Continuous wavelet analysis in higher dimensions An overview

Hartmut Führ fuehr@matha.rwth-aachen.de

Signals, Images and Approximation Bernried, February 29-March 4, 2016

Lehrstuhl A für Mathematik, RWIH

Wavelet systems

Systems of functions obtained by (linearly) dilating and translating a mother wavelet ψ . The dilations will come from a fixed matrix group H, called dilation group.

Wavelet systems

Systems of functions obtained by (linearly) dilating and translating a mother wavelet ψ . The dilations will come from a fixed matrix group H, called dilation group.

Main Slogan

Wavelet coefficient decay is equivalent to smoothness of the analyzed function.

Wavelet systems

Systems of functions obtained by (linearly) dilating and translating a mother wavelet ψ . The dilations will come from a fixed matrix group H, called dilation group.

Main Slogan

Wavelet coefficient decay is equivalent to smoothness of the analyzed function.

Different ways of formalizing this slogan:

Wavelet systems

Systems of functions obtained by (linearly) dilating and translating a mother wavelet ψ . The dilations will come from a fixed matrix group H, called dilation group.

Main Slogan

Wavelet coefficient decay is equivalent to smoothness of the analyzed function.

Different ways of formalizing this slogan:

• Local version: fast coefficient decay away from the singularities.

Wavelet systems

Systems of functions obtained by (linearly) dilating and translating a mother wavelet ψ . The dilations will come from a fixed matrix group H, called dilation group.

Main Slogan

Wavelet coefficient decay is equivalent to smoothness of the analyzed function.

Different ways of formalizing this slogan:

- Local version: fast coefficient decay away from the singularities.
- Global version: weighted summability of the coefficients characterizes function spaces of sparse signals (e.g., Besov spaces)

Main challenges

• There is a great variety of different dilation groups available.

Main challenges

• There is a great variety of different dilation groups available. Aiming for systematic, unified and comprehensive approach.

- There is a great variety of different dilation groups available. Aiming for systematic, unified and comprehensive approach.
- Want to treat directional notions of smoothness.

- There is a great variety of different dilation groups available. Aiming for systematic, unified and comprehensive approach.
- Want to treat directional notions of smoothness.
- Need criteria

- There is a great variety of different dilation groups available. Aiming for systematic, unified and comprehensive approach.
- Want to treat directional notions of smoothness.
- Need criteria
 - for dilation groups: Which group is suited for which purpose?

- There is a great variety of different dilation groups available. Aiming for systematic, unified and comprehensive approach.
- Want to treat directional notions of smoothness.
- Need criteria
 - for dilation groups: Which group is suited for which purpose?
 - for analyzing wavelets: Assuming a fixed choice of H, which type of oscillatory behaviour is needed?

Main challenges

- There is a great variety of different dilation groups available. Aiming for systematic, unified and comprehensive approach.
- Want to treat directional notions of smoothness.
- Need criteria
 - for dilation groups: Which group is suited for which purpose?
 - for analyzing wavelets: Assuming a fixed choice of H, which type of oscillatory behaviour is needed?

Unifying concept

The dual action is the key feature of the group.

Main challenges

- There is a great variety of different dilation groups available. Aiming for systematic, unified and comprehensive approach.
- Want to treat directional notions of smoothness.
- Need criteria
 - for dilation groups: Which group is suited for which purpose?
 - for analyzing wavelets: Assuming a fixed choice of H, which type of oscillatory behaviour is needed?

Unifying concept

The dual action is the key feature of the group.

Of particular importance: The blind spot of the wavelet transform.

1 Higher dimensional continuous wavelet transform

- 1 Higher dimensional continuous wavelet transform
- Coorbit space theory

- 1 Higher dimensional continuous wavelet transform
- 2 Coorbit space theory
- 3 Constructing compactly supported atoms

- 1 Higher dimensional continuous wavelet transform
- 2 Coorbit space theory
- 3 Constructing compactly supported atoms
- 4 Decomposition space description of coorbit spaces

- 1 Higher dimensional continuous wavelet transform
- 2 Coorbit space theory
- 3 Constructing compactly supported atoms
- 4 Decomposition space description of coorbit spaces
- 5 Characterizing the wavefront set

- 1 Higher dimensional continuous wavelet transform
- 2 Coorbit space theory
- 3 Constructing compactly supported atoms
- 4 Decomposition space description of coorbit spaces
- 5 Characterizing the wavefront set

General Setup: *d*-dimensional CWT

- Dilation group $H < \operatorname{GL}(d, \mathbb{R})$, a closed matrix group
- $G = \mathbb{R}^d \times H$, the affine group generated by H and translations. As a set, $G = \mathbb{R}^d \times H$, with group law

$$(x,h)(y,g)=(x+hy,hg).$$

- ullet L^p(G) denotes L^p-space w.r.t. left Haar measure $d(x,h)=dx rac{dh}{|\det(h)|}$.
- Quasi-regular representation of G acts on $L^2(\mathbb{R}^d)$ via

$$(\pi(x,h)f)(y) = |\det(h)|^{-1/2} f(h^{-1}(y-x)).$$

• Continuous wavelet transform: Given suitable $\psi \in L^2(\mathbb{R}^d)$ and $f \in L^2(\mathbb{R}^d)$, let

$$\mathcal{W}_{\psi}f:G\to\mathbb{C}\;,\;\mathcal{W}_{\psi}f(x,h)=\langle f,\pi(x,h)\psi\rangle$$

Fourier transform of the dilated wavelet $\pi(0,h)\psi$ is given by

$$(\pi(0,h)\psi)^{\wedge}(\xi) = |\det(h)|^{1/2}\psi(h^{T}\xi).$$

This introduces the dual action

$$(h,\xi)\ni H\times\mathbb{R}^d\mapsto h^{-T}\xi\in\mathbb{R}^d$$
.

Fourier transform of the dilated wavelet $\pi(0,h)\psi$ is given by

$$(\pi(0,h)\psi)^{\wedge}(\xi) = |\det(h)|^{1/2}\psi(h^{T}\xi).$$

This introduces the dual action

$$(h,\xi)\ni H\times\mathbb{R}^d\mapsto h^{-T}\xi\in\mathbb{R}^d$$
.

Standing assumption on H

The dual action has a unique open orbit, with compact fixed groups.

Fourier transform of the dilated wavelet $\pi(0,h)\psi$ is given by

$$(\pi(0,h)\psi)^{\wedge}(\xi) = |\det(h)|^{1/2}\psi(h^{T}\xi).$$

This introduces the dual action

$$(h,\xi)\ni H\times\mathbb{R}^d\mapsto h^{-T}\xi\in\mathbb{R}^d$$
.

Standing assumption on H

The dual action has a unique open orbit, with compact fixed groups.

I.e. there exists $\xi_0 \in \mathbb{R}^d$ such that $\mathcal{O} = H^T \xi_0$ is open with complement of measure zero, and the stabilizer

$$H_{\xi_0} = \{ h \in H : h^T \xi_0 = \xi_0 \}$$

is compact.

Fourier transform of the dilated wavelet $\pi(0,h)\psi$ is given by

$$(\pi(0,h)\psi)^{\wedge}(\xi) = |\det(h)|^{1/2}\psi(h^{T}\xi).$$

This introduces the dual action

$$(h,\xi)\ni H\times\mathbb{R}^d\mapsto h^{-T}\xi\in\mathbb{R}^d$$
.

Standing assumption on H

The dual action has a unique open orbit, with compact fixed groups.

I.e. there exists $\xi_0 \in \mathbb{R}^d$ such that $\mathcal{O} = H^T \xi_0$ is open with complement of measure zero, and the stabilizer

$$H_{\xi_0} = \{ h \in H : h^T \xi_0 = \xi_0 \}$$

is compact.

