Approximation order of non-stationary subdivision schemes

Lucia Romani

University of Milano-Bicocca, Italy

Joint work with:

Costanza Conti (University of Firenze, Italy)

Paola Novara (University of Insubria - Como, Italy)

Jungho Yoon (Ewha Womans University - Seoul, South Korea)

IM-Workshop on "Applied Approximation, Signals and Images"

Bernried, February 29-March 4, 2016

Outline

- Background notions
- 2 New univariate and bivariate results

A bivariate example

The stationary 1D case: review of known results

Definition (Approximation order)

Let $\gamma \in \mathbb{N}$, $f \in C^{\gamma}(\mathbb{R})$ with $\|f^{(\gamma)}\|_{\infty} < \infty$. A convergent, stationary subdivision scheme $\{S_{\mathbf{a}}\}$ is said to have **approximation order** γ if the limit function $g_{\mathbf{f}^{[0]}} := S_{\mathbf{a}}^{\infty} \mathbf{f}^{[0]}$ obtained from $\mathbf{f}^{[0]} = \{f(ih), i \in \mathbb{Z}\}$, $h \in \mathbb{R}_+$ is such that $\|g_{\mathbf{f}^{[0]}} - f\| \le C_f h^{\gamma}$

with C_f a positive constant depending only on f.

Theorem [de Boor (1990)]

 $\{S_{\mathbf{a}}\}$ has approximation order γ if it reproduces the space $\Pi_{\gamma-1}$ of polynomials of degree $d \leq \gamma-1$, i.e. if it satisfies $g_{\mathbf{f}^{[0]}} = f$ for all initial sequences $\mathbf{f}^{[0]} = \{f(i+p), \ i \in \mathbb{Z}\}$ where $f \in \Pi_{\gamma-1}$ and $p \in \mathbb{R}$.

The stationary 1D case: review of known results

Definition (Approximation order)

Let $\gamma \in \mathbb{N}$, $f \in C^{\gamma}(\mathbb{R})$ with $\|f^{(\gamma)}\|_{\infty} < \infty$. A convergent, stationary subdivision scheme $\{S_{\mathbf{a}}\}$ is said to have **approximation order** γ if the limit function $g_{\mathbf{f}^{[0]}} := S_{\mathbf{a}}^{\infty} \mathbf{f}^{[0]}$ obtained from $\mathbf{f}^{[0]} = \{f(ih), i \in \mathbb{Z}\}$, $h \in \mathbb{R}_+$ is such that $\|g_{\mathbf{f}^{[0]}} - f\| \le C_f h^{\gamma}$

with C_f a positive constant depending only on f.

Theorem [de Boor (1990)]

 $\{S_{\mathbf{a}}\}$ has approximation order γ if it reproduces the space $\Pi_{\gamma-1}$ of polynomials of degree $d \leq \gamma-1$, i.e. if it satisfies $g_{\mathbf{f}^{[0]}} = f$ for all initial sequences $\mathbf{f}^{[0]} = \{f(i+p), \ i \in \mathbb{Z}\}$ where $f \in \Pi_{\gamma-1}$ and $p \in \mathbb{R}$.

Proof based on the Taylor expansion of f and the fact that the basic limit function $\phi:=S_{\mathbf{a}}^{\infty}\boldsymbol{\delta}$ is finitely supported.

The stationary 1D case: review of known results

Definition (Approximation order)

Let $\gamma \in \mathbb{N}$, $f \in C^{\gamma}(\mathbb{R})$ with $\|f^{(\gamma)}\|_{\infty} < \infty$. A convergent, stationary subdivision scheme $\{S_{\mathbf{a}}\}$ is said to have **approximation order** γ if the limit function $g_{\mathbf{f}^{[0]}} := S_{\mathbf{a}}^{\infty} \mathbf{f}^{[0]}$ obtained from $\mathbf{f}^{[0]} = \{f(ih), i \in \mathbb{Z}\}$, $h \in \mathbb{R}_+$ is such that $\|g_{\mathbf{f}^{[0]}} - f\| \le C_f h^{\gamma}$

with C_f a positive constant depending only on f.

Theorem [de Boor (1990)]

 $\{S_{\mathbf{a}}\}$ has approximation order γ if it reproduces the space $\Pi_{\gamma-1}$ of polynomials of degree $d \leq \gamma-1$, i.e. if it satisfies $g_{\mathbf{f}^{[0]}} = f$ for all initial sequences $\mathbf{f}^{[0]} = \{f(i+p), \ i \in \mathbb{Z}\}$ where $f \in \Pi_{\gamma-1}$ and $p \in \mathbb{R}$.

Proof based on the Taylor expansion of f and the fact that the basic limit function $\phi := S_a^{\infty} \delta$ is finitely supported.

Definition (Basic limit function)

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a convergent, non-stationary subdivision scheme. For $\delta := \{\delta_{i,0}, i \in \mathbb{Z}\}$, we call

$$\phi_m := \lim_{\ell \to \infty} S_{\mathbf{a}^{[m+\ell]}} \cdots S_{\mathbf{a}^{[m]}} \boldsymbol{\delta}, \qquad m \ge 0$$

the family of basic limit functions of $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$.

