

Hermite Subdivision on Manifolds

Caroline Moosmüller

Institute of Geometry, TU Graz

March 3, 2016

Overview

- What is subdivison?
 - Curve subdivision
 - Surface subdivision
- Mathematical description
- Subdivision on manifolds
- Results for Hermite schemes
- Current research

Curve Subdivision

• First studied by de Rham in 1947

- First studied by de Rham in 1947
- Idea: create smooth curve out of control polygon

- First studied by de Rham in 1947
- Idea: create smooth curve out of control polygon
- Method: Subdivision
 - successive refinement of control polygon by some rule (fixed ratio)
 - Limit of subdivision process is the curve

- First studied by de Rham in 1947
- Idea: create smooth curve out of control polygon
- Method: Subdivision
 - successive refinement of control polygon by some rule (fixed ratio)
 - Limit of subdivision process is the curve

- First studied by de Rham in 1947
- Idea: create smooth curve out of control polygon
- Method: Subdivision
 - successive refinement of control polygon by some rule (fixed ratio)
 - Limit of subdivision process is the curve

- First studied by de Rham in 1947
- Idea: create smooth curve out of control polygon
- Method: Subdivision
 - successive refinement of control polygon by some rule (fixed ratio)
 - Limit of subdivision process is the curve

Surface Subdivision

• First nontrivial analysis by Catmull, Clark, Doo, Sabin (1978)

Catmull-Clark Algorithm

- First nontrivial analysis by Catmull, Clark, Doo, Sabin (1978)
- Idea: Create smooth surface out of mesh

Catmull-Clark Algorithm

- First nontrivial analysis by Catmull, Clark, Doo, Sabin (1978)
- Idea: Create smooth surface out of mesh
- Of interest: non valence 4 vertices and faces, smoothness analysis by [Reif 1995]

Catmull-Clark Algorithm

- First nontrivial analysis by Catmull, Clark, Doo, Sabin (1978)
- Idea: Create smooth surface out of mesh
- Of interest: non valence 4 vertices and faces, smoothness analysis by [Reif 1995]
- Used in 3D animated movies

Geri's Game (1997)

- First nontrivial analysis by Catmull, Clark, Doo, Sabin (1978)
- Idea: Create smooth surface out of mesh
- Of interest: non valence 4 vertices and faces, smoothness analysis by [Reif 1995]
- Used in 3D animated movies

Geri's Game (1997)

Required properties for subdivision:

affine invariance

5 / 19

Required properties for subdivision:

- affine invariance
- shift invariance: $SL = L^2S$

Required properties for subdivision:

- affine invariance
- shift invariance: $SL = L^2S$
- local definition

Required properties for subdivision:

- affine invariance
- shift invariance: $SL = L^2S$
- local definition
- achieve some degree of smoothness, i.e. C¹ or C²

• A control polygon is a sequence $p: \mathbb{Z} \to V$.

- A control polygon is a sequence $p: \mathbb{Z} \to V$.
- A linear subdivision operator with mask $a \in \ell(\mathbb{Z}, \mathbb{R})$ is a map $S : \ell(\mathbb{Z}, V) \to \ell(\mathbb{Z}, V)$ given by the two rules

$$(Sp)_{2i} = \sum_{j \in \mathbb{Z}} a_{-2j} p_{i+j} \quad \text{and} \quad (Sp)_{2i+1} = \sum_{j \in \mathbb{Z}} a_{-2j+1} p_{i+j}.$$

- A control polygon is a sequence $p: \mathbb{Z} \to V$.
- A linear subdivision operator with mask $a \in \ell(\mathbb{Z}, \mathbb{R})$ is a map $S : \ell(\mathbb{Z}, V) \to \ell(\mathbb{Z}, V)$ given by the two rules

$$(Sp)_{2i}=\sum_{j\in\mathbb{Z}}a_{-2j}p_{i+j}\quad ext{and}\quad (Sp)_{2i+1}=\sum_{j\in\mathbb{Z}}a_{-2j+1}p_{i+j}.$$

$$(Sp)_{2i} = \frac{3}{4}p_i + \frac{1}{4}p_{i+1}$$
$$(Sp)_{2i+1} = \frac{1}{4}p_i + \frac{3}{4}p_{i+1}$$
$$[a_{-2}, a_{-1}, a_0, a_1] = [\frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{4}]$$