 $\mathcal{O}^c := \mathbb{R}^d \setminus \mathcal{O}$ is called the blind spot of the wavelet transform.

Standing assumption and wavelet inversion

Theorem 1 (HF)

The standing assumption is equivalent to the property that π is a discrete series representation. In particular, there exist wavelets $\psi \in L^2(\mathbb{R}^d)$ such that

$$\mathcal{W}_{\psi}: \mathrm{L}^2(\mathbb{R}^n) \hookrightarrow \mathrm{L}^2(G)$$

is isometric. This equivalent to the (weak-sense) wavelet inversion formula

$$f = \int_G \mathcal{W}_{\psi} f(x, h) \ \pi(x, h) \psi \ d(x, h) \ .$$

Some examples in dimension two

① Diagonal group:

$$H = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) : ab \neq 0 \right\}$$

2 Similitude group:

$$H = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) : a^2 + b^2 \neq 0 \right\}$$

3 Shearlet group(s):

$$H_c = \left\{ \pm \left(egin{array}{cc} a & b \ 0 & a^c \end{array}
ight) : a > 0
ight\} \quad (c \in \mathbb{R})$$

(c = 1/2: Kutyniok/Labate/Dahlke/Steidl/Teschke ...)

- 1 Higher dimensional continuous wavelet transform
- 2 Coorbit space theory
- 3 Constructing compactly supported atoms
- 4 Decomposition space description of coorbit spaces
- 5 Characterizing the wavefront set

Elements of coorbit theory (Feichtinger/Gröchenig)

Elements of coorbit theory (Feichtinger/Gröchenig)

ullet Fix a Banach space Y of functions on G (solid, two-sided invariant).

Elements of coorbit theory (Feichtinger/Gröchenig)

• Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.

Elements of coorbit theory (Feichtinger/Gröchenig)

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.
- ullet Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

Elements of coorbit theory (Feichtinger/Gröchenig)

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$||f||_{CoY} = ||\mathcal{W}_{\psi}f||_{Y}$$
.

Elements of coorbit theory (Feichtinger/Gröchenig)

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$||f||_{CoY} = ||\mathcal{W}_{\psi}f||_{Y}$$
.

• Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}.$

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$||f||_{CoY} = ||\mathcal{W}_{\psi}f||_{Y}$$
.

- Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}$.
- Also works for quasi-Banach spaces (e.g., L^p , with p < 1).

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$||f||_{CoY} = ||\mathcal{W}_{\psi}f||_{Y}$$
.

- Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}$.
- Also works for quasi-Banach spaces (e.g., L^p , with p < 1).
- Main issues addressed by coorbit theory:

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$||f||_{CoY} = ||\mathcal{W}_{\psi}f||_{Y}$$
.

- Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}.$
- Also works for quasi-Banach spaces (e.g., L^p , with p < 1).
- Main issues addressed by coorbit theory:
 - ▶ Consistency: When is the norm independent of ψ ?

- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^p(G)$.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$||f||_{CoY} = ||\mathcal{W}_{\psi}f||_{Y}$$
 .

- Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}.$
- Also works for quasi-Banach spaces (e.g., L^p , with p < 1).
- Main issues addressed by coorbit theory:
 - **Consistency**: When is the norm independent of ψ ?
 - Discretization: When can the norm be expressed in terms of a discrete set of sampled wavelet coefficients?

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h) = w_0(h) = \max(1,\Delta_G(h))$$
.

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h) = w_0(h) = \max(1,\Delta_G(h))$$
.

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h) = w_0(h) = \max(1,\Delta_G(h))$$
.

Then, for all suitably dense $\Gamma \subset \mathbb{R}^d$, $\Lambda \subset H$, the system

$$(\psi_{y,\lambda})_{y,\lambda} = (\pi(\lambda y,\lambda)\psi)_{y\in\Gamma,\lambda\in\Lambda} \subset L^2(\mathbb{R}^d)$$

is a frame for $L^2(\mathbb{R}^d)$,

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h) = w_0(h) = \max(1,\Delta_G(h))$$
.

Then, for all suitably dense $\Gamma \subset \mathbb{R}^d$, $\Lambda \subset H$, the system

$$(\psi_{y,\lambda})_{y,\lambda} = (\pi(\lambda y,\lambda)\psi)_{y\in\Gamma,\lambda\in\Lambda} \subset L^2(\mathbb{R}^d)$$

is a frame for $L^2(\mathbb{R}^d)$, and for $f \in L^2(\mathbb{R}^d)$, the following are equivalent:

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h) = w_0(h) = \max(1,\Delta_G(h))$$
.

Then, for all suitably dense $\Gamma \subset \mathbb{R}^d$, $\Lambda \subset H$, the system

$$(\psi_{y,\lambda})_{y,\lambda} = (\pi(\lambda y,\lambda)\psi)_{y\in\Gamma,\lambda\in\Lambda} \subset L^2(\mathbb{R}^d)$$

is a frame for $L^2(\mathbb{R}^d)$, and for $f \in L^2(\mathbb{R}^d)$, the following are equivalent: (i) $(\langle f, \psi_{Y,\lambda} \rangle)_{Y,\lambda} \in \ell^p$.

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h) = w_0(h) = \max(1,\Delta_G(h))$$
.

Then, for all suitably dense $\Gamma \subset \mathbb{R}^d$, $\Lambda \subset H$, the system

$$(\psi_{y,\lambda})_{y,\lambda} = (\pi(\lambda y,\lambda)\psi)_{y\in\Gamma,\lambda\in\Lambda} \subset L^2(\mathbb{R}^d)$$

is a frame for $L^2(\mathbb{R}^d)$, and for $f \in L^2(\mathbb{R}^d)$, the following are equivalent:

- (i) $(\langle f, \psi_{y,\lambda} \rangle)_{y,\lambda} \in \ell^p$.
- (ii) There exists a coefficient family $(c_{\nu,\lambda})_{\nu,\lambda} \in \ell^p$ such that

$$f = \sum_{y,\lambda} c_{y,\lambda} \psi_{y,\lambda} .$$

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h)=w_0(h)=\max(1,\Delta_G(h))\;.$$

Then, for all suitably dense $\Gamma \subset \mathbb{R}^d$, $\Lambda \subset H$, the system

$$(\psi_{y,\lambda})_{y,\lambda} = (\pi(\lambda y,\lambda)\psi)_{y\in\Gamma,\lambda\in\Lambda} \subset L^2(\mathbb{R}^d)$$

is a frame for $L^2(\mathbb{R}^d)$, and for $f \in L^2(\mathbb{R}^d)$, the following are equivalent:

- (i) $(\langle f, \psi_{v,\lambda} \rangle)_{v,\lambda} \in \ell^p$.
- (ii) There exists a coefficient family $(c_{\nu,\lambda})_{\nu,\lambda} \in \ell^p$ such that

$$f = \sum_{y,\lambda} c_{y,\lambda} \psi_{y,\lambda} .$$

(iii) $f \in Co(L^p)$, i.e., $W_{\psi}f \in L^p(G)$.

Let $1 \leq p < 2$. Assume that $\psi \in \mathcal{B}_{v_0}$, for the control weight

$$v_0(x,h) = w_0(h) = \max(1,\Delta_G(h))$$
.

Then, for all suitably dense $\Gamma \subset \mathbb{R}^d$, $\Lambda \subset H$, the system

$$(\psi_{y,\lambda})_{y,\lambda} = (\pi(\lambda y,\lambda)\psi)_{y\in\Gamma,\lambda\in\Lambda} \subset L^2(\mathbb{R}^d)$$

is a frame for $L^2(\mathbb{R}^d)$, and for $f \in L^2(\mathbb{R}^d)$, the following are equivalent:

- (i) $(\langle f, \psi_{V,\lambda} \rangle)_{V,\lambda} \in \ell^p$.
- (ii) There exists a coefficient family $(c_{\nu,\lambda})_{\nu,\lambda} \in \ell^p$ such that

$$f = \sum_{y,\lambda} c_{y,\lambda} \psi_{y,\lambda} .$$

(iii) $f \in Co(L^p)$, i.e., $W_{\psi}f \in L^p(G)$.