For $\mathbf{f}^{[m]} = S_{\mathbf{a}^{[m-1]}} \cdots S_{\mathbf{a}^{[1]}} S_{\mathbf{a}^{[0]}} \mathbf{f}^{[0]}$, we can write the **limit** of the subdivision scheme $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ applied to the data $\mathbf{f}^{[m]} = \{\mathbf{f}^{[m]}_i, i \in \mathbb{Z}\}$, $m \geq 0$, as

$$g_{\mathbf{f}^{[m]}} = \lim_{\ell \to \infty} S_{\mathbf{a}^{[m+\ell]}} \cdots S_{\mathbf{a}^{[m]}} \mathbf{f}^{[m]} = \sum_{i \in \mathbb{Z}} f_i^{[m]} \phi_m (2^m \cdot -i)$$

Definition (Basic limit function)

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a convergent, non-stationary subdivision scheme. For $\delta := \{\delta_{i,0}, i \in \mathbb{Z}\}$, we call

$$\phi_m := \lim_{\ell \to \infty} S_{\mathbf{a}^{[m+\ell]}} \cdots S_{\mathbf{a}^{[m]}} \delta, \qquad m \ge 0$$

the family of basic limit functions of $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$.

For $\mathbf{f}^{[m]} = S_{\mathbf{a}^{[m-1]}} \cdots S_{\mathbf{a}^{[1]}} S_{\mathbf{a}^{[0]}} \mathbf{f}^{[0]}$, we can write the **limit** of the subdivision scheme $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ applied to the data $\mathbf{f}^{[m]} = \{\mathbf{f}_i^{[m]}, i \in \mathbb{Z}\}$, $m \geq 0$, as

$$g_{\mathbf{f}^{[m]}} = \lim_{\ell \to \infty} S_{\mathbf{a}^{[m+\ell]}} \cdots S_{\mathbf{a}^{[m]}} \mathbf{f}^{[m]} = \sum_{i \in \mathbb{Z}} f_i^{[m]} \phi_m (2^m \cdot -i)$$

Let Ω be a compact set in \mathbb{R} .

Definition (Sobolev space)

$$W^{\rho}_{\infty}(\Omega):=\{f\in L_{\infty}(\Omega)\ :\ f^{(\ell)}\in L_{\infty}(\Omega)\ \text{for all}\ 0\leq\ell\leq\rho\},\quad \rho\in\mathbb{N}$$

is
$$\forall f \in W^
ho_\infty(\Omega), \ \|f\|_{W^
ho_\infty(\Omega)} := \sum_{\ell=0}^
ho \left\|f^{(\ell)}\right\|_{L_\infty(\Omega)}$$

Definition (Approximation order)

Let $\gamma \in \mathbb{N}$, $f \in W_{\infty}^{\gamma}(\Omega)$ and $\mathbf{f}^{[0]} = \{f(ih), i \in \mathbb{Z}\}, h \in \mathbb{R}_+$.

Let $\{S_{\mathbf{a}^{[k]}},\ k\geq 0\}$ be a convergent, non-stationary subdivision scheme and denote by $g_{\mathbf{f}^{[0]}}$ the limit function obtained from the initial data $\mathbf{f}^{[0]}$.

We say that $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ has approximation order γ if

$$\|g_{\mathbf{f}^{[0]}} - f\|_{L_{\infty}(\Omega)} \leq C_f h^{\gamma},$$

with C_f a positive constant depending only on f.

Let Ω be a compact set in \mathbb{R} .

Definition (Sobolev space)

$$W^{\rho}_{\infty}(\Omega):=\{f\in L_{\infty}(\Omega)\ :\ f^{(\ell)}\in L_{\infty}(\Omega)\ \text{for all}\ 0\leq \ell\leq \rho\},\quad \rho\in\mathbb{N}$$

For
$$\forall f \in W^{
ho}_{\infty}(\Omega), \ \|f\|_{W^{
ho}_{\infty}(\Omega)} := \sum_{\ell=0}^{
ho} \left\|f^{(\ell)}\right\|_{L_{\infty}(\Omega)}$$

Definition (Approximation order)

Let $\gamma \in \mathbb{N}$, $f \in W_{\infty}^{\gamma}(\Omega)$ and $\mathbf{f}^{[0]} = \{f(ih), i \in \mathbb{Z}\}, h \in \mathbb{R}_{+}$.

Let $\{S_{\mathbf{a}^{[k]}}, \ k \geq 0\}$ be a convergent, non-stationary subdivision scheme and denote by $g_{\mathbf{f}^{[0]}}$ the limit function obtained from the initial data $\mathbf{f}^{[0]}$.

We say that $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ has approximation order γ if

$$\|g_{\mathbf{f}^{[0]}}-f\|_{L_{\infty}(\Omega)}\leq C_f h^{\gamma},$$

with C_f a positive constant depending only on f.

Reproduction of exponential polynomials

Let $\eta \in \mathbb{N}$. Assume $\lambda_n \in \mathbb{C}$, $\mu_n \in \mathbb{N}$ for all $n = 1, \dots, \eta$ and define:

- $\bullet \ \ \mathsf{N} := \sum_{n=1}^{\eta} \mu_n$
- $\Phi_N := \operatorname{span}\{x^{\beta}e^{\lambda_n x}, \ \beta = 0, \cdots, \mu_n 1, \ n = 1, \cdots, \eta\}, \ x \in \mathbb{R}$

Definition (Φ_N -generation / Φ_N -reproduction)

Let $f \in \Phi_N$ and let $t_i^{[0]}$, $i \in \mathbb{Z}$ be ordered equidistant values on the real axis. A convergent, non-stationary subdivision scheme $\{S_{\mathbf{a}^{[k]}},\ k \geq 0\}$ is called

- if for all initial sequences $\mathbf{f}^{[0]} = \{f(t_i^{[0]}), i \in \mathbb{Z}\}$ it provides $g_{\mathbf{f}^{[0]}} \in \Phi_N$;
- if for all initial sequences $\mathbf{f}^{[0]} = \{f(t_i^{[0]}), i \in \mathbb{Z}\}\$ it provides $g_{\mathbf{f}^{[0]}} = f$.

