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Pseudo-Splines of Integer Order (m, `)

Introduced by Daubechies, Han, Ron and Shen.

Motivation: Construct families of refinable functions which
interpolate between the classical B-splines (` = 0) and the
interpolatory refinable functions of Dubuc’s (` = m− 1).

Focus: Construction of framelets for L2(R) with required
approximation order.

Filters (Type II):

H
(m,`)
0 (γ) := (cos2 πγ)m

∑̀
k=0

(
m+ `

k

)
(sin2 πγ)k (cos2 πγ)`−k, γ ∈ R.
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Why Fractional and Complex Order?

1. Increased flexibility with regard to smoothness: A discrete
family of functions from Cm−1, m ∈ N, is replaced by a
continuous family of functions from Hölder spaces Cα−1.

2. The presence of the imaginary part of z allows for direct
utilization in complex transform techniques for signal and
image analyses.

3. Unlike the classical Schoenberg polynomial splines, which
allow the construction of Parseval wavelet frames for L2(R)
via the unitary or oblique extension principle, the
fractional and complex B-splines cannot in general be used
for this type of construction.
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Parseval Wavelet Frames

D: unitary dilation operator (Df)(x) :=
√

2f(2x).

Tk: translation operator (Tkf)(x) := f(x− k), k ∈ Z.

Parseval wavelet frames of the form

{DjTkψ0}j,k∈Z ∪ · · · ∪ {DjTkψn}j,k∈Z and {ψ1, . . . , ψn} ⊂ L2(R)

Construct functions ψl such that

n∑
l=1

∑
j,k∈Z

|〈f,DjTkψl〉|2 = ‖f‖2, ∀f ∈ L2(R),

or, equivalently,

f =
∑
j,k∈Z
〈f,DjTkψl〉DjTkψl, ∀f ∈ L2(R).
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Polynomial B-Splines of even order m generate wavelet frames.

Fractional or complex B-Splines do not.

“Reason:” For γ ∈ T := (−1
2 ,

1
2)

1 = (cos2 πγ + sin2 πγ)m =⇒ 1 = (cos2 πγ + sin2 πγ)z

For z ∈ N, the r.h.s. splits for z ∈ C \ N, Re z > 1, into two
parts:

(1)
∞∑
k=0

(
z
k

)
(sin2 πγ)k (cos2 πγ)z−k converges for γ ∈ (−1

4 ,
1
4).

(2)
∞∑
k=0

(
z
k

)
(cos2 πγ)k (sin2 πγ)z−k converges for γ ∈ T \ (−1

4 ,
1
4).
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Pseudo-Splines of Fractional and Complex Order

For γ ∈ R consider the filters:

H0(γ) := H
(z,`)
0 (γ) := (cos2 πγ)z

∑̀
k=0

(
z + `

k

)
(sin2 πγ)k (cos2 πγ)`−k,

where z ∈ C with α := Re z ≥ 1 and 0 ≤ ` ≤ bαc − 1.

Theorem (Christensen, Forster, M. 2016)

Let z ∈ C≥1, and let ` = 0, 1, . . . , bαc − 1. Then

0 < ϑ ≤ |H0(γ)|2 +
∣∣H0

(
γ + 1

2

)∣∣2 ≤ 1, ∀γ ∈ T,

and some positive constant ϑ = ϑ(z, `).
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The Cascade Algorithm
We are seeking a refinable function ϕ ∈ L2(R) associated with
the filter H0 ∈ L2(T), i.e., a function such that

ϕ̂(γ) = H0

(γ
2

)
ϕ̂
(γ
2

)
, γ ∈ R.

As in classical wavelet analysis we identify an appropriate
function ϕ via the cascade algorithm:

ϕ̂(γ) =

∞∏
m=1

H0(2
−mγ)ϕ̂(0), γ ∈ R.

Thus, we define the functions ϕm, m ∈ N0, via

ϕ̂0(γ) := χ[− 1
2
, 1
2
](γ),

ϕ̂m(γ) := χ[−2m−1,2m−1](γ)
m∏
j=1

H0(2
−jγ).
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Convergence of Infinite Product

Theorem (Christensen, Forster, M. 2016)

Let H0(γ) be a 1-periodic real or complex function satisfying the
following conditions:

(i) H0(0) = 1.

(ii) There exist a constant C > 0 and an exponent ε > 0 with

|H0(γ)− 1| ≤ C · |γ|ε, ∀ γ ∈ R.