• S can be described in terms of a single rule

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j.$$

$$(Sp)_{2i} = \frac{3}{4}p_i + \frac{1}{4}p_{i+1}$$

$$(Sp)_{2i+1} = \frac{1}{4}p_i + \frac{3}{4}p_{i+1}$$

$$[a_{-2}, a_{-1}, a_0, a_1] = [\frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{4}]$$

• S can be described in terms of a single rule

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j.$$

- Restrictions to the mask:
 - ▶ $a_i \neq 0$ for only finitely many i (locality)
 - $ightharpoonup \sum_{j \in \mathbb{Z}} \mathsf{a}_{i-2j} = 1$ for all i (translation invariance)

$$(Sp)_{2i} = \frac{3}{4}p_i + \frac{1}{4}p_{i+1}$$
$$(Sp)_{2i+1} = \frac{1}{4}p_i + \frac{3}{4}p_{i+1}$$
$$[a_{-2}, a_{-1}, a_0, a_1] = [\frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{4}]$$

Convergence

• Parametrise polygons $S^n p$ by piecewise linear functions $\mathcal{F}_n : \mathbb{R} \to V$ such that

$$\mathcal{F}_n\left(\frac{i}{2^n}\right)=(S^np)_i, \quad \text{for } i\in\mathbb{Z}, n=0,1,\ldots$$

Convergence

• Parametrise polygons $S^n p$ by piecewise linear functions $\mathcal{F}_n : \mathbb{R} \to V$ such that

$$\mathcal{F}_n\left(\frac{i}{2^n}\right)=(S^np)_i,\quad \text{for }i\in\mathbb{Z},n=0,1,\ldots$$

Convergence

• Parametrise polygons $S^n p$ by piecewise linear functions $\mathcal{F}_n : \mathbb{R} \to V$ such that

$$\mathcal{F}_n\left(rac{i}{2^n}
ight)=(S^np)_i,\quad ext{for }i\in\mathbb{Z},n=0,1,\ldots$$

Convergence

• Parametrise polygons $S^n p$ by piecewise linear functions $\mathcal{F}_n : \mathbb{R} \to V$ such that

$$\mathcal{F}_n\left(rac{i}{2^n}
ight)=(S^np)_i,\quad ext{for }i\in\mathbb{Z},n=0,1,\ldots$$

Convergence

• Parametrise polygons $S^n p$ by piecewise linear functions $\mathcal{F}_n : \mathbb{R} \to V$ such that

$$\mathcal{F}_n\left(\frac{i}{2^n}\right)=(S^np)_i,\quad \text{for } i\in\mathbb{Z}, n=0,1,\ldots$$

Convergence

• Parametrise polygons $S^n p$ by piecewise linear functions $\mathcal{F}_n : \mathbb{R} \to V$ such that

$$\mathcal{F}_n\left(\frac{i}{2^n}\right)=(S^np)_i,\quad \text{for } i\in\mathbb{Z}, n=0,1,\ldots$$

Linear Hermite subdivision

Linear Hermite subdivision

• Subdivision operating on point-vector data $\begin{pmatrix} p_i \\ v_i \end{pmatrix}$ by

$$S(\begin{smallmatrix} p \\ v \end{smallmatrix})_i = \sum_{j \in \mathbb{Z}} (\begin{smallmatrix} a_{i-2j} & b_{i-2j} \\ c_{i-2j} & d_{i-2j} \end{smallmatrix}) (\begin{smallmatrix} p_j \\ v_j \end{smallmatrix}).$$

Subdivision Step 0

Linear Hermite subdivision

• Subdivision operating on point-vector data $\begin{pmatrix} p_i \\ v_i \end{pmatrix}$ by

$$S(\begin{smallmatrix} p \\ v \end{smallmatrix})_i = \sum_{j \in \mathbb{Z}} (\begin{smallmatrix} a_{i-2j} & b_{i-2j} \\ c_{i-2j} & d_{i-2j} \end{smallmatrix}) (\begin{smallmatrix} p_j \\ v_j \end{smallmatrix}).$$