Reproduction of exponential polynomials

Let $\eta \in \mathbb{N}$. Assume $\lambda_n \in \mathbb{C}$, $\mu_n \in \mathbb{N}$ for all $n = 1, \dots, \eta$ and define:

- $\bullet \ \ \mathsf{N} := \sum_{n=1}^{\eta} \mu_n$
- $\Phi_N := \operatorname{span}\{x^{\beta}e^{\lambda_n x}, \ \beta = 0, \cdots, \mu_n 1, \ n = 1, \cdots, \eta\}, \ x \in \mathbb{R}$

Definition (Φ_N -generation / Φ_N -reproduction)

Let $f \in \Phi_N$ and let $t_i^{[0]}$, $i \in \mathbb{Z}$ be ordered equidistant values on the real axis. A convergent, non-stationary subdivision scheme $\{S_{\mathbf{a}^{[k]}},\ k \geq 0\}$ is called

- i) Φ_N -generating : if for all initial sequences $\mathbf{f}^{[0]} = \{f(t_i^{[0]}), i \in \mathbb{Z}\}$ it provides $g_{\mathbf{f}^{[0]}} \in \Phi_N$;
- ii) Φ_N -reproducing : if for all initial sequences $\mathbf{f}^{[0]} = \{f(t_i^{[0]}), i \in \mathbb{Z}\}$ it provides $g_{\mathbf{f}^{[0]}} = f$.

How to check reproduction of Φ_N ?

Proposition [Conti and R. (2011)]

Let $a^{[k]}(z) = \sum_{i \in \mathbb{Z}} a_i^{[k]} z^i$, $z \in \mathbb{C} \setminus \{0\}$ be the kth level symbol of a convergent and non-singular subdivision scheme $\{S_{\mathbf{a}^{[k]}}, \ k \geq 0\}$. Then $\{S_{\mathbf{a}^{[k]}}, \ k \geq 0\}$ reproduces Φ_N w.r.t. the parametrization $T^{[k]} = \{t_i^{[k]} = \frac{i+p}{2^k}, \ i \in \mathbb{Z}\}$ (with shift parameter $p \in \mathbb{R}$) if and only if

(a)
$$a^{[k]} \left(-e^{-\frac{\lambda_n}{2^{k+1}}} \right) = 0,$$
 $\frac{d^{\beta}}{dz^{\beta}} a^{[k]} \left(-e^{-\frac{\lambda_n}{2^{k+1}}} \right) = 0, \ \beta = 1, ..., \mu_n - 1$ $n = 1, ..., \eta$

(b)
$$a^{[k]} \left(e^{-\frac{\lambda_n}{2^{k+1}}} \right) = 2 \left(e^{-\frac{\lambda_n}{2^{k+1}}} \right)^p, \qquad n = 1, ..., \eta$$

$$\frac{d^{\beta}}{dz^{\beta}} a^{[k]} \left(e^{-\frac{\lambda_n}{2^{k+1}}} \right) = 2 \left(e^{-\frac{\lambda_n}{2^{k+1}}} \right)^{p-\beta} \prod_{i=0}^{\beta-1} (p-i), \ \beta = 1, ..., \mu_n - 1$$

Asymptotical similarity versus asymptotical equivalence

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a non-stationary subdivision scheme with subdivision masks $\{\mathbf{a}^{[k]}, k \geq 0\}$ and let $\{S_{\mathbf{a}}\}$ be a stationary subdivision scheme with subdivision mask $\{\mathbf{a}\}$.

 oxtimes Hereinafter we always assume $oldsymbol{a}^{[k]}$, $k\geq 0$ and $oldsymbol{a}$ finitely supported.

Definition (Asymptotical equivalence - Dyn and Levin (1995)) $\{S_{\mathbf{a}^{[k]}}, k \geq 0\} \text{ and } \{S_{\mathbf{a}}\} \text{ are termed asymptotically equivalent if } \\ \sup (\mathbf{a}^{[k]}) = \sup (\mathbf{a}) \text{ for all } k \geq 0 \text{ and } \sum_{k=0}^{\infty} \|\mathbf{a}^{[k]} - \mathbf{a}\|_{\infty} < \infty.$

Asymptotical similarity versus asymptotical equivalence

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a non-stationary subdivision scheme with subdivision masks $\{\mathbf{a}^{[k]}, k \geq 0\}$ and let $\{S_{\mathbf{a}}\}$ be a stationary subdivision scheme with subdivision mask $\{\mathbf{a}\}$.

lacksquare Hereinafter we always assume $oldsymbol{a}^{[k]}$, $k\geq 0$ and $oldsymbol{a}$ finitely supported.

Definition (Asymptotical equivalence - Dyn and Levin (1995))

 $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ and $\{S_{\mathbf{a}}\}$ are termed asymptotically equivalent if

$$\operatorname{supp}(\mathbf{a}^{[k]}) = \operatorname{supp}(\mathbf{a}) \text{ for all } k \geq 0 \text{ and } \sum_{k=0}^{\infty} \|\mathbf{a}^{[k]} - \mathbf{a}\|_{\infty} < \infty.$$

Definition (Asymptotical similarity - Conti et al. (2015))

 $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ and $\{S_{\mathbf{a}}\}$ are termed **asymptotically similar** if $\mathrm{supp}(\mathbf{a}^{[k]}) = \mathrm{supp}(\mathbf{a})$ for all $k \geq 0$ and $\lim_{k \to +\infty} \mathrm{a}_i^{[k]} = \mathrm{a}_i, \ \forall i \in \mathrm{supp}(\mathbf{a}).$

Asymptotical similarity versus asymptotical equivalence

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a non-stationary subdivision scheme with subdivision masks $\{\mathbf{a}^{[k]}, k \geq 0\}$ and let $\{S_{\mathbf{a}}\}$ be a stationary subdivision scheme with subdivision mask $\{\mathbf{a}\}$.