(iii) There exists a positive constant ϑ such that

0 < ϑ ≤ |H0(γ)|2 + |H0(γ + 1
2)|2 ≤ 1, ∀ γ ∈ R.

Then {ϕ̂m} converges pointwise and uniformly on compact
subsets. The pointwise limit ϕ̂ ∈ L2(R) and ϕm → ϕ in L2(R).
Furthermore, ϕ satisfies the above refinement equation.
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Refinable Functions Associated With H0

Theorem (Christensen, Forster, M. 2016)

The filter

H0(γ) = H
(z,`)
0 (γ) = (cos2 πγ)z

∑̀
k=0

(
z + `

k

)
(sin2 πγ)k (cos2 πγ)`−k,

where z ∈ C with α := Re z ≥ 1 and 0 ≤ ` ≤ bαc − 1, generates
a refinable function ϕ via the cascade algorithm.

We call the function ϕ a pseudo-spline of complex order (z, `) or
for short a complex pseudo-spline.
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Pseudo-Splines in the Fourier Domain
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Pseudosplines ϕ̂(
√
5+2i,`) for ` = 0, 1, . . . , 4:

|ϕ̂(
√
5+2i,`)| (above), Re ϕ̂(

√
5+2i,`) (left), Im ϕ̂(

√
5+2i,`) (right).

The pseudospline parameter ` allows the tuning of the width of
the lowpass property of the refinable function ϕ.
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Lowpass Properties of Complex Pseudo-Splines

• 0 < ϑ ≤ |H0(γ)|2 ≤ 1, ∀ γ ∈ R.

• Consequentially, |ϕ̂(γ)| ≤ 1, ∀ γ ∈ R.

• As expected for a refinable function, the pseudo-splines act
as lowpass filters. In fact, there exists a neighborhood of
the origin, where ϕ̂ does not vanish.

Set H
(z,`)
0 (γ) := H

(z,0)
0 (γ)P (z,`)(γ), where

P (z,`)(γ) :=
∑̀
k=0

(
z + `

k

)
(sin2 πγ)k (cos2 πγ)`−k.
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Theorem (Christensen, Forster, M. 2016)

Suppose z := x+ iy, x ≥ 1, is such that

∑̀
j=0

tan−1
y

x+ j
∈
(
−π

2
,
π

2

)
, (∗)

holds. Then there exists a positive constant c > 0 that bounds ϕ̂
from below in a neighborhood of the origin, i.e.,

0 < c ≤ |ϕ̂(z,0)(γ)| ≤ |ϕ̂(z,`)(γ)|.

For ` = 0, condition (∗) is satisfied, as expected, since H(z,0) is
the filter of the classical fractional or complex B-spline.
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Pseudo-Spline Filters
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Filters H
(
√
5+2i,`)

0 for ` = 0, 1, . . . , 4.

|H(
√
5+2i,`)

0 | (above), ReH
(
√
5+2i,`)

0 (left), ImH(
√
5+2i,`) (right).

The pseudo-spline parameter ` allows the width of H0 to be
tuned. The imaginary part acts as an added bandpass filter.
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Relation to Known Approaches and Outlook
Pseudo-splines with parameter ` = 0 are the symmetric
fractional B-splines β2α−1∗ .

For complex z with Re z ≥ 1 and ` = 0 they correspond to the
complex B-splines β2z−1y with shift y = 0.

As a variant, one could consider complex pseudo-splines with
shift, namely

H
(z,`,y)
0 (γ) :=

(
1− e−iω

iω

) z+1
2
−y (

1− eiω

−iω

) z+1
2

+y

×
∑̀
k=0

(
z + `

k

)
(sin2 πγ)k (cos2 πγ)`−k,

for y, z ∈ C, Re z ≥ 1 and 0 ≤ ` ≤ bRe zc − 1. The shift y may
allow for better adaption to the signal or image, as was shown
in the case of symmetric complex B-splines.
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Pseudo-splines H
(m,m−1)
0 , m ∈ N, are related to Dubuc’s

interpolatory refinable functions.

• Do we get with our method, a new variant of fractional and
complex interpolating fractional splines?

• Are there fractional or complex subdivision schemes?

• For the fractional case, we have symmetric filters. Do the
fractional pseudo-splines interpolate the subdivision
schemes of Dubuc’s which are also symmetric?

17 / 18



THANK YOU!
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