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What is subdivision?
Curve Subdivision

First studied by de Rham in
1947

Idea: create smooth curve out
of control polygon

Method: Subdivision

I successive refinement of
control polygon by some rule
(fixed ratio)

I Limit of subdivision process
is the curve
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What is subdivision?
Surface Subdivision

First nontrivial analysis by Catmull,
Clark, Doo, Sabin (1978)

Idea: Create smooth surface out of
mesh

Of interest: non valence 4 vertices
and faces, smoothness analysis by
[Reif 1995]

Used in 3D animated movies

Catmull-Clark Algorithm
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Mathematical description

Required properties for subdivision:

affine invariance

shift invariance: SL = L2S

local definition

achieve some degree of
smoothness, i.e. C 1 or C 2

p0

p1

p2

p3

p4

Caroline Moosmüller Hermite Subdivision on Manifolds March 3, 2016 5 / 19



Mathematical description

Required properties for subdivision:

affine invariance

shift invariance: SL = L2S

local definition

achieve some degree of
smoothness, i.e. C 1 or C 2

p0

p1

p2

p3

p4

Sp0

Sp1

Sp2

Sp3

Caroline Moosmüller Hermite Subdivision on Manifolds March 3, 2016 5 / 19



Mathematical description

Required properties for subdivision:

affine invariance

shift invariance: SL = L2S

local definition

achieve some degree of
smoothness, i.e. C 1 or C 2

p0

p1

p2

p3

p4

Sp0

Sp1

Sp2

Sp3

Caroline Moosmüller Hermite Subdivision on Manifolds March 3, 2016 5 / 19



Mathematical description

Required properties for subdivision:

affine invariance

shift invariance: SL = L2S

local definition

achieve some degree of
smoothness, i.e. C 1 or C 2 p0

p1

p2

p3

p4

Caroline Moosmüller Hermite Subdivision on Manifolds March 3, 2016 5 / 19



Mathematical description

A control polygon is a sequence p : Z→ V .

A linear subdivision operator with mask a ∈ `(Z,R) is a map
S : `(Z,V )→ `(Z,V ) given by the two rules

(Sp)2i =
∑
j∈Z

a−2jpi+j and (Sp)2i+1 =
∑
j∈Z

a−2j+1pi+j .

pi

pi+1

Sp2i

Sp2i+1

(Sp)2i =
3

4
pi +

1

4
pi+1

(Sp)2i+1 =
1

4
pi +

3

4
pi+1

[a−2, a−1, a0, a1] = [ 1
4 ,

3
4 ,

3
4 ,

1
4 ]
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Mathematical description

pi

pi+1

Sp2i

Sp2i+1

S can be described in terms of a single rule

(Sp)i =
∑
j∈Z

ai−2jpj .

Restrictions to the mask:
I ai 6= 0 for only finitely many i (locality)

I
∑

j∈Z ai−2j = 1 for all i (translation invariance)

(Sp)2i =
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4
pi +
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4
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Mathematical description
Convergence

Parametrise polygons Snp by piecewise linear functions Fn : R→ V
such that

Fn

(
i

2n

)
= (Snp)i , for i ∈ Z, n = 0, 1, . . .

If Fn → f ∈ Cd uniformly on compact intervals, then the subdivision
scheme is called Cd convergent.
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Mathematical description
Convergence

Parametrise polygons Snp by piecewise linear functions Fn : R→ V
such that

Fn
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Mathematical description
Linear Hermite subdivision

Subdivision operating on
point-vector data

( pi
vi

)
by

S
(
p
v

)
i

=
∑
j∈Z

( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

C 1 convergence: there exists
f ∈ C 1(R,V ) such that

Fn

((
1 0
0 2n
)
Sn ( p

v )
)
→
(

f
f ′
)

as n→∞.
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Subdivision on manifolds

Subdivision working on manifolds, for example on sphere, torus,
hyperbolic space, matrix group, . . .

Proposed by Donoho (2001), Ur Rahman et al. (2005). Analysis by
Dyn and Wallner (2005ff), Xie and Yu (2005ff), Grohs (multivariate
case, 2008ff), Weinmann (irregular combinatorics, 2010ff).

Preliminary work on nonlinear subdivision: Oswald (2002ff),
Daubechies et al. (2002) and others.