Hereinafter we always assume $\mathbf{a}^{[k]}$, $k \geq 0$ and \mathbf{a} finitely supported.

Definition (Asymptotical equivalence - Dyn and Levin (1995))

 $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ and $\{S_{\mathbf{a}}\}$ are termed asymptotically equivalent if

$$\operatorname{supp}(\mathbf{a}^{[k]}) = \operatorname{supp}(\mathbf{a}) \text{ for all } k \geq 0 \text{ and } \sum_{k=0}^{\infty} \|\mathbf{a}^{[k]} - \mathbf{a}\|_{\infty} < \infty.$$

Definition (Asymptotical similarity - Conti et al. (2015))

 $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ and $\{S_{\mathbf{a}}\}$ are termed **asymptotically similar** if $\operatorname{supp}(\mathbf{a}^{[k]}) = \operatorname{supp}(\mathbf{a})$ for all $k \geq 0$ and $\lim_{k \to +\infty} a_i^{[k]} = a_i, \ \forall i \in \operatorname{supp}(\mathbf{a}).$

Properties of basic limit functions I

Proposition A [Conti, R. and Yoon (2016)]

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a Φ_1 -reproducing non-stationary subdivision scheme which is asymptotically similar to a convergent, stationary subdivision scheme $\{S_{\mathbf{a}}\}$ with stable basic limit function of Hölder continuity $\alpha \in (0,1)$. Then the associated basic limit functions $\{\phi_m, m \geq 0\}$ and ϕ satisfy

$$\lim_{m\to\infty} \|\phi_m - \phi\|_{\infty} = 0.$$

In view of the fact that ϕ is bounded we obtain

Corollary

 $\{\phi_m, m \ge 0\}$ is uniformly bounded independently of m, i.e.

$$\|\phi_m\|_{\infty} \le M \quad \forall m \ge 0$$

Properties of basic limit functions I

Proposition A [Conti, R. and Yoon (2016)]

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a Φ_1 -reproducing non-stationary subdivision scheme which is asymptotically similar to a convergent, stationary subdivision scheme $\{S_{\mathbf{a}}\}$ with stable basic limit function of Hölder continuity $\alpha \in (0,1)$. Then the associated basic limit functions $\{\phi_m, m \geq 0\}$ and ϕ satisfy

$$\lim_{m\to\infty} \|\phi_m - \phi\|_{\infty} = 0.$$

In view of the fact that ϕ is bounded we obtain

Corollary

 $\{\phi_{\it m},\ \it m \geq 0\}$ is uniformly bounded independently of $\it m$, i.e.

$$\|\phi_m\|_{\infty} \leq M \quad \forall m \geq 0$$

Approximation order result I

Theorem I [Conti, R. and Yoon (2016)]

Let $\Phi_{\gamma}:=\langle \varphi_0,...,\varphi_{\gamma-1}\rangle,\ \gamma\in\mathbb{N}$. Assume that the non-stationary subdivision scheme $\{S_{\mathbf{a}^{[k]}},\ k\geq 0\}$ is Φ_{γ} -reproducing and asymptotically similar to a convergent, stationary subdivision scheme $\{S_{\mathbf{a}}\}$ with stable basic limit function of Hölder continuity $\alpha\in(0,1)$. Assume further that the initial data are of the form $\mathbf{f}^{[m]}:=\{\mathbf{f}_i^{[m]}=f(2^{-m}i),\ i\in\mathbb{Z}\}$ for some fixed $m\geq 0$ and for some function $f\in W_{\infty}^{\gamma}(\Omega)$. If the Wronskian matrix

$$\mathcal{W}_{\Phi_{\gamma}}(0):=\left(rac{arphi_{s}^{(r)}(0)}{r!},\,r,s=0,...,\gamma-1
ight)$$
 is invertible, then

$$\|g_{\mathbf{f}^{[m]}} - f\|_{L_{\infty}(\Omega)} \le C_f 2^{-\gamma m}, \quad m \ge 0$$

with a constant $C_f > 0$ depending only on f.

Properties of basic limit functions II

Proposition B

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a non-stationary subdivision scheme with subdivision masks $\{\mathbf{a}^{[k]}, k \geq 0\}$ and let $\{S_{\mathbf{a}}\}$ be a convergent, stationary subdivision scheme with subdivision mask $\{\mathbf{a}\}$. If $\|\mathbf{a}^{[k]} - \mathbf{a}\|_{\infty} \leq C \, 2^{-\nu k}$ with $\nu \in \mathbb{N}$, then the associated basic limit functions $\{\phi_m, m \geq 0\}$ and ϕ satisfy

$$\|\phi_m - \phi\|_{\infty} \le C_1 2^{-\nu m}$$
.

In view of the fact that ϕ is bounded we obtain

Corollary

 $\{\phi_m,\ m\geq 0\}$ is uniformly bounded independently of m, i.e.

$$\|\phi_m\|_{\infty} \leq M \quad \forall m \geq 0$$

Properties of basic limit functions II

Proposition B

Let $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ be a non-stationary subdivision scheme with subdivision masks $\{\mathbf{a}^{[k]}, k \geq 0\}$ and let $\{S_{\mathbf{a}}\}$ be a convergent, stationary subdivision scheme with subdivision mask $\{\mathbf{a}\}$. If $\|\mathbf{a}^{[k]} - \mathbf{a}\|_{\infty} \leq C \, 2^{-\nu k}$ with $\nu \in \mathbb{N}$, then the associated basic limit functions $\{\phi_m, m \geq 0\}$ and ϕ satisfy

$$\|\phi_m - \phi\|_{\infty} \le C_1 2^{-\nu m}$$
.