Subdivision Step 1

Linear Hermite subdivision

• Subdivision operating on point-vector data $\begin{pmatrix} p_i \\ v_i \end{pmatrix}$ by

$$S(\begin{smallmatrix} p \\ v \end{smallmatrix})_i = \sum_{j \in \mathbb{Z}} (\begin{smallmatrix} a_{i-2j} & b_{i-2j} \\ c_{i-2j} & d_{i-2j} \end{smallmatrix}) (\begin{smallmatrix} p_j \\ v_j \end{smallmatrix}).$$

• C^1 convergence: there exists $f \in C^1(\mathbb{R}, V)$ such that

$$\mathcal{F}_n\left(\left(\begin{smallmatrix}1&0\\0&2^n\end{smallmatrix}\right)S^n\left(\begin{smallmatrix}p\\v\end{smallmatrix}\right)\right)\to\left(\begin{smallmatrix}f\\f'\end{smallmatrix}\right)$$

as $n \to \infty$.

Subdivision on manifolds

• Subdivision working on manifolds, for example on sphere, torus, hyperbolic space, matrix group, ...

Subdivision on manifolds

- Subdivision working on manifolds, for example on sphere, torus, hyperbolic space, matrix group, ...
- Proposed by Donoho (2001), Ur Rahman et al. (2005). Analysis by Dyn and Wallner (2005ff), Xie and Yu (2005ff), Grohs (multivariate case, 2008ff), Weinmann (irregular combinatorics, 2010ff).

Subdivision on manifolds

- Subdivision working on manifolds, for example on sphere, torus, hyperbolic space, matrix group, . . .
- Proposed by Donoho (2001), Ur Rahman et al. (2005). Analysis by Dyn and Wallner (2005ff), Xie and Yu (2005ff), Grohs (multivariate case, 2008ff), Weinmann (irregular combinatorics, 2010ff).
- Preliminary work on nonlinear subdivision: Oswald (2002ff),
 Daubechies et al. (2002) and others.

- Subdivision working on manifolds, for example on sphere, torus, hyperbolic space, matrix group, . . .
- Proposed by Donoho (2001), Ur Rahman et al. (2005). Analysis by Dyn and Wallner (2005ff), Xie and Yu (2005ff), Grohs (multivariate case, 2008ff), Weinmann (irregular combinatorics, 2010ff).
- Preliminary work on nonlinear subdivision: Oswald (2002ff),
 Daubechies et al. (2002) and others.
- In special geometries strong results on convergence are possible, e.g. Ebner (2014).

0.
$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

$$0. (Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

1.
$$\sum_{j\in\mathbb{Z}} a_{i-2j}(p_j - (Sp)_i) = 0$$

$$0. (Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

1.
$$\sum_{j \in \mathbb{Z}} a_{i-2j}(p_j - (Sp)_i) = 0$$

2.
$$(Sp)_i = \operatorname{argmin} \sum_{j \in \mathbb{Z}} a_{i-2j} \operatorname{dist}(x, p_j)^2$$

$$0. (Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

1.
$$\sum_{j \in \mathbb{Z}} a_{i-2j}(p_j - (Sp)_i) = 0$$

2.
$$(Sp)_i = \operatorname{argmin} \sum_{j \in \mathbb{Z}} a_{i-2j} \operatorname{dist}(x, p_j)^2$$

3.
$$(Sp)_i = m_i + \sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - m_i)$$

0.
$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

1.
$$\sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - (Sp)_i) = 0$$

2.
$$(Sp)_i = \operatorname{argmin} \sum_{j \in \mathbb{Z}} a_{i-2j} \operatorname{dist}(x, p_j)^2$$

3.
$$(Sp)_i = m_i + \sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - m_i)$$