Note: The coorbit space $Co(L^p)$ is independent of $\psi \in \mathcal{B}_{v_0}$.

Definition 2

Let $v_0: G \to \mathbb{R}^+$ be continuous and submultiplicative. We call $\psi \in L^2(\mathbb{R}^d)$ v_0 -atom if $\mathcal{W}_\psi \psi \in W(L^\infty, L^1_{v_0})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu_0}(G)$, for some compact neighborhood $U\subset G$ of the identity. The set of ν_0 -atoms is denoted by \mathcal{B}_{ν_0} .

Definition 2

Let $v_0: G \to \mathbb{R}^+$ be continuous and submultiplicative. We call $\psi \in L^2(\mathbb{R}^d)$ v_0 -atom if $\mathcal{W}_\psi \psi \in W(L^\infty, L^1_{v_0})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu_0}(G)$, for some compact neighborhood $U\subset G$ of the identity. The set of ν_0 -atoms is denoted by \mathcal{B}_{ν_0} .

Main challenges:

Definition 2

Let $v_0: G \to \mathbb{R}^+$ be continuous and submultiplicative. We call $\psi \in L^2(\mathbb{R}^d)$ v_0 -atom if $\mathcal{W}_\psi \psi \in W(L^\infty, L^1_{v_0})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu_0}(G)$, for some compact neighborhood $U\subset G$ of the identity. The set of ν_0 -atoms is denoted by \mathcal{B}_{ν_0} .

Main challenges:

• Show that \mathcal{B}_{v_0} is nonempty. (I.e., coorbit theory is applicable.)

Definition 2

Let $v_0: G \to \mathbb{R}^+$ be continuous and submultiplicative. We call $\psi \in L^2(\mathbb{R}^d)$ v_0 -atom if $\mathcal{W}_\psi \psi \in W(L^\infty, L^1_{v_0})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu_0}(G)$, for some compact neighborhood $U\subset G$ of the identity. The set of ν_0 -atoms is denoted by \mathcal{B}_{ν_0} .

Main challenges:

- Show that \mathcal{B}_{v_0} is nonempty. (I.e., coorbit theory is applicable.)
- Exhibit convenient subsets of \mathcal{B}_{v_0} .

JIWI I I

Definition 2

Let $v_0: G \to \mathbb{R}^+$ be continuous and submultiplicative. We call $\psi \in L^2(\mathbb{R}^d)$ v_0 -atom if $\mathcal{W}_\psi \psi \in W(L^\infty, L^1_{v_0})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu_0}(G)$, for some compact neighborhood $U \subset G$ of the identity. The set of ν_0 -atoms is denoted by \mathcal{B}_{ν_0} .

Main challenges:

- Show that \mathcal{B}_{v_0} is nonempty. (I.e., coorbit theory is applicable.)
- Exhibit convenient subsets of \mathcal{B}_{ν_0} .
- Are there compactly supported functions in \mathcal{B}_{v_0} ? How do you construct them?

OII WITE

Outline

- 1 Higher dimensional continuous wavelet transform
- Coorbit space theory
- 3 Constructing compactly supported atoms
- 4 Decomposition space description of coorbit spaces
- 5 Characterizing the wavefront set

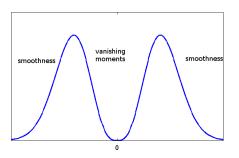
Reminder: Nice wavelets in dimension one

Desirable properties of wavelets

A nice wavelet $\psi \in L^2(\mathbb{R})$ typically has three properties: Fast decay, smoothness, vanishing moments.

Concisely: Nice wavelets have good time-frequency localization.

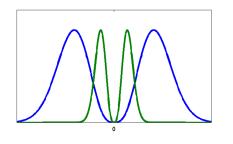
(Note: Frequency-side localization is understood away from zero.)



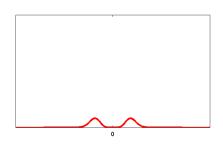
Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of $\mathcal{W}_{\psi}\psi$:

$$|\mathcal{W}_{\psi}\psi(x,s)| \leq \left\| \partial^{\ell} \left(\widehat{\psi} \cdot \widehat{\psi}(s^{-1} \cdot) \right) \right\|_{1} |s|^{-1/2} (1+|x|)^{-\ell}$$



Plot of $\widehat{\psi}$ and $\widehat{\psi}(3\cdot)$



Overlap $\widehat{\psi} \cdot \widehat{\psi}(3\cdot)$

 \Rightarrow vanishing moments, smoothness govern decay of overlap, as $|s| \to 0, \infty$



Central idea

• Characterize wavelet atoms in terms of smoothness,

Central idea

Characterize wavelet atoms in terms of smoothness, fast decay,

Central idea

 Characterize wavelet atoms in terms of smoothness, fast decay, vanishing moments.

Central idea

 Characterize wavelet atoms in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.

Central idea

- Characterize wavelet atoms in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Suitable criterion: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.

Central idea

- Characterize wavelet atoms in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Suitable criterion: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.
- A first indicator that this works: (HF, '12)

Central idea

- Characterize wavelet atoms in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Suitable criterion: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.
- A first indicator that this works: (HF, '12)

$$\mathcal{F}^{-1}C_c^{\infty}(\mathcal{O})\subset\mathcal{B}_{\nu_0}$$
.

Central idea

- Characterize wavelet atoms in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Suitable criterion: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.
- A first indicator that this works: (HF, '12)

$$\mathcal{F}^{-1}C_c^{\infty}(\mathcal{O})\subset\mathcal{B}_{\nu_0}$$
.

Definition 3

Let $r \in \mathbb{N}$ be given. $f \in L^1(\mathbb{R}^d)$ has vanishing moments in \mathcal{O}^c of order r if all distributional derivatives $\partial^{\alpha} \widehat{f}$ with $|\alpha| < r$ are continuous functions, identically vanishing on \mathcal{O}^c .

©R(WIH≝

Fourier envelope

Fourier envelope

Definition 4

Let $\mathcal{O} \subset \mathbb{R}^d$ denote the dual orbit. Given $\xi \in \mathcal{O}$, let $\operatorname{dist}(\xi, \mathcal{O}^c)$ denote the euclidean distance of ξ to \mathcal{O}^c . Let

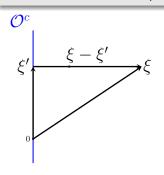
$$A(\xi) = \min\left(\frac{\operatorname{dist}(\xi, \mathcal{O}^c)}{1 + \sqrt{|\xi|^2 - \operatorname{dist}(\xi, \mathcal{O}^c)^2}}, \frac{1}{1 + |\xi|}\right) \ .$$

Fourier envelope

Definition 4

Let $\mathcal{O} \subset \mathbb{R}^d$ denote the dual orbit. Given $\xi \in \mathcal{O}$, let $\operatorname{dist}(\xi, \mathcal{O}^c)$ denote the euclidean distance of ξ to \mathcal{O}^c . Let

$$A(\xi) = \min\left(\frac{\operatorname{dist}(\xi, \mathcal{O}^c)}{1 + \sqrt{|\xi|^2 - \operatorname{dist}(\xi, \mathcal{O}^c)^2}}, \frac{1}{1 + |\xi|}\right) .$$



$$A(\xi) = \min\left(\frac{|\xi - \xi'|}{1 + |\xi'|}, \frac{1}{1 + |\xi|}\right)$$

with $\xi'={\rm point}$ in \mathcal{O}^c closest to ξ

A general vanishing moment criterion

A general vanishing moment criterion

Theorem 5 (HF/R. Raisi Tousi)

Fix $\xi_0 \in \mathcal{O}$, and define $A_H : H \to \mathbb{R}^+$, $A_H(h) = A(h^T \xi_0)$.

