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Motivations

Goal: Construction of interpolating surfaces of good quality from meshes
with arbitrary manifold topology

Initial meshes Interpolatory scheme
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Motivations

How? Using approximating subdivision schemes with a preprocessing step
on the control mesh by means of the limit stencil of the scheme.
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Motivations

And to gain flexibility? The use of the preprocessing step together with
non-stationary subdivision rules let us gain two shape parameters.
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The general algorithm

Input: Initial control points P(0)

Apply once the subdivision rules to P(0) to compute the points P̃(0);

Compute the limit positions L̃ −→ We need the limit stencil!

Compute the new control points Q(0) as

Q
(0)
i = P

(0)
i + α(P̃

(0)
i − L̃i ), α ∈ R;

Apply the subdivision scheme to the control points Q(0).

Output: A limit curve/surface interpolating the initial control points P(0).
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Limit stencils of stationary schemes

The subdivision rules could be written in a matrix form, where the
subdivision matrix S is the same at each subdivision level

P(k+1) = SP(k) = Sk+1P(0).

� Eigen-decomposition of S

P(k+1) = Sk+1P(0) = VDk+1WP(0), where Dk+1 =


λk+1
0 0 . . . 0

0 λk+1
1 . . . 0

...
. . .

. . .
...

0 . . . 0 λk+1
n−1

.
� For the convergence of the scheme 1 = λ0 < λi , ∀i = 1, . . . , n − 1 and
v0 = 1

lim
k→+∞

P(k+1) = V


1 0 . . . 0
0 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0

WP(0) = v0w̃T
0 P(0) =


w̃T

0

w̃T
0
...

w̃T
0

P(0).
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Limit stencils of non-stationary schemes

The subdivision rules could be written in a matrix form, where the
subdivision matrix Sk depends on the subdivision level

P(k+1) = SkP(k) = Sk · Sk−1 · . . . · S0P(0).

The limit stencil has to be derived from the subdivision process.

How?

geometrical point of view: study the evolution of the position of the
vertices;

algebraic point of view: study the behavior of the subdivision matrices
at different subdivision levels.
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Outline

We illustrate our strategy to compute the limit stencil of

primal/dual univariate non-stationary subdivision schemes,

primal/dual bivariate non-stationary subdivision schemes.

We test the method on some examples

a non-stationary version of Chaikin’s scheme,

two non-stationary versions of cubic B-splines.

a non-stationary version of Doo-Sabin’s scheme,

the non-stationary version of Catmull-Clark’s scheme proposed by
Fang, W. Ma, G. Wang, (2014) −→ work in progress!
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Limit stencil of primal/dual univariate subdivision schemes

� Primal schemes: we study the evolution of the central point.

[Cubic B-splines]

� Dual schemes: we study the evolution of the points on the central edge.

[Chaikin’s scheme]
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Limit stencil of univariate subdivision schemes

� From the subdivision rules compute the subdivision matrix S`.

� To find the limit stencil we study limk→+∞
∏k
`=0 S`

� Eigen-decomposition of S`

lim
k→+∞

k∏
`=0

S` = lim
k→+∞

k∏
`=0

V`D`W`

� Expand
∏k
`=0 V`D`W` as

k∏
`=0

V`D`W` = Vk (DkWkVk−1 . . .V0D0)︸ ︷︷ ︸
Tk

W0.

� Compute limk→+∞ VkTkW0.

Limit stencils of non-stationary approximating schemes and their applications Paola Novara 12
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A non-stationary version of Chaikin’s scheme

Subdivision rules [M. Fang, W. Ma, G. Wang, 2010]

P
(k+1)
2i = wkP

(k)
i−1 + (1− wk)P

(k)
i ,

P
(k+1)
2i+1 = (1− wk)P

(k)
i + wkP

(k)
i+1

with wk = 1
2(1+vk )

, vk = 1
2

(
e
i λ

2k+1 + e
−i λ

2k+1

)
, λ ∈ [0, π) ∪ iR+.

Subdivision matrix:

Sk =

(
1− wk wk

wk 1− wk

)
Limit Stencil:

[
1
2 ,

1
2

]
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Two non-stationary versions of cubic B-splines

Subdivision rules [Romani et al. 2016]

P
(k)
2i = αk

8 P
(k)
i−1 +

(
1− αk

4

)
P
(k)
i + αk

8 P
(k)
i+1,

P
(k)
2i+1 = 1

2P
(k)
i + 1

2P
(k)
i+1.