In view of the fact that ϕ is bounded we obtain

Corollary

 $\{\phi_m,\ m\geq 0\}$ is uniformly bounded independently of m, i.e.

$$\|\phi_m\|_{\infty} \leq M \quad \forall m \geq 0$$

Approximation order result II

Theorem II

Let $\Phi_{\gamma}:=\langle \varphi_0,...,\varphi_{\gamma-1}\rangle$ with $\gamma\in\mathbb{N},\ \gamma\leq N$ and assume that the non-stationary subdivision scheme $\{S_{\mathbf{a}^{[k]}},\ k\geq 0\}$ is Φ_{γ} -reproducing. Assume further that the corresponding subdivision masks $\{\mathbf{a}^{[k]},\ k\geq 0\}$ and $\{\mathbf{a}\}$ satisfy $\|\mathbf{a}^{[k]}-\mathbf{a}\|_{\infty}\leq C\,2^{-\nu k}$ with some $\nu\in\mathbb{N}$. If the Wronskian matrix $\mathcal{W}_{\Phi_{\gamma}}(0):=\left(\frac{\varphi_{\mathbf{s}}^{(r)}(0)}{r!},\ r,s=0,...,\gamma-1\right)$ is invertible and the initial data are of the form $\mathbf{f}^{[m]}:=\{\mathbf{f}_i^{[m]}=f(2^{-m}i),\ i\in\mathbb{Z}\}$ for some fixed $m\geq 0$ and for

Let $\{S_a\}$ be a convergent, stationary subdivision scheme reproducing Π_{N-1} .

$$\|g_{\mathbf{f}^{[m]}} - f\|_{L_{\infty}(\Omega)} \le C_f 2^{-\sigma m}, \quad m \ge 0$$

with $\sigma = \min(\gamma + \nu, N)$ and C_f a positive constant depending only on f.

some function $f \in W_{\infty}^{N}(\Omega)$, then

Common steps:

• Let $x \in \Omega$ and let $\mathbf{f} = (f^{(r)}(x), r = 0, ..., \gamma - 1)^T$. Denote by $\mathbf{d} = (d_n, n = 0, ..., \gamma - 1)^T$ the unique solution of $\mathcal{W}_{\Phi_{\gamma}}(0) \mathbf{d} = \mathbf{f}$

• Define
$$\psi:=\psi_{\mathsf{X}}:=\sum_{n=0}^{\gamma-1}d_n\,\varphi_n(\cdot-x)$$

$$\forall \psi\in\Phi_{\gamma} \text{ and } \psi^{(r)}(x)=f^{(r)}(x),\ r=0,...,\gamma-1$$

Common steps:

- Let $x \in \Omega$ and let $\mathbf{f} = (f^{(r)}(x), r = 0, ..., \gamma 1)^T$. Denote by $\mathbf{d} = (d_n, n = 0, ..., \gamma 1)^T$ the unique solution of $\mathcal{W}_{\Phi_{\gamma}}(0) \mathbf{d} = \mathbf{f}$
- Define $\psi := \psi_{\mathsf{x}} := \sum_{n=0}^{\gamma-1} d_n \, \varphi_n(\cdot \mathsf{x})$

$$\psi \in \Phi_{\gamma}$$
 and $\psi^{(r)}(x) = f^{(r)}(x)$, $r = 0, ..., \gamma - 1$

•
$$\{S_{\mathbf{a}^{[k]}}, k \ge 0\}$$
 is Φ_{γ} -reproducing $\Rightarrow \psi = \sum_{i \in \mathbb{Z}} \psi(2^{-m}i) \phi_m(2^m \cdot -i)$

Common steps:

- Let $x \in \Omega$ and let $\mathbf{f} = (f^{(r)}(x), r = 0, ..., \gamma 1)^T$. Denote by $\mathbf{d} = (d_n, n = 0, ..., \gamma 1)^T$ the unique solution of $\mathcal{W}_{\Phi_{\gamma}}(0) \mathbf{d} = \mathbf{f}$
- Define $\psi := \psi_x := \sum_{n=0}^{\gamma-1} d_n \varphi_n(\cdot x)$

$$\psi \in \Phi_{\gamma}$$
 and $\psi^{(r)}(x) = f^{(r)}(x)$, $r = 0, ..., \gamma - 1$

- $\{S_{\mathbf{a}^{[k]}}, \ k \ge 0\}$ is Φ_{γ} -reproducing $\Rightarrow \psi = \sum_{i \in \mathbb{Z}} \psi(2^{-m}i) \ \phi_m(2^m \cdot -i)$
- $f(x) = \psi(x) \Rightarrow$ $f(x) - g_{\mathbf{f}^{[m]}}(x) = \sum_{i \in \mathbb{Z}} (\psi(2^{-m}i) - f(2^{-m}i)) \phi_m(2^m x - i)$

Common steps:

- Let $x \in \Omega$ and let $\mathbf{f} = (f^{(r)}(x), r = 0, ..., \gamma 1)^T$. Denote by $\mathbf{d} = (d_n, n = 0, ..., \gamma 1)^T$ the unique solution of $\mathcal{W}_{\Phi_{\gamma}}(0) \mathbf{d} = \mathbf{f}$
- Define $\psi := \psi_{\mathsf{X}} := \sum_{n=0}^{\gamma-1} d_n \, \varphi_n(\cdot \mathsf{X})$

$$\psi \in \Phi_{\gamma}$$
 and $\psi^{(r)}(x) = f^{(r)}(x)$, $r = 0, ..., \gamma - 1$

- $\{S_{\mathbf{a}^{[k]}}, \ k \ge 0\}$ is Φ_{γ} -reproducing $\Rightarrow \psi = \sum_{i \in \mathbb{Z}} \psi(2^{-m}i) \ \phi_m(2^m \cdot -i)$
- $f(x) = \psi(x) \Rightarrow$

$$f(x) - g_{\mathbf{f}^{[m]}}(x) = \sum_{i \in \mathbb{Z}} (\psi(2^{-m}i) - f(2^{-m}i)) \phi_m(2^m x - i)$$