In special geometries strong results on convergence are possible, e.g.
Ebner (2014).
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Subdivision on manifolds

Rephrase definition such that it can be adapted to more general settings:

0. (Sp)i =
∑

j∈Z ai−2jpj

1.
∑

j∈Z ai−2j(pj − (Sp)i ) = 0

2. (Sp)i = argmin
∑

j∈Z ai−2j dist(x , pj)
2

3. (Sp)i = mi +
∑

j∈Z ai−2j(pj −mi )

4. (Sp)i = EX , where P{X =pj} = ai−2j
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Subdivision on manifolds

M manifold

TpM tangent space at p

expp : TpM → M exponential map

Pq
p : TpM → TqM parallel transport

along c

p

TpM

Example: M = SO(3) (rotations), TIM = so(3) (skew-symmetric
matrices)

expI(v) =
∞∑
k=0

1

k!
vk and Pq

I (v) = c( 1
2 ) v c( 1

2 ),

where c is the “geodesic” connecting I and q.
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Subdivision on manifolds

Define operations:

p + v  p ⊕ v := expp(v)

q − p  q 	 p = exp−1
p (q)

(Sp)i =
∑
j∈Z

ai−2jpj

= mi +
∑
j∈Z

ai−2j(pj −mi )

⇓

(Up)i = mi ⊕
∑
j∈Z

ai−2j(pj 	mi )
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Subdivision on manifolds
Hermite case

S
(
p
v

)
i

=
∑
j∈Z

(
ai−2j bi−2j

ci−2j di−2j

)(
pj
vj

)
=

(∑
j∈Z ai−2jpj + bi−2jvj∑
j∈Z ci−2jpj + di−2jvj

)

=

(
mi +

∑
j∈Z ai−2j(pj −mi ) + bi−2jvj∑

j∈Z ci−2j(pj −mi ) + di−2jvj

)
⇓(

ri
wi

)
=

(
mi ⊕

∑
j∈Z ai−2j(pj 	mi ) + bi−2j P

mi
pj

(vj)∑
j∈Z ci−2j(pj 	mi ) + di−2j P

mi
pj

(vj)

)

⇓

U
(
p
v

)
i

=

(
ri

P ri
mi

(wi )

)
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C 1 convergence analysis

Convergence of linear scheme (Sp)i =
∑

j∈Z ai−2jpj

• derived scheme: S∗∆ = ∆S
• If ‖S∗‖ < 1 or some ‖SL

∗‖ < 1⇒ continuous limits
• If ‖S∗∗‖ < 1 or some ‖SL

∗∗‖ < 1⇒ smooth (C 1) limits

[Dyn et al., 1991]

Convergence of manifold scheme (Up)i = mi ⊕
∑

j∈Z ai−2j(pj 	mi )
associated to S :

• Proximity condition:

‖Sp − Up‖ ≤ C‖∆p‖2.

• Smoothness equivalence: S and U have the same convergence
behaviour if proximity holds and the input data is close enough
[Dyn and Wallner, 2005].

• Proximity proved for Lie groups, Riemannian and symmetric spaces
[Grohs et al., 2007 and Wallner et al., 2009]
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Results for Hermite schemes

Convergence of linear Hermite scheme S
(
p
v

)
i

=
∑

j∈Z Ai−2j

( pj
vj

)

• Taylor scheme: S∗T = TS
• If ‖S∗‖ < 1 or some ‖SL

∗‖ < 1⇒ S has C 1 limits

[Merrien and Sauer, 2012]

Convergence of manifold-valued Hermite scheme U associated to S :

• Proximity condition:

‖S
(
p
v

)
− U

(
p
v

)
‖ ≤ C‖

(
∆p
v

)
‖2.

• If S has C 1 limits and S ,U enjoy proximity ⇒ U has C 1 limits, for
close enough input data [M. 2015].

• Proximity proved for Riemannian manifolds, Lie groups and symmetric
spaces [M. 2015].
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Current research

1 Approximation order: How well does an interpolatory C 1

convergent manifold-valued Hermite scheme approximate a given
function f ∈ C 1?
For h > 0, let

( f∞
f∞′

)
= U∞

( f
f ′

)
h·Z. For which α, β does

‖f∞ − f ‖ = O(hα) and ‖f∞′ − f ′‖ = O(hβ)

hold?

2 Hölder continuity: What is the critical Hölder exponent of limit
functions?

3 Stability: Under which conditions does∥∥∥(U∞f 0

U∞f 0′

)
−
(
U∞g0

U∞g0′

)∥∥∥ ≤ C‖f 0 − g0‖∞

hold?
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Conclusion

A Hermite subdivision scheme on manifolds can be defined using the
exponential map and parallel transport.

It is C 1 convergent if its linear counterpart is.

The next questions to be answered are concerned with approximation
order, Hölder continuity and stability.

Thank you!
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