Subdivision matrix:

Sk =

 1
2

1
2 0

αk
8 1− αk

4
αk
8

0 1
2

1
2


Limit Stencil:

[
1−γ
2 , γ, 1−γ2

]
if αk = 2

1+cos
(

λ

2k+1

) , λ ∈ [0, π) ∪ iR+, γ = cot
(
λ
2

) (
1
λ − cotλ

)
;

if αk = k+2(1−2(λ+1))
2λ(k+1)

, λ ∈ R+, γ = 1
2(1−f (λ))g(λ) where

f (λ) = 1
2 − 2−(λ+2) and g(λ) = 1 + 2−λ−1

2λ+1−1 .
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Limit stencil of primal bivariate subdivision schemes


P
(k+1)
0

P
(k+1)
0

P
(k+1)
1

...

P
(k+1)
N−1

 =


a rT rT · · · rT

c M0,k M1,k · · · MN−1,k
c MN−1,k M0,k · · · MN−2,k
...

. . .
. . .

. . .
...

c M1,k M2,k · · · M0,k


︸ ︷︷ ︸

S
[N]
k


P
(k)
0

P
(k)
0

P
(k)
1
...

P
(k)
N−1



with a ∈ R, r, c ∈ Rp×1,Mi ,k ∈ Rp×p,P
(k)
0 ∈ R,P(k)

i ∈ Rp×1.

� The k-level subdivision matrix S
[N]
k is an

hybrid block-circulant matrix.

� Dimension of S
[N]
k ∈ R(pN+1)×(pN+1)

increases with N, the eigen-decomposition
becomes computationally difficult.

P
0

(

,

k

1

)

P
0

(

,

k

0

)

P
1

(

,

k

0

)

P
1

(

,

k

1

)

P
N

(k

-

)

1,0

P
0

(k)
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Limit stencil of primal bivariate subdivision schemes

� We transform S
[N]
k in a block-circulant matrix

R
[N]
k =


R0,k R1,k · · · RN−1,k

RN−1,k R0,k · · · RN−2,k
...

. . .
. . .

...
R1,k R2,k · · · R0,k

 , with Ri ,k =

(
a
N rT
c
N Mi ,k

)

� We apply the discrete Fourier transform to obtain

Ŝ
[N]
k =


Ŝ0,k 0 · · · 0

0 Ŝ1,k · · · 0
...

. . .
. . .

...

0 0 · · · ŜN−1,k

 ,
Ŝν,k =

∑N−1
j=0 Rj ,kω

jν ,

with ν = 0, . . . ,N − 1, ω = e
2πi
N .

� We focus on Ŝ0,k since it contains the dominant eigenvalue λ0 and the
eigenvector v0 = 1

Ŝ0,k =
N−1∑
i=0

Ri ,k =

(
a NrT

c
∑N−1

i=0 Mi ,k

)
∈ R(p+1)×(p+1)

Limit stencils of non-stationary approximating schemes and their applications Paola Novara 16
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Limit stencil of primal bivariate subdivision scheme

� We study limk→+∞
∏k
`=0 Ŝ0,` using the eigen-decomposition of Ŝ0,`

lim
k→+∞

k∏
`=0

Ŝ0,` = lim
k→+∞

k∏
`=0

V`D`W`.

� We expand
∏k
`=0 V`D`W` as

k∏
`=0

V`D`W` = Vk (DkWkVk−1 . . .V0D0)︸ ︷︷ ︸
Tk

W0.

� We compute Z = limk→+∞ VkTkW0.

� Z =

(
z1,1 N z̃T1
c̃ M̃

)
preserves the structure of Ŝ0,k .

� The limit stencil is [z1,1, z̃
T
1 , . . . , z̃

T
1︸ ︷︷ ︸

N times

].
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Limit stencil of dual bivariate subdivision schemes


P
(k+1)
0

P
(k+1)
1

...

P
(k+1)
N−1

 =


M0,k M1,k · · · MN−1,k

MN−1,k M0,k · · · MN−2,k
...

. . .
. . .