Proof of Theorem I

• For $f \in W^{\gamma}_{\infty}(\Omega)$, we write the degree- $(\gamma - 1)$ Taylor expansion (T.E.) of $\psi - f$ around x as

$$\psi(2^{-m}i) - f(2^{-m}i) = \sum_{r=0}^{\gamma-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x) + \frac{(2^{-m}i - x)^{\gamma}}{\gamma!} (\psi - f)^{(\gamma)}(\xi_i)$$

•
$$(\psi - f)^{(r)}(x) = 0, r = 0, ..., \gamma - 1 \Rightarrow$$

$$f(x) - g_{f^{[m]}}(x) = 2^{-\gamma m} \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (i - 2^m x)^{\gamma} \frac{(\psi - f)^{(\gamma)}(\xi_i)}{\gamma!}$$

Proof of Theorem I

• For $f \in W^{\gamma}_{\infty}(\Omega)$, we write the degree- $(\gamma - 1)$ Taylor expansion (T.E.) of $\psi - f$ around x as

$$\psi(2^{-m}i) - f(2^{-m}i) = \sum_{r=0}^{\gamma-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x) + \frac{(2^{-m}i - x)^{\gamma}}{\gamma!} (\psi - f)^{(\gamma)}(\xi_i)$$

for some ξ_i between x and $2^{-m}i$

•
$$(\psi - f)^{(r)}(x) = 0, r = 0, ..., \gamma - 1 \Rightarrow$$

$$f(x) - g_{\mathbf{f}^{[m]}}(x) = 2^{-\gamma m} \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (i - 2^m x)^{\gamma} \frac{(\psi - f)^{(\gamma)}(\xi_i)}{\gamma!}$$

• $|\psi^{(\gamma)}(\xi_i)| \leq C ||f||_{W^{\gamma}_{\infty}(\Omega)}$, ϕ_m compactly supported and uniformly bounded independently of m (Prop.A) $\Rightarrow |f(x) - g_{\mathbf{f}^{[m]}}(x)| \leq C_f 2^{-\gamma m}$

Proof of Theorem I

• For $f \in W^{\gamma}_{\infty}(\Omega)$, we write the degree- $(\gamma - 1)$ Taylor expansion (T.E.) of $\psi - f$ around x as

$$\psi(2^{-m}i) - f(2^{-m}i) = \sum_{r=0}^{\gamma-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x) + \frac{(2^{-m}i - x)^{\gamma}}{\gamma!} (\psi - f)^{(\gamma)}(\xi_i)$$

for some ξ_i between x and $2^{-m}i$

• $(\psi - f)^{(r)}(x) = 0, r = 0, ..., \gamma - 1 \Rightarrow$

$$f(x) - g_{\mathbf{f}^{[m]}}(x) = 2^{-\gamma m} \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (i - 2^m x)^{\gamma} \frac{(\psi - f)^{(\gamma)}(\xi_i)}{\gamma!}$$

• $|\psi^{(\gamma)}(\xi_i)| \le C \|f\|_{W^{\gamma}_{\infty}(\Omega)}$, ϕ_m compactly supported and uniformly bounded independently of m (Prop.A) $\Rightarrow |f(x) - g_{\mathbf{f}^{[m]}}(x)| \le C_f 2^{-\gamma m}$

Proof of Theorem II

• For $f \in W_{\infty}^{N}(\Omega)$, we write the degree-(N-1) T.E. of $\psi - f$ around x:

$$\psi(2^{-m}i) - f(2^{-m}i) = \sum_{r=0}^{N-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x) + \frac{(2^{-m}i - x)^N}{N!} (\psi - f)^{(N)}(\xi_i)$$

$$\begin{aligned} \bullet & (\psi - f)^{(r)}(x) = 0, \ r = 0, ..., \gamma - 1 \Rightarrow \\ f(x) - g_{\mathbf{f}^{[m]}}(x) &= \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) \sum_{r = \gamma}^{N-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x) \\ &+ \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (2^{-m}i - x)^N \frac{(\psi - f)^{(N)}(\xi_i)}{N!} \end{aligned}$$

Proof of Theorem II

• For $f \in W_{\infty}^{N}(\Omega)$, we write the degree-(N-1) T.E. of $\psi - f$ around x:

$$\psi(2^{-m}i) - f(2^{-m}i) = \sum_{r=0}^{N-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x) + \frac{(2^{-m}i - x)^N}{N!} (\psi - f)^{(N)}(\xi_i)$$

•
$$(\psi - f)^{(r)}(x) = 0, r = 0, ..., \gamma - 1 \Rightarrow$$

$$f(x) - g_{\mathbf{f}^{[m]}}(x) = \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) \sum_{r=\gamma}^{N-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x)$$
$$+ \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (2^{-m}i - x)^N \frac{(\psi - f)^{(N)}(\xi_i)}{N!}$$

•
$$|f(x) - g_{\mathbf{f}^{[m]}}(x)| \le \frac{1}{\gamma!} \sum_{r=\gamma}^{N-1} \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^r \right| (|\psi^{(r)}(x)| + |f^{(r)}(x)|) + \frac{1}{N!} \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^N \right| (|\psi^{(N)}(\xi_i)| + |f^{(N)}(\xi_i)|)$$

Proof of Theorem II

• For $f \in W_{\infty}^{N}(\Omega)$, we write the degree-(N-1) T.E. of $\psi - f$ around x:

$$\psi(2^{-m}i) - f(2^{-m}i) = \sum_{r=0}^{N-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x) + \frac{(2^{-m}i - x)^N}{N!} (\psi - f)^{(N)}(\xi_i)$$