A general vanishing moment criterion

Theorem 5 (HF/R. Raisi Tousi)

Fix $\xi_0 \in \mathcal{O}$, and define $A_H: H \to \mathbb{R}^+$, $A_H(h) = A(h^T \xi_0)$. Assume that

$$v_0(x,h) \leq (1+|x|)^s w_0(h)$$

A general vanishing moment criterion

Theorem 5 (HF/R. Raisi Tousi)

Fix $\xi_0 \in \mathcal{O}$, and define $A_H : H \to \mathbb{R}^+$, $A_H(h) = A(h^T \xi_0)$. Assume that

$$v_0(x,h) \leq (1+|x|)^s w_0(h)$$

where for suitable $e_1, \ldots, e_4 \geq 0$ the following hold:

$$w_0(h^{\pm 1})A_H(h)^{e_1} \leq 1,$$
 (1)

$$||h^{\pm 1}||A_H(h)^{e_2}| \leq 1,$$
 (2)

$$|\det(h^{\pm 1})|A_H(h)^{e_3} \leq 1, \qquad (3)$$

$$\Delta_H(h^{\pm 1})A_H(h)^{e_4} \leq 1. \tag{4}$$

A general vanishing moment criterion

Theorem 5 (HF/R. Raisi Tousi)

Fix $\xi_0 \in \mathcal{O}$, and define $A_H : H \to \mathbb{R}^+$, $A_H(h) = A(h^T \xi_0)$. Assume that

$$v_0(x,h) \leq (1+|x|)^s w_0(h)$$

where for suitable $e_1, \ldots, e_4 \geq 0$ the following hold:

$$w_0(h^{\pm 1})A_H(h)^{e_1} \leq 1,$$
 (1)

$$||h^{\pm 1}||A_H(h)^{e_2}| \leq 1,$$
 (2)

$$|\det(h^{\pm 1})|A_H(h)^{e_3} \leq 1, \qquad (3)$$

$$\Delta_H(h^{\pm 1})A_H(h)^{e_4} \leq 1. \tag{4}$$

Define $r := |e_1 + e_2(2s + 2d + 2) + \frac{3}{2}e_3 + e_4| + 2d + 2$.

A general vanishing moment criterion

Theorem 5 (HF/R. Raisi Tousi)

Fix $\xi_0 \in \mathcal{O}$, and define $A_H : H \to \mathbb{R}^+$, $A_H(h) = A(h^T \xi_0)$. Assume that

$$v_0(x,h) \leq (1+|x|)^s w_0(h)$$

where for suitable $e_1, \ldots, e_4 \ge 0$ the following hold:

$$w_0(h^{\pm 1})A_H(h)^{e_1} \leq 1,$$
 (1)

$$||h^{\pm 1}||A_H(h)^{e_2}| \leq 1,$$
 (2)

$$|\det(h^{\pm 1})|A_H(h)^{e_3} \leq 1, \qquad (3)$$

$$\Delta_H(h^{\pm 1})A_H(h)^{e_4} \leq 1. \tag{4}$$

Define $r := \lfloor e_1 + e_2(2s + 2d + 2) + \frac{3}{2}e_3 + e_4 \rfloor + 2d + 2$. Then any function ψ with $|\widehat{\psi}|_{r,r} < \infty$ and vanishing moments in \mathcal{O}^c of order r is in \mathcal{B}_{v_0} .

Lemma 6 (HF)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^c = \{ \xi \in \mathbb{R}^d : P(\xi) = 0 \} .$$

Lemma 6 (HF)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^c = \{ \xi \in \mathbb{R}^d : P(\xi) = 0 \} .$$

Construction procedure

Lemma 6 (HF)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^c = \{ \xi \in \mathbb{R}^d : P(\xi) = 0 \} .$$

Construction procedure

• Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.

Lemma 6 (HF)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^c = \{ \xi \in \mathbb{R}^d : P(\xi) = 0 \} .$$

Construction procedure

- Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.
- Let r be the required number of vanishing moments from Theorem 5. Pick $f \in C_c^{\infty}(\mathbb{R}^d) \setminus \{0\}$, and define

$$\psi = \mathcal{D}_{\mathcal{O}}^{r}(f) .$$

Lemma 6 (HF)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^c = \{ \xi \in \mathbb{R}^d : P(\xi) = 0 \} .$$

Construction procedure

- Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.
- Let r be the required number of vanishing moments from Theorem 5. Pick $f \in C_c^{\infty}(\mathbb{R}^d) \setminus \{0\}$, and define

$$\psi = \mathcal{D}_{\mathcal{O}}^{r}(f)$$
.

• Then $\psi \in C_c^{\infty}(\mathbb{R}^d)$ has vanishing moments of order r in \mathcal{O}^c .

Lemma 6 (HF)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

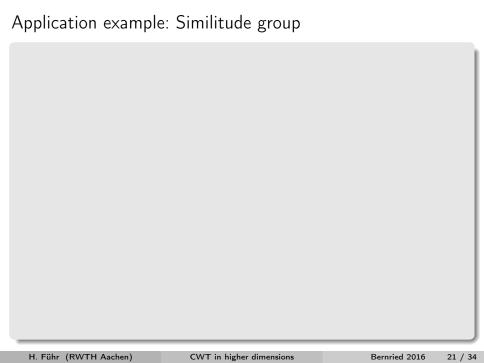
$$\mathcal{O}^c = \{ \xi \in \mathbb{R}^d : P(\xi) = 0 \} .$$

Construction procedure

- Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.
- Let r be the required number of vanishing moments from Theorem 5. Pick $f \in C_c^{\infty}(\mathbb{R}^d) \setminus \{0\}$, and define

$$\psi = \mathcal{D}_{\mathcal{O}}^{r}(f)$$
.

- Then $\psi \in C_c^{\infty}(\mathbb{R}^d)$ has vanishing moments of order r in \mathcal{O}^c .
- Clearly, picking $f \in C_c^k(\mathbb{R}^d)$, for k sufficiently large, is enough.



• Setup: $H = \mathbb{R}^+ \cdot SO(d)$ (Murenzi). Typical group element: h = rS, with r > 0 and S rotation matrix.

- Setup: $H = \mathbb{R}^+ \cdot SO(d)$ (Murenzi). Typical group element: h = rS, with r > 0 and S rotation matrix.
- $Y = \operatorname{Co}(\operatorname{L}^p(G))$

- Setup: $H = \mathbb{R}^+ \cdot SO(d)$ (Murenzi). Typical group element: h = rS, with r > 0 and S rotation matrix.
- $Y = \operatorname{Co}(\operatorname{L}^p(G))$
- Open dual orbit: $\mathcal{O} = \mathbb{R}^d \setminus \{0\}$, with differential operator $D_{\mathcal{O}} =$ Laplacian.

- Setup: $H = \mathbb{R}^+ \cdot SO(d)$ (Murenzi). Typical group element: h = rS, with r > 0 and S rotation matrix.
- $Y = \operatorname{Co}(\operatorname{L}^p(G))$
- Open dual orbit: $\mathcal{O} = \mathbb{R}^d \setminus \{0\}$, with differential operator $D_{\mathcal{O}} =$ Laplacian.
- Auxiliary function: $A_H(h) = \min \left(|r|, \frac{1}{1+|r|} \right)$.

