & \mathbf{r}^T \\ \mathbf{c} & M_{0,k} & M_{1,k} & \dots & M_{N-1,k} \\ \mathbf{c} & M_{N-1,k} & M_{0,k} & \dots & M_{N-2,k} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \mathbf{c} & M_{1,k} & M_{2,k} & \dots & M_{0,k} \end{pmatrix}}_{S_k^{[N]}} \begin{pmatrix} P_0^{(k)} \\ P_0^{(k)} \\ P_0^{(k)} \\ P_0^{(k)} \\ \vdots \\ P_{N-1}^{(k)} \end{pmatrix}$$

with $a \in \mathbb{R}, \mathbf{r}, \mathbf{c} \in \mathbb{R}^{p \times 1}, M_{i,k} \in \mathbb{R}^{p \times p}, P_0^{(k)} \in \mathbb{R}, \mathbf{P}_i^{(k)} \in \mathbb{R}^{p \times 1}.$

- The k-level subdivision matrix $S_k^{[N]}$ is an hybrid block-circulant matrix.
- ▶ Dimension of $S_k^{[N]} \in \mathbb{R}^{(pN+1)\times(pN+1)}$ increases with N, the eigen-decomposition becomes computationally difficult.



Limit stencil of primal bivariate subdivision schemes

▶ We transform $S_k^{[N]}$ in a block-circulant matrix

$$R_k^{[N]} = \begin{pmatrix} R_{0,k} & R_{1,k} & \cdots & R_{N-1,k} \\ R_{N-1,k} & R_{0,k} & \cdots & R_{N-2,k} \\ \vdots & \ddots & \ddots & \vdots \\ R_{1,k} & R_{2,k} & \cdots & R_{0,k} \end{pmatrix}, \text{ with } R_{i,k} = \begin{pmatrix} \frac{a}{N} & \mathbf{r}^T \\ \frac{c}{N} & M_{i,k} \end{pmatrix}$$

▶ We apply the discrete Fourier transform to obtain

$$\hat{S}_{k}^{[N]} = \begin{pmatrix} \hat{S}_{0,k} & 0 & \cdots & 0 \\ 0 & \hat{S}_{1,k} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \hat{S}_{N-1,k} \end{pmatrix}, \quad \hat{S}_{\nu,k} = \sum_{j=0}^{N-1} R_{j,k} \omega^{j\nu}, \quad \text{with } \nu = 0, \dots, N-1, \ \omega = e^{\frac{2\pi i}{N}}.$$

lackbox We focus on $\hat{\mathcal{S}}_{0,k}$ since it contains the dominant eigenvalue λ_0 and the eigenvector $\mathbf{v}_0=\mathbf{1}$

$$\hat{S}_{0,k} = \sum_{i=0}^{N-1} R_{i,k} = \begin{pmatrix} a & N\mathbf{r}^T \\ \mathbf{c} & \sum_{i=0}^{N-1} M_{i,k} \end{pmatrix} \in \mathbb{R}^{(p+1)\times(p+1)}$$

Limit stencil of primal bivariate subdivision scheme

▶ We study $\lim_{k\to+\infty}\prod_{\ell=0}^k \hat{S}_{0,\ell}$ using the eigen-decomposition of $\hat{S}_{0,\ell}$

$$\lim_{k\to+\infty}\prod_{\ell=0}^k \hat{S}_{0,\ell} = \lim_{k\to+\infty}\prod_{\ell=0}^k V_\ell D_\ell W_\ell.$$

ightharpoonup We expand $\prod_{\ell=0}^k V_\ell D_\ell W_\ell$ as

$$\prod_{\ell=0}^k V_\ell D_\ell W_\ell = V_k \underbrace{\left(D_k W_k V_{k-1} \dots V_0 D_0\right)}_{T_k} W_0.$$

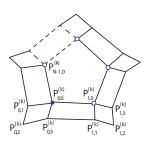
- ▶ We compute $Z = \lim_{k \to +\infty} V_k T_k W_0$.
- $igwedge Z = egin{pmatrix} z_{1,1} & N \widetilde{\mathbf{z}}_1^T \\ \widetilde{\mathbf{c}} & \widetilde{M} \end{pmatrix}$ preserves the structure of $\hat{S}_{0,k}$.
- The limit stencil is $[z_{1,1}, \underbrace{\tilde{\mathbf{z}}_1^T, \dots, \tilde{\mathbf{z}}_1^T}]$.