•
$$(\psi - f)^{(r)}(x) = 0, r = 0, ..., \gamma - 1 \Rightarrow$$

$$f(x) - g_{\mathbf{f}^{[m]}}(x) = \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) \sum_{r=\gamma}^{N-1} \frac{(2^{-m}i - x)^r}{r!} (\psi - f)^{(r)}(x)$$
$$+ \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (2^{-m}i - x)^N \frac{(\psi - f)^{(N)}(\xi_i)}{N!}$$

$$|f(x) - g_{\mathbf{f}^{[m]}}(x)| \leq \frac{1}{\gamma!} \sum_{r=\gamma}^{N-1} \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^r \right| (|\psi^{(r)}(x)| + |f^{(r)}(x)|)$$

$$+ \frac{1}{N!} \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^N \right| (|\psi^{(N)}(\xi_i)| + |f^{(N)}(\xi_i)|)$$

• $f \in W_{\infty}^{N}(\Omega)$ plus $|\psi^{(r)}(x)|$, $r = \gamma, ..., N-1$ and $|\psi^{(N)}(\xi_{i})|$ bounded \Rightarrow

$$|f(x) - g_{\mathbf{f}^{[m]}}(x)| \le \frac{C}{\gamma!} \left(\sum_{r=\gamma}^{N-1} \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^r \right| + \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^N \right| \right)$$

• ϕ reproduces $\Pi_{N-1} \Rightarrow \sum_{i \in \mathbb{Z}} \phi(2^m x - i) (2^{-m} i - x)^r = 0, \quad \gamma \le r \le N - 1$ $\left| \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (2^{-m} i - x)^r \right| \le 2^{-mr} \sum_{i \in \mathbb{Z}} \left| \phi_m(2^m x - i) - \phi(2^m x - i) \right| |i - 2^m x|^r$

$$\left| \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (2^{-m} i - x)^r \right| \le 2^{-mr} \sum_{i \in \mathbb{Z}} \left| \phi_m(2^m x - i) - \phi(2^m x - i) \right| |i - 2^m x|^r$$

• $f \in W_{\infty}^{N}(\Omega)$ plus $|\psi^{(r)}(x)|$, $r = \gamma, ..., N-1$ and $|\psi^{(N)}(\xi_{i})|$ bounded \Rightarrow

$$|f(x) - g_{\mathbf{f}^{[m]}}(x)| \le \frac{C}{\gamma!} \left(\sum_{r=\gamma}^{N-1} \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^r \right| + \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^N \right| \right)$$

• ϕ reproduces $\Pi_{N-1} \Rightarrow \sum_{i \in \mathbb{Z}} \phi(2^m x - i) (2^{-m} i - x)^r = 0, \quad \gamma \le r \le N - 1$

$$\Big| \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (2^{-m} i - x)^r \Big| \le 2^{-mr} \sum_{i \in \mathbb{Z}} \Big| \phi_m(2^m x - i) - \phi(2^m x - i) \Big| |i - 2^m x|^r$$

• $\left|\phi_m(2^mx-i)-\phi(2^mx-i)\right| \leq C2^{-\nu m}$, plus ϕ_m compactly supported and uniformly bounded independently of m (Prop.B) \Rightarrow $|f(x)-g_{\rm flml}(x)| \leq C_12^{-(\gamma+\nu)m}+C_22^{-Nm}$

ullet $f\in W_{\infty}^{\it N}(\Omega)$ plus $|\psi^{(r)}(x)|$, $r=\gamma,...,N-1$ and $|\psi^{(\it N)}(\xi_i)|$ bounded \Rightarrow

$$|f(x) - g_{\mathbf{f}^{[m]}}(x)| \le \frac{C}{\gamma!} \left(\sum_{r=\gamma}^{N-1} \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^r \right| + \left| \sum_{i \in \mathbb{Z}} \phi_m (2^m x - i) (2^{-m} i - x)^N \right| \right)$$

• ϕ reproduces $\Pi_{N-1} \Rightarrow \sum_{i \in \mathbb{Z}} \phi(2^m x - i) (2^{-m} i - x)^r = 0, \quad \gamma \le r \le N - 1$

$$\Big| \sum_{i \in \mathbb{Z}} \phi_m(2^m x - i) (2^{-m} i - x)^r \Big| \le 2^{-mr} \sum_{i \in \mathbb{Z}} \Big| \phi_m(2^m x - i) - \phi(2^m x - i) \Big| |i - 2^m x|^r$$

• $\left|\phi_m(2^mx-i)-\phi(2^mx-i)\right| \leq C2^{-\nu m}$, plus ϕ_m compactly supported and uniformly bounded independently of m (Prop.B) \Rightarrow $|f(x)-g_{\mathbf{f}[m]}(x)| \leq C_12^{-(\gamma+\nu)m}+C_22^{-Nm}$

Conditions for checking Φ_{γ} -reproduction [Charina, Conti and R. (2014)]

Theorem I stays unchanged

- $^{\text{\tiny ISS}}$ Conditions for checking Φ_{γ} -reproduction [Charina, Conti and R. (2014)]
- Theorem I stays unchanged

Theorem II [Extension to the 2D case]

Under the same assumptions of Theorem II (1D), in the 2D case the approximation order of $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ becomes $\sigma = \min(d+1+\nu, N)$ with

$$d = \left| \frac{\sqrt{8\gamma + 1} - 3}{2} \right|.$$

- Conditions for checking Φ_{γ} -reproduction [Charina, Conti and R. (2014)]
- Theorem I stays unchanged

Theorem II [Extension to the 2D case]

Under the same assumptions of Theorem II (1D), in the 2D case the approximation order of $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ becomes $\sigma = \min(d+1+\nu, N)$ with

$$d = \left| \frac{\sqrt{8\gamma + 1} - 3}{2} \right|.$$

Explanation:

such d provides the highest possible degree of the polynomial space Π^2_d s.t.