- Setup: $H = \mathbb{R}^+ \cdot SO(d)$ (Murenzi). Typical group element: h = rS, with r > 0 and S rotation matrix.
- Open dual orbit: $\mathcal{O} = \mathbb{R}^d \setminus \{0\}$, with differential operator $D_{\mathcal{O}} =$ Laplacian.
- Auxiliary function: $A_H(h) = \min \left(|r|, \frac{1}{1+|r|} \right)$.
- Weights on $H: |\det(h)| = r^d, \Delta_H(h) = 1$,

- Setup: $H = \mathbb{R}^+ \cdot SO(d)$ (Murenzi). Typical group element: h = rS, with r > 0 and S rotation matrix.
- $Y = \operatorname{Co}(\operatorname{L}^p(G))$
- Open dual orbit: $\mathcal{O} = \mathbb{R}^d \setminus \{0\}$, with differential operator $D_{\mathcal{O}} =$ Laplacian.
- Auxiliary function: $A_H(h) = \min \left(|r|, \frac{1}{1+|r|} \right)$.
- Weights on H: $|\det(h)| = r^d$, $\Delta_H(h) = 1$, $w_0(h) = \max(1, \Delta_G(h))$.

- Setup: $H = \mathbb{R}^+ \cdot SO(d)$ (Murenzi). Typical group element: h = rS, with r > 0 and S rotation matrix.
- Open dual orbit: $\mathcal{O} = \mathbb{R}^d \setminus \{0\}$, with differential operator $D_{\mathcal{O}} =$ Laplacian.
- Auxiliary function: $A_H(h) = \min\left(|r|, \frac{1}{1+|r|}\right)$.
- Weights on H: $|\det(h)| = r^d$, $\Delta_H(h) = 1$, $w_0(h) = \max(1, \Delta_G(h))$.
- → Theorem 5 is applicable, with

$$e_1 = d$$
, $e_2 = 1$, $e_3 = d$, $e_4 = 0$.

• Resulting number of vanishing moments:

$$r = \left| \frac{d}{2} \right| + 6d + 3.$$

Setup:

$$H=H_c=\left\{\pm\left(egin{array}{cc} a & b \ 0 & a^c \end{array}
ight) \ : \ a,b\in\mathbb{R},a>0
ight\} \ ,$$

where c can be any real number.

ullet Aim: Construct compactly supported atoms for $\mathrm{Co}(\mathrm{L}^p(\mathcal{G}))$

Setup:

$$H=H_c=\left\{\pm\left(egin{array}{cc} a & b \ 0 & a^c \end{array}
ight) \ : \ a,b\in\mathbb{R},a>0
ight\} \ ,$$

where c can be any real number.

- ullet Aim: Construct compactly supported atoms for $\mathrm{Co}(\mathrm{L}^p(G))$
- Dual orbit: $\mathcal{O} = \mathbb{R}^2 \setminus (\{0\} \times \mathbb{R})$).

Setup:

$$H=H_c=\left\{\pm\left(egin{array}{cc} a & b \ 0 & a^c \end{array}
ight) \ : \ a,b\in\mathbb{R},a>0
ight\} \ ,$$

where c can be any real number.

- ullet Aim: Construct compactly supported atoms for $\mathrm{Co}(\mathrm{L}^p(\mathcal{G}))$
- Dual orbit: $\mathcal{O} = \mathbb{R}^2 \setminus (\{0\} \times \mathbb{R})$). Associated differential operator: $D_{\mathcal{O}} = \frac{d}{dx_1}$.

Setup:

$$H=H_c=\left\{\pm\left(egin{array}{cc} a & b \ 0 & a^c \end{array}
ight) \ : \ a,b\in\mathbb{R},a>0
ight\} \ ,$$

where c can be any real number.

- ullet Aim: Construct compactly supported atoms for $\mathrm{Co}(\mathrm{L}^p(G))$
- Dual orbit: $\mathcal{O} = \mathbb{R}^2 \setminus (\{0\} \times \mathbb{R})$). Associated differential operator: $D_{\mathcal{O}} = \frac{d}{dx_1}$.
- ullet Auxiliary function: For $h=\pm\left(egin{array}{cc}a&b\\0&a^c\end{array}
 ight)\in H$ we obtain

$$A_H(h) = \min\left(\frac{|a|}{1+|b|}, \frac{1}{1+|(a,b)^T|}\right) .$$

Setup:

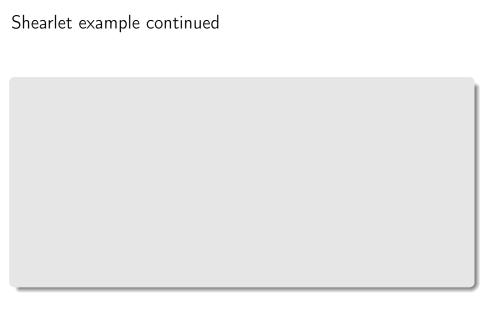
$$H=H_c=\left\{\pm\left(egin{array}{cc} a & b \ 0 & a^c \end{array}
ight) \ : \ a,b\in\mathbb{R},a>0
ight\} \ ,$$

where c can be any real number.

- ullet Aim: Construct compactly supported atoms for $\operatorname{Co}(\operatorname{L}^p(G))$
- Dual orbit: $\mathcal{O} = \mathbb{R}^2 \setminus (\{0\} \times \mathbb{R})$). Associated differential operator: $D_{\mathcal{O}} = \frac{d}{dx_1}$.
- Auxiliary function: For $h = \pm \begin{pmatrix} a & b \\ 0 & a^c \end{pmatrix} \in H$ we obtain

$$A_H(h) = \min\left(\frac{|a|}{1+|b|}, \frac{1}{1+|(a,b)^T|}\right) .$$

 $|\det(h)| = |a|^{1+c}, \ \Delta_H(h) = |a|^{c-1}, \ ||h|| \sim \max(|a|, |a|^c, |b|)$



• The control weight for $L^p(G)$ is $v_0(x,h) = w_0(h) = \max(1,|a|^{-2})$.

- The control weight for $L^p(G)$ is $v_0(x,h) = w_0(h) = \max(1,|a|^{-2})$.
- $\circ \leadsto \mathsf{Theorem} \ \mathsf{5} \ \mathsf{is} \ \mathsf{applicable}, \ \mathsf{with} \ \mathsf{s} = \mathsf{0} \ \mathsf{and}$

$$e_1 = 2$$
, $e_2 = 1 + |c|$, $e_3 = |1 + c|$, $e_4 = |1 - c|$,

- The control weight for $L^p(G)$ is $v_0(x,h) = w_0(h) = \max(1,|a|^{-2})$.
- ullet \longrightarrow Theorem 5 is applicable, with s=0 and

$$e_1 = 2 \ , \ e_2 = 1 + |c| \ , \ e_3 = |1 + c| \ , \ e_4 = |1 - c| \ ,$$

Resulting number of vanishing moments:

$$r = \left| 6|c| + |1+c| \frac{3}{2} + |1-c| \right| + 14$$
.

- The control weight for $L^p(G)$ is $v_0(x,h) = w_0(h) = \max(1,|a|^{-2})$.
- \rightsquigarrow Theorem 5 is applicable, with s = 0 and

$$e_1 = 2 \ , \ e_2 = 1 + |c| \ , \ e_3 = |1 + c| \ , \ e_4 = |1 - c| \ ,$$

Resulting number of vanishing moments:

$$r = \left| 6|c| + |1+c| \frac{3}{2} + |1-c| \right| + 14$$
.

• In the classical shearlet case (c = 1/2), vanishing moments of order 19 suffice.

Verifying the conditions

Theorem 7 (HF/R. Raisi Tousi)

Assume that H fulfills the standing assumption, and belongs to one of the following classes:

- $H = \mathbb{R}^+ \cdot SO(d)$; or
- H is abelian; or
- H is a generalized shearlet dilation group, i.e. there exists a closed abelian matrix group S consisting of unipotent matrices, the shearing subgroup), and a diagonal matrix Y generating the scaling subgroup such that

$$H = \{ \exp(rY)s : r \in \mathbb{R}, s \in S \}$$
, or

 any group constructed from the above using direct products and conjugation by arbitrary invertible matrices.