Limit stencil of dual bivariate subdivision schemes

$$\begin{pmatrix}
\mathbf{P}_{0}^{(k+1)} \\
\mathbf{P}_{1}^{(k+1)} \\
\vdots \\
\mathbf{P}_{N-1}^{(k+1)}
\end{pmatrix} = \underbrace{\begin{pmatrix}
M_{0,k} & M_{1,k} & \cdots & M_{N-1,k} \\
M_{N-1,k} & M_{0,k} & \cdots & M_{N-2,k} \\
\vdots & \ddots & \ddots & \vdots \\
M_{1,k} & M_{2,k} & \cdots & M_{0,k}
\end{pmatrix}}_{S_{k}^{[N]}} \begin{pmatrix}
\mathbf{P}_{0}^{(k)} \\
\mathbf{P}_{0}^{(k)} \\
\vdots \\
\mathbf{P}_{N-1}^{(k)}
\end{pmatrix}$$

with
$$M_{i,k} \in \mathbb{R}^{p \times p}, \mathbf{P}_i^{(k)} \in \mathbb{R}^{p \times 1}$$
.

- ► The *k*-level subdivision matrix is a block-circulant matrix.
- ▶ Dimension of $S_k^{[N]} \in \mathbb{R}^{pN \times pN}$ increases with N, the eigen-decomposition becomes computationally difficult.



Limit stencil of dual bivariate subdivision schemes

▶ We apply the discrete Fourier transform to obtain

$$\hat{S}_{k}^{[N]} = \begin{pmatrix} S_{0,k} & 0 & \cdots & 0 \\ 0 & \hat{S}_{1,k} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \hat{S}_{N-1,k} \end{pmatrix}, \quad \hat{S}_{\nu,k} = \sum_{j=0}^{N-1} M_{j,k} \omega^{j\nu}, \quad \text{with } \nu = 0, \dots, N-1, \ \omega = e^{\frac{2\pi i}{N}}.$$

lackbox We focus on $\hat{\mathcal{S}}_{0,k}$ since it contains the dominant eigenvalue λ_0 and the eigenvector $\mathbf{v}_0=\mathbf{1}$

$$\hat{S}_{0,k} = \sum_{i=0}^{N-1} M_{i,k} \in \mathbb{R}^{p \times p}.$$

lackbox We study $\lim_{k \to +\infty} \prod_{\ell=0}^k \hat{S}_{0,\ell}$ using the eigen-decomposition of $\hat{S}_{0,\ell}$

$$\lim_{k\to+\infty}\prod_{\ell=0}^k \hat{S}_{0,\ell} = \lim_{k\to+\infty}\prod_{\ell=0}^k V_\ell D_\ell W_\ell.$$

Limit stencil of dual non-stationary schemes

▶ We expand $\prod_{\ell=0}^k V_\ell D_\ell W_\ell$ as

$$\prod_{\ell=0}^k V_\ell D_\ell W_\ell = V_k \underbrace{\left(D_k W_k V_{k-1} \dots V_0 D_0\right)}_{T_k} W_0.$$

- ► We compute $Z = \lim_{k \to +\infty} V_k T_k W_0 = \begin{pmatrix} N \mathbf{z}_1^T \\ \vdots \\ N \mathbf{z}_p^T \end{pmatrix}$
- The limit stencil is $[\mathbf{z}_1^T, \dots, \mathbf{z}_1^T]$.