4.
$$(Sp)_i = \mathbb{E}X$$
, where $\mathbb{P}\{X = p_j\} = a_{i-2j}$

M manifold T_pM T_pM tangent space at p

M manifold

 T_pM tangent space at p

 $exp_p: T_pM \to M$ exponential map

M manifold

 T_pM tangent space at p

 $exp_p: T_pM \to M$ exponential map

 $P_p^q:T_pM o T_qM$ parallel transport

along *c*

M manifold

 T_pM tangent space at p

 $exp_p: T_pM \to M$ exponential map

 $P_p^q: T_pM o T_qM$ parallel transport

along *c*

Example: M = SO(3) (rotations), $T_{\mathbb{I}}M = \mathfrak{so}(3)$ (skew-symmetric matrices)

$$\exp_{\mathbb{I}}(v) = \sum_{k=0}^{\infty} \frac{1}{k!} v^k$$
 and $P_{\mathbb{I}}^q(v) = c(\frac{1}{2}) v c(\frac{1}{2}),$

where c is the "geodesic" connecting \mathbb{I} and q.

$$p + v \longrightarrow p \oplus v := \exp_p(v)$$

 $q - p \longrightarrow q \ominus p = \exp_p^{-1}(q)$

$$p + v \longrightarrow p \oplus v := \exp_p(v)$$

 $q - p \longrightarrow q \ominus p = \exp_p^{-1}(q)$

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

$$p + v \longrightarrow p \oplus v := \exp_p(v)$$

 $q - p \longrightarrow q \ominus p = \exp_p^{-1}(q)$

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

$$= m_i + \sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - m_i)$$

$$p + v \longrightarrow p \oplus v := \exp_p(v)$$

 $q - p \longrightarrow q \ominus p = \exp_p^{-1}(q)$

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

= $m_i + \sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - m_i)$

$$\Downarrow$$

$$(Up)_i = \frac{m_i}{m_i} \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus m_i)$$

$$p + v \longrightarrow p \oplus v := \exp_p(v)$$

 $q - p \longrightarrow q \ominus p = \exp_p^{-1}(q)$

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

$$= m_i + \sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - m_i)$$

$$(Up)_i = m_i \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus m_i)$$

$$p + v \longrightarrow p \oplus v := \exp_p(v)$$

 $q - p \longrightarrow q \ominus p = \exp_p^{-1}(q)$

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

$$= \frac{m_i}{m_i} + \sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - m_i)$$

$$(\mathit{Up})_i = {\color{red} m_i} \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus {\color{red} m_i})$$

$$p + v \longrightarrow p \oplus v := \exp_p(v)$$

 $q - p \longrightarrow q \ominus p = \exp_p^{-1}(q)$

$$(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$$

$$= \frac{m_i}{m_i} + \sum_{j \in \mathbb{Z}} a_{i-2j} (p_j - m_i)$$

$$(Up)_i = m_i \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus m_i)$$

$$S\left(\begin{smallmatrix}p\\v\end{smallmatrix}\right)_i = \sum_{j\in\mathbb{Z}} \begin{pmatrix} a_{i-2j} & b_{i-2j}\\c_{i-2j} & d_{i-2j} \end{pmatrix} \begin{pmatrix} p_j\\v_j \end{pmatrix} = \begin{pmatrix} \sum_{j\in\mathbb{Z}} a_{i-2j}p_j + b_{i-2j}v_j\\\sum_{j\in\mathbb{Z}} c_{i-2j}p_j + d_{i-2j}v_j \end{pmatrix}$$

$$\begin{split} S\left(\begin{smallmatrix} p \\ v \end{smallmatrix}\right)_{i} &= \sum_{j \in \mathbb{Z}} \begin{pmatrix} a_{i-2j} & b_{i-2j} \\ c_{i-2j} & d_{i-2j} \end{pmatrix} \begin{pmatrix} p_{j} \\ v_{j} \end{pmatrix} = \begin{pmatrix} \sum_{j \in \mathbb{Z}} a_{i-2j}p_{j} + b_{i-2j}v_{j} \\ \sum_{j \in \mathbb{Z}} c_{i-2j}p_{j} + d_{i-2j}v_{j} \end{pmatrix} \\ &= \begin{pmatrix} m_{i} + \sum_{j \in \mathbb{Z}} a_{i-2j}(p_{j} - m_{i}) + b_{i-2j}v_{j} \\ \sum_{i \in \mathbb{Z}} c_{i-2j}(p_{i} - m_{i}) + d_{i-2j}v_{j} \end{pmatrix} \end{split}$$