...
M1,k M2,k · · · M0,k


︸ ︷︷ ︸

S
[N]
k


P
(k)
0

P
(k)
1
...

P
(k)
N−1



with Mi ,k ∈ Rp×p,P
(k)
i ∈ Rp×1.

� The k-level subdivision matrix is a
block-circulant matrix.
� Dimension of S

[N]
k ∈ RpN×pN increases

with N, the eigen-decomposition becomes
computationally difficult.

P
0

(

,

k

2

)

P
0

(

,

k

1

)

P
0

(

,

k

3

)

P
0

(

,

k

0

)
P
1

(

,

k

0

)

P
1

(

,

k

2

)
P
1

(

,

k

1

)

P
1

(

,

k

3

)

P
N

(k

-

)

1,0
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Limit stencil of dual bivariate subdivision schemes

� We apply the discrete Fourier transform to obtain

Ŝ
[N]
k =


Ŝ0,k 0 · · · 0

0 Ŝ1,k · · · 0
...

. . .
. . .

...

0 0 · · · ŜN−1,k

 ,
Ŝν,k =

∑N−1
j=0 Mj ,kω

jν ,

with ν = 0, . . . ,N − 1, ω = e
2πi
N .

� We focus on Ŝ0,k since it contains the dominant eigenvalue λ0 and the
eigenvector v0 = 1

Ŝ0,k =
N−1∑
i=0

Mi ,k ∈ Rp×p.

� We study limk→+∞
∏k
`=0 Ŝ0,` using the eigen-decomposition of Ŝ0,`

lim
k→+∞

k∏
`=0

Ŝ0,` = lim
k→+∞

k∏
`=0

V`D`W`.
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Limit stencil of dual non-stationary schemes

� We expand
∏k
`=0 V`D`W` as

k∏
`=0

V`D`W` = Vk (DkWkVk−1 . . .V0D0)︸ ︷︷ ︸
Tk

W0.

� We compute Z = limk→+∞ VkTkW0 =

NzT1
...

NzTp



� The limit stencil is [zT1 , . . . , z
T
1︸ ︷︷ ︸

N times

].
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A non-stationary version of Doo-Sabin’s scheme

Subdivision rules [Fang, W. Ma, G. Wang, 2014]

P
(k+1)
` = α

(k)
N P

(k)
` + β

(k)
N (P

(k)
`−1 + P

(k)
`+1) + γ

(k)
N

∑N
j=1,j 6={`−1,`,`+1} P

(k)
j ,

` = 1, . . . ,N,

where α
(k)
N = 1+Nvk (1+vk )

N(1+vk )2
, β

(k)
N = Nvk+2

2N(1+vk )2
, γ

(k)
N = 1

N(1+vk )2
, and

vk = 1
2

(
e
i λ

2k+1 + e
−i λ

2k+1

)
, λ ∈ [0, π) ∪ iR+.

First transformed block of the subdivision matrix:

Ŝ0,k = 1

Limit Stencil:
[
1
N , . . . ,

1
N

]
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The general algorithm

Input: Initial control points P(0)

Apply once the subdivision rules to P(0) to compute the points P̃(0);

Compute the limit positions L̃;

Compute the new control points Q(0) as

Q
(0)
i = P

(0)
i + α(P̃

(0)
i − L̃i ), α ∈ R;

Apply the subdivision scheme to the control points Q(0).

Output: A limit curve/surface interpolating the initial control points P(0).

Limit stencils of non-stationary approximating schemes and their applications Paola Novara 22



Goals&Method Univariate case Bivariate case Numerical Examples

A non-stationary version of Chaikin’s scheme

λ = 3
4π λ = 0 λ = 5i

α = 0.2

α = 1

α = 2

Limit stencils of non-stationary approximating schemes and their applications Paola Novara 23
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A non-stationary version of cubic B-spline

λ = 5
6π λ = 0 λ = 3i

α = 0.2

α = 0.8

α = 1.2

Limit stencils of non-stationary approximating schemes and their applications Paola Novara 24
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A non-stationary version of Doo-Sabin’s scheme

λ = 5
6π λ = 0 λ = 3i

α = 0.5

α = 1

α = 1.5

Limit stencils of non-stationary approximating schemes and their applications Paola Novara 25
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Thank you for your attention!
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