Then H fulfills the conditions of Theorem 5, with explicitly computable exponents e_1, \ldots, e_4 .

Outline

- 1 Higher dimensional continuous wavelet transform
- 2 Coorbit space theory
- 3 Constructing compactly supported atoms
- 4 Decomposition space description of coorbit spaces
- 5 Characterizing the wavefront set

Decomposition spaces (Feichtinger/Gröbner)

Decomposition spaces (Feichtinger/Gröbner)

• Main idea: Uniformly cover the frequencies by a family of open sets. Decompose functions using a subordinate partition of unity. Introduce a norm by locally taking L^p -norms, and then globally combine using weighted ℓ^q .

Decomposition spaces (Feichtinger/Gröbner)

- Main idea: Uniformly cover the frequencies by a family of open sets. Decompose functions using a subordinate partition of unity. Introduce a norm by locally taking L^p -norms, and then globally combine using weighted ℓ^q .
- Very flexible scheme: Describes (homogeneous and inhomogeneous)
 Besov spaces, modulation spaces, shearlet and curvelet approximation spaces, and...

Decomposition spaces (Feichtinger/Gröbner)

- Main idea: Uniformly cover the frequencies by a family of open sets. Decompose functions using a subordinate partition of unity. Introduce a norm by locally taking L^p -norms, and then globally combine using weighted ℓ^q .
- Very flexible scheme: Describes (homogeneous and inhomogeneous)
 Besov spaces, modulation spaces, shearlet and curvelet approximation spaces, and...

Theorem 8 (HF, F. Voigtlaender)

Every wavelet coorbit space $Co(L_v^{p,q})$ is a decomposition space. The frequency covering underlying the latter is computed using the dual action.

Group H

Dual orbit \mathcal{O}

Group H

$$p_{\xi_0}: H \to \mathcal{O}, h \mapsto h^T \xi_0$$
 proper orbit map

Dual orbit \mathcal{O}

Group
$$H$$

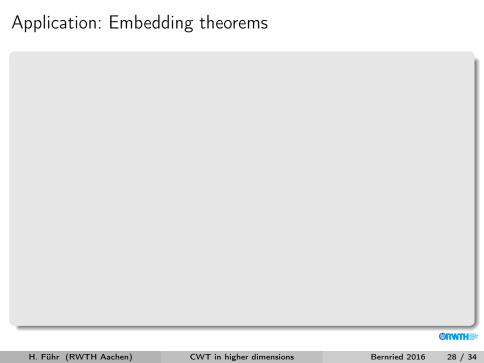
$$\begin{cases} (h_i)_{i \in I} \text{ well-spread in } H \\ (\text{continuous}) \text{ weight } v : H \to (0, \infty) \end{cases}$$

$$\begin{vmatrix} p_{\xi_0} : H \to \mathcal{O}, h \mapsto h^T \xi_0 \\ \text{proper orbit map} \end{vmatrix}$$

$$\begin{cases} \mathcal{Q} = \left(h_i^{-T} \mathcal{Q}\right)_{i \in I} \text{ admissible covering} \\ u_i := |\det(h_i)|^{\frac{1}{2} - \frac{1}{q}} \cdot v\left(h_i\right) \text{ discrete weight} \end{cases}$$

Fix a suitable partition of unity $(\varphi_i)_{i\in I}$ on $\mathcal O$ subordinate to $\mathcal Q$ and define

Fix a suitable partition of unity
$$(\varphi_i)_{i\in I}$$
 on $\mathcal O$ subordinate to $\mathcal Q$ and define $\|f\|_{\mathcal D\left(\mathcal Q,L^p,\ell^q_u
ight)} = \left\|\left(\left\|\mathcal F^{-1}\left(\varphi_if\right)
ight)_p\right|_{i\in I}\right\|_{\ell^q} = \left\|\left(u_i\cdot\left\|\mathcal F^{-1}\left(\varphi_if\right)
ight)_p\right|_{i\in I}\right\|_{\ell^q}.$



 Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.
- There is a far-reaching embedding theory for decomposition spaces, even for those with qualitatively different coverings (F. Voigtlaender).

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.
- There is a far-reaching embedding theory for decomposition spaces, even for those with qualitatively different coverings (F. Voigtlaender).
- Sample applications (F. Voigtlaender, 2015): Embedding statements
 of the following types can be established in terms of the involved
 parameters. The criteria are usually sharp.

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.
- There is a far-reaching embedding theory for decomposition spaces, even for those with qualitatively different coverings (F. Voigtlaender).
- Sample applications (F. Voigtlaender, 2015): Embedding statements
 of the following types can be established in terms of the involved
 parameters. The criteria are usually sharp.

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.
- There is a far-reaching embedding theory for decomposition spaces, even for those with qualitatively different coverings (F. Voigtlaender).
- Sample applications (F. Voigtlaender, 2015): Embedding statements
 of the following types can be established in terms of the involved
 parameters. The criteria are usually sharp.
 - ▶ $Co_H(L_v^{p_1,q_1}) \hookrightarrow \dot{B}_s^{p_2,q_2}(\mathbb{R}^2)$, and vice versa, where H is a shearlet dilation group with arbitrary anisotropy parameter c.

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.
- There is a far-reaching embedding theory for decomposition spaces, even for those with qualitatively different coverings (F. Voigtlaender).
- Sample applications (F. Voigtlaender, 2015): Embedding statements
 of the following types can be established in terms of the involved
 parameters. The criteria are usually sharp.
 - $ightharpoonup Co_H(L_v^{p_1,q_1}) \hookrightarrow \dot{B}_s^{p_2,q_2}(\mathbb{R}^2)$, and vice versa, where H is a shearlet dilation group with arbitrary anisotropy parameter c.
 - $ightharpoonup Co_{H_1}(L_{v_1}^{p_1,q_1}) \hookrightarrow Co_{H_2}(L_{v_2}^{p_2,q_2})$, where H_1,H_2 are shearlet dilation groups with different anisotropy parameters.

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.
- There is a far-reaching embedding theory for decomposition spaces, even for those with qualitatively different coverings (F. Voigtlaender).
- Sample applications (F. Voigtlaender, 2015): Embedding statements
 of the following types can be established in terms of the involved
 parameters. The criteria are usually sharp.
 - ▶ $Co_H(L_v^{p_1,q_1}) \hookrightarrow \dot{B}_s^{p_2,q_2}(\mathbb{R}^2)$, and vice versa, where H is a shearlet dilation group with arbitrary anisotropy parameter c.
 - $ightharpoonup Co_{H_1}(L_{v_1}^{p_1,q_1}) \hookrightarrow Co_{H_2}(L_{v_2}^{p_2,q_2})$, where H_1,H_2 are shearlet dilation groups with different anisotropy parameters.
 - $B_s^{p_1,q_1}(\mathbb{R}^2)\hookrightarrow \dot{B}_s^{p_2,q_2}(\mathbb{R}^2)$, and vice versa.