$$\begin{split} S\left(\begin{smallmatrix} p \\ v \end{smallmatrix}\right)_{i} &= \sum_{j \in \mathbb{Z}} \begin{pmatrix} a_{i-2j} & b_{i-2j} \\ c_{i-2j} & d_{i-2j} \end{pmatrix} \begin{pmatrix} p_{j} \\ v_{j} \end{pmatrix} = \begin{pmatrix} \sum_{j \in \mathbb{Z}} a_{i-2j}p_{j} + b_{i-2j}v_{j} \\ \sum_{j \in \mathbb{Z}} c_{i-2j}p_{j} + d_{i-2j}v_{j} \end{pmatrix} \\ &= \begin{pmatrix} m_{i} + \sum_{j \in \mathbb{Z}} a_{i-2j}(p_{j} - m_{i}) + b_{i-2j}v_{j} \\ \sum_{j \in \mathbb{Z}} c_{i-2j}(p_{j} - m_{i}) + d_{i-2j}v_{j} \end{pmatrix} \\ \Downarrow \\ \begin{pmatrix} r_{i} \\ w_{i} \end{pmatrix} = \begin{pmatrix} m_{i} \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_{j} \ominus m_{i}) + b_{i-2j} P_{p_{j}}^{m_{i}}(v_{j}) \\ \sum_{j \in \mathbb{Z}} c_{i-2j}(p_{j} \ominus m_{i}) + d_{i-2j} P_{p_{j}}^{m_{i}}(v_{j}) \end{pmatrix} \end{split}$$

$$S({}^{p}_{v})_{i} = \sum_{j \in \mathbb{Z}} {\begin{pmatrix} a_{i-2j} & b_{i-2j} \\ c_{i-2j} & d_{i-2j} \end{pmatrix}} {\begin{pmatrix} p_{j} \\ v_{j} \end{pmatrix}} = {\begin{pmatrix} \sum_{j \in \mathbb{Z}} a_{i-2j}p_{j} + b_{i-2j}v_{j} \\ \sum_{j \in \mathbb{Z}} c_{i-2j}p_{j} + d_{i-2j}v_{j} \end{pmatrix}}$$

$$= {\begin{pmatrix} m_{i} + \sum_{j \in \mathbb{Z}} a_{i-2j}(p_{j} - m_{i}) + b_{i-2j}v_{j} \\ \sum_{j \in \mathbb{Z}} c_{i-2j}(p_{j} - m_{i}) + d_{i-2j}v_{j} \end{pmatrix}}$$

$$\downarrow \downarrow$$

$${\begin{pmatrix} r_{i} \\ w_{i} \end{pmatrix}} = {\begin{pmatrix} m_{i} \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_{j} \ominus m_{i}) + b_{i-2j} P_{p_{j}}^{m_{i}}(v_{j}) \\ \sum_{j \in \mathbb{Z}} c_{i-2j}(p_{j} \ominus m_{i}) + d_{i-2j} P_{p_{j}}^{m_{i}}(v_{j}) \end{pmatrix}}$$

$$\downarrow \downarrow$$

$$U({}^{p}_{v})_{i} = {\begin{pmatrix} r_{i} \\ P_{m_{i}}^{r_{i}}(w_{i}) \end{pmatrix}}$$

Convergence of linear scheme $(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$

Convergence of linear scheme $(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$

• derived scheme: $S_*\Delta = \Delta S$

Convergence of linear scheme $(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$

- derived scheme: $S_*\Delta = \Delta S$
- If $\|S_*\| < 1$ or some $\|S_*^L\| < 1 \Rightarrow$ continuous limits
- If $\|S_{**}\| < 1$ or some $\|S_{**}^L\| < 1 \Rightarrow$ smooth (C^1) limits

[Dyn et al., 1991]