$$\sharp(\Pi_d^2) = \frac{(d+1)(d+2)}{2} \le \gamma = \sharp(\Phi_\gamma)$$

- Conditions for checking Φ_{γ} -reproduction [Charina, Conti and R. (2014)]
- Theorem I stays unchanged

Theorem II [Extension to the 2D case]

Under the same assumptions of Theorem II (1D), in the 2D case the approximation order of $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ becomes $\sigma = \min(d+1+\nu, N)$ with

$$d = \left| \frac{\sqrt{8\gamma + 1} - 3}{2} \right|.$$

Explanation:

such d provides the highest possible degree of the polynomial space Π_d^2 s.t.

$$\sharp(\Pi_d^2) = \frac{(d+1)(d+2)}{2} \le \gamma = \sharp(\Phi_\gamma)$$

A bivariate example [Novara, R. and Yoon (2016)]

We consider the interpolatory scheme $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ with edge point stencil:

a)
$$\lambda \in [0, \pi) \cup i\mathbb{R}^+$$

 $v^{[k]} = \cos\left(\frac{\lambda}{2^{k+1}}\right), \, \forall k \ge 0$

b) $w^{[k]} \to w$ with the rate of $O(2^{-2k})$ as $k \to \infty$

$$\begin{array}{lcl} b_0^{[k]} & = & 2(2(v^{[k]})^2 - 1)w^{[k]} + \frac{(2v^{[k]} + 1)^2}{8v^{[k]}(v^{[k]} + 1)} \\ b_1^{[k]} & = & -(4(v^{[k]})^2 - 1)w^{[k]} - \frac{1}{8v^{[k]}(v^{[k]} + 1)} \\ b_2^{[k]} & = & w^{[k]} \end{array}$$

$$\begin{array}{lll} b_3^{[k]} & = & -(2(v^{[k]})^2-1)w^{[k]} + \frac{2v^{[k]}+1}{64(v^{[k]})^2(2v^{[k]}-1)(v^{[k]}+1)^2} \\ b_4^{[k]} & = & 4(v^{[k]})^2(2(v^{[k]})^2-1)w^{(k)} - \frac{2v^{[k]}+1}{16(2v^{[k]}-1)(v^{[k]}+1)^2} \\ b_5^{[k]} & = & -2(4(v^{[k]})^2-1)(2(v^{[k]})^2-1)w^{[k]} + \frac{2(2v^{[k]}-1)^2}{32(v^{[k]})^2(v^{[k]}+1)^2} \end{array}$$

For all choices of $\{w^{[k]}, k \geq 0\}$ in b), $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ is Φ_{γ} -reproducing with

$$\Phi_{\gamma} = \{1, x, y, e^{\pm \lambda x}, e^{\pm \lambda y}, e^{\pm \lambda (x+y)}, e^{\pm \lambda (x-y)}\}, \quad \gamma = 11 > \sharp (\Pi_3^2)$$

 $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ is asymptotically equivalent to the interpolatory stationary scheme $\{S_a\}$ having edge point stencil

$$b_0 = 2w + \frac{9}{16} b_3 = \frac{3}{256} - w$$

$$b_0 = 2w + \frac{9}{16}$$
 $b_1 = -3w - \frac{1}{16}$ $b_2 = w$ $b_3 = \frac{3}{256} - w$ $b_4 = 4w - \frac{3}{64}$ $b_5 = \frac{9}{128} - 6w$

$$b_2 = w \ b_5 = rac{9}{128} - 6w$$

racks Indeed, the associated subdivision masks $\{\mathbf{a}^{[k]}, k \geq 0\}$ and $\{\mathbf{a}\}$ satisfy

$$\|\mathbf{a}^{[k]} - \mathbf{a}\|_{\infty} \le C 2^{-2k}$$

The stationary scheme $\{S_{\mathbf{a}}\}$ reproduces $\mid \Pi_{5}^{2} \mid$ for all $w \in \mathbb{R}$

Since $N=6, \nu=2, d=3$, in view of Theorem II(2D), for $f\in W^6_\infty(\Omega)$ the scheme $\{S_{\mathbf{a}^{[k]}}, k \geq 0\}$ has approximation order 6.

References

- ★ C. de Boor: Quasi interpolants and approximation power of multivariate splines. In: Gasca and Micchelli (Eds.), Computation of Curves and Surfaces. Kluwer Academic, 313-345, 1990
- ★ M. Charina, C. Conti, L. Romani: Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix, Numerische Mathematik 127(2) (2014) 223-254
- ★ C. Conti, N. Dyn, C. Manni, M.-L. Mazure: Convergence of univariate non-stationary subdivision schemes via asymptotic similarity, Comput. Aided Geom. Design 37 (2015) 1-8
- ★ C. Conti, L. Romani: Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction, J. Comput. Appl. Math. 236(4) (2011) 543-556
- ★ C. Conti, L. Romani, J. Yoon: Approximation order and approximate sum rules in subdivision, accepted for publication in J. Approx. Theory (2016)
- ★ P. Novara, L. Romani, J. Yoon: Improving smoothness and accuracy of Modified Butterfly subdivision scheme, Appl. Math. Comput. 272 (2016) 64-79

Thank you for your attention!

Approximation order of non-stationary subdivision schemes

Lucia Romani

University of Milano-Bicocca, Italy

Joint work with:

Costanza Conti (University of Firenze, Italy)

Paola Novara (University of Insubria - Como, Italy)

Jungho Yoon (Ewha Womans University - Seoul, South Korea)

IM-Workshop on "Applied Approximation, Signals and Images"

Bernried, February 29-March 4, 2016