- Note: Decomposition spaces are a Fourier-analytic description, which justifies calling them smoothness spaces.
- Decomposition space view provides a common framework for coorbit spaces over different groups.
- There is a far-reaching embedding theory for decomposition spaces, even for those with qualitatively different coverings (F. Voigtlaender).
- Sample applications (F. Voigtlaender, 2015): Embedding statements
 of the following types can be established in terms of the involved
 parameters. The criteria are usually sharp.
 - ▶ $Co_H(L_v^{p_1,q_1}) \hookrightarrow \dot{B}_s^{p_2,q_2}(\mathbb{R}^2)$, and vice versa, where H is a shearlet dilation group with arbitrary anisotropy parameter c.
 - $ightharpoonup Co_{H_1}(L_{v_1}^{p_1,q_1}) \hookrightarrow Co_{H_2}(L_{v_2}^{p_2,q_2})$, where H_1,H_2 are shearlet dilation groups with different anisotropy parameters.
 - $B_s^{p_1,q_1}(\mathbb{R}^2)\hookrightarrow \dot{B}_s^{p_2,q_2}(\mathbb{R}^2)$, and vice versa.
 - $\sim Co(L^{p,q}) \hookrightarrow W^{k,p}(\mathbb{R}^n).$

Outline

- 1 Higher dimensional continuous wavelet transform
- 2 Coorbit space theory
- 3 Constructing compactly supported atoms
- 4 Decomposition space description of coorbit spaces
- 5 Characterizing the wavefront set

Definition 9 (Cones and truncated cones)

Given $\xi \in S^{d-1}$ and $\epsilon, R > 0$, we let

$$C(\xi,\epsilon) = \{r\xi': \xi' \in S^{d-1} \cap B_{\epsilon}(\xi), r > 0\}$$

Definition 9 (Cones and truncated cones)

Given $\xi \in S^{d-1}$ and $\epsilon, R > 0$, we let

$$C(\xi, \epsilon) = \{r\xi' : \xi' \in S^{d-1} \cap B_{\epsilon}(\xi), r > 0\}$$

$$C(\xi, \epsilon, R) = C(\xi, \epsilon) \setminus B_{R}(0)$$

Definition 9 (Cones and truncated cones)

Given $\xi \in S^{d-1}$ and $\epsilon, R > 0$, we let

$$C(\xi,\epsilon) = \{r\xi' : \xi' \in S^{d-1} \cap B_{\epsilon}(\xi), r > 0\}$$

$$C(\xi,\epsilon,R) = C(\xi,\epsilon) \setminus B_{R}(0)$$

Definition 10 (Wavefront set)

Let $u \in \mathcal{S}'(\mathbb{R}^d)$. A pair $(x,\xi) \in \mathbb{R}^d \times \mathcal{S}^{d-1}$ is **not** in the wavefront set WF(u) if there exists $\varphi \in C_c^{\infty}(\mathbb{R}^d)$, identically one in a neighborhood of x, as well as $\epsilon > 0$ such that for all $N \in \mathbb{N}$

$$\forall \xi' \in C(\xi, \epsilon) : |(u\varphi)^{\wedge}(\xi')| \leq (1 + |\xi'|)^{-N} , \qquad (5)$$

Definition 9 (Cones and truncated cones)

Given $\xi \in S^{d-1}$ and $\epsilon, R > 0$, we let

$$C(\xi,\epsilon) = \{r\xi' : \xi' \in S^{d-1} \cap B_{\epsilon}(\xi), r > 0\}$$

$$C(\xi,\epsilon,R) = C(\xi,\epsilon) \setminus B_{R}(0)$$

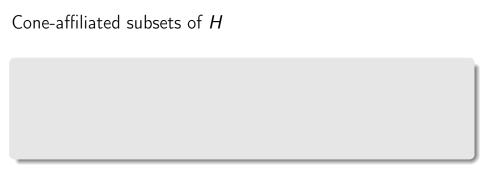
Definition 10 (Wavefront set)

Let $u \in \mathcal{S}'(\mathbb{R}^d)$. A pair $(x,\xi) \in \mathbb{R}^d \times \mathcal{S}^{d-1}$ is not in the wavefront set WF(u) if there exists $\varphi \in C_c^{\infty}(\mathbb{R}^d)$, identically one in a neighborhood of x, as well as $\epsilon > 0$ such that for all $N \in \mathbb{N}$

$$\forall \xi' \in C(\xi, \epsilon) : \left| (u\varphi)^{\wedge} (\xi') \right| \leq (1 + |\xi'|)^{-N} , \qquad (5)$$

or equivalently, for any R > 0:

$$\forall \xi' \in C(\xi, \epsilon, R) : \left| (u\varphi)^{\wedge} (\xi') \right| \leq |\xi'|^{-N} . \tag{6}$$



• Aim for a characterization of the following type: $(x,\xi) \not\in WF(u)$ iff $|\mathcal{W}_{\psi}u(y,h)| \leq \|h\|^N$, for all $N \in \mathbb{N}$ and all small-scale wavelets $\pi(y,h)\psi$ supported near x and oscillating in a direction close to ξ .

- Aim for a characterization of the following type: $(x,\xi) \not\in WF(u)$ iff $|\mathcal{W}_{\psi}u(y,h)| \leq \|h\|^N$, for all $N \in \mathbb{N}$ and all small-scale wavelets $\pi(y,h)\psi$ supported near x and oscillating in a direction close to ξ .
- Challenge: How do you formalize that?

- Aim for a characterization of the following type: $(x,\xi) \notin WF(u)$ iff $|\mathcal{W}_{\psi}u(y,h)| \leq \|h\|^N$, for all $N \in \mathbb{N}$ and all small-scale wavelets $\pi(y,h)\psi$ supported near x and oscillating in a direction close to ξ .
- Challenge: How do you formalize that?

If $\mathcal{O} \subset \mathbb{R}^d$ is the open orbit, and $\xi \in \mathcal{O}$, then $\mathbb{R}^+ \xi \subset \mathcal{O}$. We fix $\xi_0 \in \mathcal{O}$.

- Aim for a characterization of the following type: $(x,\xi) \notin WF(u)$ iff $|\mathcal{W}_{\psi}u(y,h)| \leq \|h\|^N$, for all $N \in \mathbb{N}$ and all small-scale wavelets $\pi(y,h)\psi$ supported near x and oscillating in a direction close to ξ .
- Challenge: How do you formalize that?

If $\mathcal{O} \subset \mathbb{R}^d$ is the open orbit, and $\xi \in \mathcal{O}$, then $\mathbb{R}^+ \xi \subset \mathcal{O}$. We fix $\xi_0 \in \mathcal{O}$.

Definition 11

Let $\xi \in \mathcal{O} \cap S^{d-1}$, and $\epsilon, \delta, R > 0$ be such that $B_{\delta}(\xi_0) \subset \mathcal{O}$ and $C(\xi, \epsilon) \subset \mathcal{O}$. We define sets $K_i(\xi, \epsilon, \delta, R) \subset K_o(\xi, \epsilon, \delta, R) \subset H$ by

$$K_{i}(\xi, \epsilon, \delta, R) = \{ h \in H : h^{-T} B_{\delta}(\xi_{0}) \subset C(\xi, \epsilon, R) \}$$

$$K_{o}(\xi, \epsilon, \delta, R) = \{ h \in H : h^{-T} B_{\delta}(\xi_{0}) \cap C(\xi, \epsilon, R) \neq \emptyset \}$$

Theorem 12 (HF/J. Fell/F. Voigtlaender)

Assume that the dual action is microlocally admissible, and has the cone approximation property. Let $u \in \mathcal{S}'(\mathbb{R}^d)$

Theorem 12 (HF/J. Fell/F. Voigtlaender)

Assume that the dual action is microlocally admissible, and has the cone approximation property. Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x, \xi) \in \mathbb{R}^d \times (\mathcal{O} \cap S^{d-1})$.

Theorem 12 (HF/J. Fell/F. Voigtlaender)

Assume that the dual action is microlocally admissible, and has the cone approximation property. Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x,\xi) \in \mathbb{R}^d \times (\mathcal{O} \cap S^{d-1})$. Then $(x,\xi) \notin WF(u)$ iff there exists a neighborhood U of x, ϵ , R > 0 and constants $C_N > 0$ (for $N \in \mathbb{N}$) such that,

$$\forall y \in U \ \forall h \in K_o(\xi, \epsilon, \delta, R) : |W_{\psi}u(y, h)| \leq C_N ||h||^N$$
.