Convergence of linear scheme $(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$

- derived scheme: $S_*\Delta = \Delta S$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow$ continuous limits
- If $\|S_{**}\| < 1$ or some $\|S_{**}^L\| < 1 \Rightarrow$ smooth (C^1) limits

[Dyn et al., 1991]

Convergence of manifold scheme $(Up)_i = m_i \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus m_i)$ associated to S:

Convergence of linear scheme $(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$

- derived scheme: $S_*\Delta = \Delta S$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow$ continuous limits
- If $||S_{**}|| < 1$ or some $||S_{**}^L|| < 1 \Rightarrow$ smooth (C^1) limits

[Dyn et al., 1991]

Convergence of manifold scheme $(Up)_i = m_i \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus m_i)$ associated to S:

• Proximity condition:

$$||Sp - Up|| \le C||\Delta p||^2.$$

Convergence of linear scheme $(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$

- derived scheme: $S_*\Delta = \Delta S$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow$ continuous limits
- If $||S_{**}|| < 1$ or some $||S_{**}^L|| < 1 \Rightarrow$ smooth (C^1) limits

[Dyn et al., 1991]

Convergence of manifold scheme $(Up)_i = m_i \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus m_i)$ associated to S:

• Proximity condition:

$$||Sp - Up|| \le C||\Delta p||^2.$$

 Smoothness equivalence: S and U have the same convergence behaviour if proximity holds and the input data is close enough [Dyn and Wallner, 2005].

Convergence of linear scheme $(Sp)_i = \sum_{j \in \mathbb{Z}} a_{i-2j} p_j$

- derived scheme: $S_*\Delta = \Delta S$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow$ continuous limits
- If $||S_{**}|| < 1$ or some $||S_{**}^L|| < 1 \Rightarrow$ smooth (C^1) limits

[Dyn et al., 1991]

Convergence of manifold scheme $(Up)_i = m_i \oplus \sum_{j \in \mathbb{Z}} a_{i-2j}(p_j \ominus m_i)$ associated to S:

• Proximity condition:

$$||Sp - Up|| \le C||\Delta p||^2.$$

- Smoothness equivalence: S and U have the same convergence behaviour if proximity holds and the input data is close enough [Dyn and Wallner, 2005].
- Proximity proved for Lie groups, Riemannian and symmetric spaces [Grohs et al., 2007 and Wallner et al., 2009]

Results for Hermite schemes

Convergence of linear Hermite scheme $S({p \choose v})_i = \sum_{i \in \mathbb{Z}} A_{i-2j}({p_j \choose v_i})$

Results for Hermite schemes

Convergence of linear Hermite scheme $S(\binom{p}{v})_i = \sum_{j \in \mathbb{Z}} A_{i-2j}(\binom{p_j}{v_j})$

• Taylor scheme: $S_*T = TS$

Results for Hermite schemes

Convergence of linear Hermite scheme $S({p \choose v})_i = \sum_{j \in \mathbb{Z}} A_{i-2j}({p_j \choose v_j})$

- Taylor scheme: $S_*T = TS$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow S$ has C^1 limits

[Merrien and Sauer, 2012]

Convergence of linear Hermite scheme $S({p \choose v})_i = \sum_{j \in \mathbb{Z}} A_{i-2j}({p_j \choose v_j})$

- Taylor scheme: $S_*T = TS$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow S$ has C^1 limits

[Merrien and Sauer, 2012]

Convergence of manifold-valued Hermite scheme $\it U$ associated to $\it S$:

Convergence of linear Hermite scheme $S({p \choose v})_i = \sum_{j \in \mathbb{Z}} A_{i-2j}({p_j \choose v_j})$

- Taylor scheme: $S_*T = TS$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow S$ has C^1 limits

[Merrien and Sauer, 2012]

Convergence of manifold-valued Hermite scheme $\it U$ associated to $\it S$:

Proximity condition:

$$||S(\frac{p}{v}) - U(\frac{p}{v})|| \le C||(\frac{\Delta p}{v})||^2.$$

Convergence of linear Hermite scheme $S({p \choose v})_i = \sum_{j \in \mathbb{Z}} A_{i-2j}({p_j \choose v_j})$