A non-stationary version of Doo-Sabin's scheme

Subdivision rules [Fang, W. Ma, G. Wang, 2014]

$$\begin{array}{l} P_{\ell}^{(k+1)} = \alpha_N^{(k)} P_{\ell}^{(k)} + \beta_N^{(k)} (P_{\ell-1}^{(k)} + P_{\ell+1}^{(k)}) + \gamma_N^{(k)} \sum_{j=1, j \neq \{\ell-1, \ell, \ell+1\}}^{N} P_j^{(k)}, \\ \ell = 1, \dots, N, \end{array}$$

where
$$\alpha_N^{(k)} = \frac{1+Nv_k(1+v_k)}{N(1+v_k)^2}$$
, $\beta_N^{(k)} = \frac{Nv_k+2}{2N(1+v_k)^2}$, $\gamma_N^{(k)} = \frac{1}{N(1+v_k)^2}$, and $v_k = \frac{1}{2} \left(e^{i\frac{\lambda}{2k+1}} + e^{-i\frac{\lambda}{2k+1}} \right)$, $\lambda \in [0,\pi) \cup i\mathbb{R}^+$.

First transformed block of the subdivision matrix:

$$\hat{S}_{0,k}=1$$

Limit Stencil: $\left[\frac{1}{N}, \dots, \frac{1}{N}\right]$

Input: Initial control points $P^{(0)}$

- Apply once the subdivision rules to $\mathbf{P}^{(0)}$ to compute the points $\tilde{\mathbf{P}}^{(0)}$;
- Compute the limit positions $\tilde{\mathcal{L}}$;
- ullet Compute the new control points ${f Q}^{(0)}$ as

$$Q_i^{(0)} = P_i^{(0)} + \alpha (\tilde{P}_i^{(0)} - \tilde{\mathcal{L}}_i), \qquad \alpha \in \mathbb{R};$$

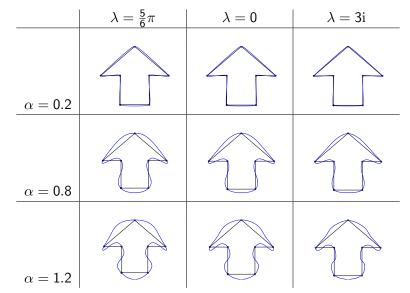
• Apply the subdivision scheme to the control points $\mathbf{Q}^{(0)}$.

Output: A limit curve/surface interpolating the initial control points $P^{(0)}$.

A non-stationary version of Chaikin's scheme

	$\lambda = \frac{3}{4}\pi$	$\lambda = 0$	$\lambda = 5i$
lpha = 0.2			
$\alpha = 1$			
$\alpha = 2$			

A non-stationary version of cubic B-spline



A non-stationary version of Doo-Sabin's scheme

	$\lambda = \frac{5}{6}\pi$	$\lambda = 0$	$\lambda = 3i$
lpha = 0.5			
$\alpha = 1$			
lpha=1.5			

References

- ▶ D. Doo, M. Sabin, Behavior of recursive division surfaces near extraordinary points, Comput. Aided Design 10(6) (1978), 356-360.
- ▶ M. Fang, W. Ma, G. Wang, A generalized curve subdivision scheme of arbitrary order with a tension parameter, Comput. Aided Geom.Design 27(9) (2010), 720-733.
- ▶ M. Fang, W. Ma, G. Wang, A generalized surface subdivision scheme of arbitrary order with a tension parameter, Comput. Aided Design 49 (2014), 8–17.
- ▶ P. Novara, Interpolation of polylines by non-stationary Chaikin's scheme, submitted to MASCOT2015 Proceedings
- L. Romani, V. Hernandez-Mederos, J.Estrada-Sarlabous, Exact evaluation of a class of non-stationary approximating subdivision algorithms and related applications, IMA J. Numerical Analysis 36(1) (2016), 380–399.

Thank you for your attention!