Theorem 12 (HF/J. Fell/F. Voigtlaender)

Assume that the dual action is microlocally admissible, and has the cone approximation property. Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x,\xi) \in \mathbb{R}^d \times (\mathcal{O} \cap \mathcal{S}^{d-1})$. Then $(x,\xi) \notin WF(u)$ iff there exists a neighborhood U of x, ϵ , R > 0 and constants $C_N > 0$ (for $N \in \mathbb{N}$) such that,

$$\forall y \in U \ \forall h \in K_o(\xi, \epsilon, \delta, R) : |W_{\psi}u(y, h)| \leq C_N ||h||^N$$
.

Here the wavelet ψ can be any nonzero Schwartz function ψ with $\widehat{\psi}$ supported in a sufficiently small ball.

Theorem 12 (HF/J. Fell/F. Voigtlaender)

Assume that the dual action is microlocally admissible, and has the cone approximation property. Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x,\xi) \in \mathbb{R}^d \times (\mathcal{O} \cap S^{d-1})$. Then $(x,\xi) \notin WF(u)$ iff there exists a neighborhood U of x, $\epsilon,R>0$ and constants $C_N>0$ (for $N\in\mathbb{N}$) such that,

$$\forall y \in U \ \forall h \in K_o(\xi, \epsilon, \delta, R) : |W_{\psi}u(y, h)| \leq C_N ||h||^N$$
.

Here the wavelet ψ can be any nonzero Schwartz function ψ with $\widehat{\psi}$ supported in a sufficiently small ball.

Meaning of the conditions

Theorem 12 (HF/J. Fell/F. Voigtlaender)

Assume that the dual action is microlocally admissible, and has the cone approximation property. Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x,\xi) \in \mathbb{R}^d \times (\mathcal{O} \cap \mathcal{S}^{d-1})$. Then $(x,\xi) \notin WF(u)$ iff there exists a neighborhood U of x, $\epsilon,R>0$ and constants $C_N>0$ (for $N\in\mathbb{N}$) such that,

$$\forall y \in U \ \forall h \in K_o(\xi, \epsilon, \delta, R) : |W_{\psi}u(y, h)| \leq C_N ||h||^N$$
.

Here the wavelet ψ can be any nonzero Schwartz function ψ with $\widehat{\psi}$ supported in a sufficiently small ball.

Meaning of the conditions

 Microlocal admissibility allows to use the matrix norm of h as scale parameter.

Theorem 12 (HF/J. Fell/F. Voigtlaender)

Assume that the dual action is microlocally admissible, and has the cone approximation property. Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x,\xi) \in \mathbb{R}^d \times (\mathcal{O} \cap S^{d-1})$. Then $(x,\xi) \notin WF(u)$ iff there exists a neighborhood U of x, $\epsilon,R>0$ and constants $C_N>0$ (for $N\in\mathbb{N}$) such that,

$$\forall y \in U \ \forall h \in K_o(\xi, \epsilon, \delta, R) : |W_{\psi}u(y, h)| \leq C_N ||h||^N$$
.

Here the wavelet ψ can be any nonzero Schwartz function ψ with $\widehat{\psi}$ supported in a sufficiently small ball.

Meaning of the conditions

- Microlocal admissibility allows to use the matrix norm of h as scale parameter.
- The cone approximation property formalizes the ability of the wavelet system to distinguish more directions, as the scale goes to zero.

Theorem 13 (HF/S. Dahlke/G. Alberti/F. DeMari/E. DeVito)

Let $H < \operatorname{GL}(d,\mathbb{R})$ be a generalized shearlet dilation group. Assume that the diagonal matrix Y generating the scaling subgroup of H has entries $(1,c_2,\ldots,c_d)$ with $0 < c_i < 1$, for $i=2,\ldots,d$. Then the associated wavelet transform characterizes the wavefront set.

Theorem 13 (HF/S. Dahlke/G. Alberti/F. DeMari/E. DeVito)

Let $H < \operatorname{GL}(d,\mathbb{R})$ be a generalized shearlet dilation group. Assume that the diagonal matrix Y generating the scaling subgroup of H has entries $(1,c_2,\ldots,c_d)$ with $0 < c_i < 1$, for $i=2,\ldots,d$. Then the associated wavelet transform characterizes the wavefront set.

Remarks

Theorem 13 (HF/S. Dahlke/G. Alberti/F. DeMari/E. DeVito)

Let $H < \operatorname{GL}(d,\mathbb{R})$ be a generalized shearlet dilation group. Assume that the diagonal matrix Y generating the scaling subgroup of H has entries $(1,c_2,\ldots,c_d)$ with $0 < c_i < 1$, for $i=2,\ldots,d$. Then the associated wavelet transform characterizes the wavefront set.

Remarks

• $c_i \in (0,1)$ is crucial. In particular, anisotropic scaling is needed to ensure cone approximation and microlocal admissibility.

Theorem 13 (HF/S. Dahlke/G. Alberti/F. DeMari/E. DeVito)

Let $H < GL(d, \mathbb{R})$ be a generalized shearlet dilation group. Assume that the diagonal matrix Y generating the scaling subgroup of H has entries $(1, c_2, \ldots, c_d)$ with $0 < c_i < 1$, for $i = 2, \ldots, d$. Then the associated wavelet transform characterizes the wavefront set.

Remarks

- $c_i \in (0,1)$ is crucial. In particular, anisotropic scaling is needed to ensure cone approximation and microlocal admissibility.
- Previously known: Shearlet characterization for d=2 and $\alpha_2=1/2$. (Kutyniok/Labate, Grohs)

Theorem 13 (HF/S. Dahlke/G. Alberti/F. DeMari/E. DeVito)

Let $H < \operatorname{GL}(d,\mathbb{R})$ be a generalized shearlet dilation group. Assume that the diagonal matrix Y generating the scaling subgroup of H has entries $(1,c_2,\ldots,c_d)$ with $0 < c_i < 1$, for $i=2,\ldots,d$. Then the associated wavelet transform characterizes the wavefront set.

Remarks

- $c_i \in (0,1)$ is crucial. In particular, anisotropic scaling is needed to ensure cone approximation and microlocal admissibility.
- Previously known: Shearlet characterization for d=2 and $\alpha_2=1/2$. (Kutyniok/Labate, Grohs)
- In higher dimensions, there are many fundamentally different shearlet dilation groups to which this theorem is applicable.

References

- HF, Coorbit spaces and wavelet coefficient decay over general dilation groups, Trans. AMS 367, 7373–7401 (2015).
- 2 HF, Vanishing moment conditions for wavelet atoms in higher dimensions, Adv. Comput. Math. 42 (2016), 127–153.
- 3 HF, F. Voigtlaender, Wavelet coorbit spaces viewed as decomposition spaces, J. Funct. Anal. 269, 80–154 (2015).
- 4 HF, R. Raisi Tousi, Simplified vanishing moment criteria ..., http://arxiv.org/abs/1407.0824, to appear in Appl. Comp. Harm. Anal.
- 5 F. Voigtlaender: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. Ph.D. Thesis, RWTH Aachen, 2015.
- 6 F. Voigtlaender, Embeddings of decomposition spaces into Sobolev and BV spaces, preprint, 2016.
- THF, J. Fell, F. Voigtlaender, Resolution of the wavefront set using general continuous wavelet transform, to appear in J. Fourier Anal. Appl.
- **8** G. Alberti, S. Dahlke, F. DeMari, E. DeVito, Generalized shearlet dilation groups: Wavefront set characterization and embeddings into $\operatorname{Sp}(2d; \mathbb{R})$, in preparation.