- Taylor scheme: $S_*T = TS$
- If $\|S_*\| < 1$ or some $\|S_*^L\| < 1 \Rightarrow S$ has C^1 limits

[Merrien and Sauer, 2012]

Convergence of manifold-valued Hermite scheme $\it U$ associated to $\it S$:

Proximity condition:

$$||S(\frac{p}{v}) - U(\frac{p}{v})|| \le C||(\frac{\Delta p}{v})||^2.$$

• If S has C^1 limits and S, U enjoy proximity \Rightarrow U has C^1 limits, for close enough input data [M. 2015].

Convergence of linear Hermite scheme $S({p \choose v})_i = \sum_{j \in \mathbb{Z}} A_{i-2j}({p_j \choose v_j})$

- Taylor scheme: $S_*T = TS$
- If $||S_*|| < 1$ or some $||S_*^L|| < 1 \Rightarrow S$ has C^1 limits

[Merrien and Sauer, 2012]

Convergence of manifold-valued Hermite scheme U associated to S:

• Proximity condition:

$$||S(\frac{p}{v}) - U(\frac{p}{v})|| \le C||(\frac{\Delta p}{v})||^2.$$

- If S has C^1 limits and S, U enjoy proximity \Rightarrow U has C^1 limits, for close enough input data [M. 2015].
- Proximity proved for Riemannian manifolds, Lie groups and symmetric spaces [M. 2015].

• Approximation order: How well does an interpolatory C^1 convergent manifold-valued Hermite scheme approximate a given function $f \in C^1$?

For
$$h > 0$$
, let $\binom{f^{\infty}}{f^{\infty}} = U^{\infty} \binom{f}{f'}_{h \cdot \mathbb{Z}}$. For which α, β does

$$\|f^{\infty} - f\| = O(h^{\alpha})$$
 and $\|f^{\infty\prime} - f'\| = O(h^{\beta})$

hold?

• Approximation order: How well does an interpolatory C^1 convergent manifold-valued Hermite scheme approximate a given function $f \in C^1$?

For
$$h>0$$
, let $\binom{f^\infty}{f^\infty}=U^\infty\binom{f}{f'}_{h\cdot\mathbb{Z}}$. For which α,β does

$$\|f^{\infty}-f\|=O(h^{lpha})$$
 and $\|f^{\infty\prime}-f'\|=O(h^{eta})$

hold?

What is the critical Hölder exponent of limit functions?

• Approximation order: How well does an interpolatory C^1 convergent manifold-valued Hermite scheme approximate a given function $f \in C^1$?

For h>0, let $\binom{f^{\infty}}{f^{\infty}}=U^{\infty}\binom{f}{f'}_{h\cdot\mathbb{Z}}$. For which α,β does

$$\|f^{\infty} - f\| = O(h^{\alpha})$$
 and $\|f^{\infty\prime} - f'\| = O(h^{\beta})$

hold?

- What is the critical Hölder exponent of limit functions?
- Stability: Under which conditions does

$$\left\| \begin{pmatrix} U^{\infty} f^0 \\ U^{\infty} f^{0'} \end{pmatrix} - \begin{pmatrix} U^{\infty} g^0 \\ U^{\infty} g^{0'} \end{pmatrix} \right\| \leq C \|f^0 - g^0\|_{\infty}$$

hold?

• A Hermite subdivision scheme on manifolds can be defined using the exponential map and parallel transport.

- A Hermite subdivision scheme on manifolds can be defined using the exponential map and parallel transport.
- It is C^1 convergent if its linear counterpart is.

- A Hermite subdivision scheme on manifolds can be defined using the exponential map and parallel transport.
- It is C^1 convergent if its linear counterpart is.
- The next questions to be answered are concerned with approximation order, Hölder continuity and stability.

- A Hermite subdivision scheme on manifolds can be defined using the exponential map and parallel transport.
- It is C^1 convergent if its linear counterpart is.
- The next questions to be answered are concerned with approximation order, Hölder continuity and stability.

Thank you!