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Wavelet analysis: Signal smoothness vs. Coefficient decay

Wavelet systems
Systems of functions obtained by (linearly) dilating and translating a
mother wavelet ψ. The dilations will come from a fixed matrix group H,
called dilation group.

Main Slogan
Wavelet coefficient decay is equivalent to smoothness of the analyzed
function.

Different ways of formalizing this slogan:
Local version: fast coefficient decay away from the singularities.
Global version: weighted summability of the coefficients characterizes
function spaces of sparse signals (e.g., Besov spaces)
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Challenges in higher dimensions

Main challenges

There is a great variety of different dilation groups available. Aiming
for systematic, unified and comprehensive approach.
Want to treat directional notions of smoothness.
Need criteria

I for dilation groups: Which group is suited for which purpose?
I for analyzing wavelets: Assuming a fixed choice of H, which type of

oscillatory behaviour is needed?

Unifying concept
The dual action is the key feature of the group.
Of particular importance: The blind spot of the wavelet transform.
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Outline

1 Higher dimensional continuous wavelet transform

2 Coorbit space theory

3 Constructing compactly supported atoms

4 Decomposition space description of coorbit spaces

5 Characterizing the wavefront set
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General Setup: d -dimensional CWT

Dilation group H < GL(d ,R), a closed matrix group
G = Rd o H, the affine group generated by H and translations. As a
set, G = Rd × H, with group law

(x , h)(y , g) = (x + hy , hg) .

Lp(G ) denotes Lp-space w.r.t. left Haar measure d(x , h) = dx dh
|det(h)| .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given suitable ψ ∈ L2(Rd) and
f ∈ L2(Rd), let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉
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The dual action

Fourier transform of the dilated wavelet π(0, h)ψ is given by

(π(0, h)ψ)∧ (ξ) = |det(h)|1/2ψ(hT ξ) .

This introduces the dual action

(h, ξ) 3 H × Rd 7→ h−T ξ ∈ Rd .

Standing assumption on H

The dual action has a unique open orbit, with compact fixed groups.
I.e. there exists ξ0 ∈ Rd such that O = HT ξ0 is open with complement of
measure zero, and the stabilizer

Hξ0 = {h ∈ H : hT ξ0 = ξ0}

is compact.
Oc := Rd \ O is called the blind spot of the wavelet transform.
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Standing assumption and wavelet inversion

Theorem 1 (HF)
The standing assumption is equivalent to the property that π is a discrete
series representation. In particular, there exist wavelets ψ ∈ L2(Rd) such
that

Wψ : L2(Rn) ↪→ L2(G )

is isometric. This equivalent to the (weak-sense) wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .
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Some examples in dimension two

1 Diagonal group:

H =

{(
a 0
0 b

)
: ab 6= 0

}
2 Similitude group:

H =

{(
a b
−b a

)
: a2 + b2 6= 0

}
3 Shearlet group(s):

Hc =

{
±
(

a b
0 ac

)
: a > 0

}
(c ∈ R)

(c = 1/2: Kutyniok/Labate/Dahlke/Steidl/Teschke ...)
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Outline
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Informal description of coorbit theory

Elements of coorbit theory (Feichtinger/Gröchenig)

Fix a Banach space Y of functions on G (solid, two-sided invariant).
E.g., Y = Lp(G ).
Pick a suitable analyzing vector ψ ∈ L2(Rd)

Coorbit space norm on L2(Rd):

‖f ‖CoY = ‖Wψf ‖Y .

Define CoY as (completion of) {g ∈ L2(Rd) : ‖g‖CoY <∞}.
Also works for quasi-Banach spaces (e.g., Lp, with p < 1).
Main issues addressed by coorbit theory:

I Consistency: When is the norm independent of ψ?
I Discretization: When can the norm be expressed in terms of a discrete

set of sampled wavelet coefficients?
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Sample result from coorbit space theory
Let 1 ≤ p < 2. Assume that ψ ∈ Bv0 , for the control weight

v0(x , h) = w0(h) = max(1,∆G (h)) .

Then, for all suitably dense Γ ⊂ Rd , Λ ⊂ H, the system

(ψy ,λ)y ,λ = (π(λy , λ)ψ)y∈Γ,λ∈Λ ⊂ L2(Rd)

is a frame for L2(Rd), and for f ∈ L2(Rd), the following are equivalent:
(i) (〈f , ψy ,λ〉)y ,λ ∈ `p.
(ii) There exists a coefficient family (cy ,λ)y ,λ ∈ `p such that

f =
∑
y ,λ

cy ,λψy ,λ .

(iii) f ∈ Co(Lp), i.e., Wψf ∈ Lp(G ).
Note: The coorbit space Co(Lp) is independent of ψ ∈ Bv0 .
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Building blocks of coorbit theory: Frame atoms

Definition 2
Let v0 : G → R+ be continuous and submultiplicative. We call ψ ∈ L2(Rd)
v0-atom if Wψψ ∈W (L∞,L1

v0), i.e., the function

G 3 (x , h) 7→ sup
(y ,g)∈U

|Wψψ ((x , h)(y , g))| ∈ R+

is in L1
v0(G ), for some compact neighborhood U ⊂ G of the identity.

The set of v0-atoms is denoted by Bv0 .

Main challenges:
Show that Bv0 is nonempty. (I.e., coorbit theory is applicable.)
Exhibit convenient subsets of Bv0 .
Are there compactly supported functions in Bv0? How do you
construct them?
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Outline

1 Higher dimensional continuous wavelet transform

2 Coorbit space theory

3 Constructing compactly supported atoms

4 Decomposition space description of coorbit spaces

5 Characterizing the wavefront set
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Reminder: Nice wavelets in dimension one

Desirable properties of wavelets
A nice wavelet ψ ∈ L2(R) typically has three properties: Fast decay,
smoothness, vanishing moments.
Concisely: Nice wavelets have good time-frequency localization.
(Note: Frequency-side localization is understood away from zero.)
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Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of Wψψ:

|Wψψ(x , s)| ≤
∥∥∥∂` (ψ̂ · ψ̂(s−1·)

)∥∥∥
1
|s|−1/2(1 + |x |)−`

Plot of ψ̂ and ψ̂(3·) Overlap ψ̂ · ψ̂(3·)

⇒ vanishing moments, smoothness govern decay of overlap, as |s| → 0,∞

H. Führ (RWTH Aachen) CWT in higher dimensions Bernried 2016 16 / 34



Criteria for atoms

Central idea

Characterize wavelet atoms in terms of smoothness, fast decay,
vanishing moments. The last property has to reflect the choice of
dilation group.
Suitable criterion: Speed of decay ψ̂(ξ)→ 0, as ξ → Oc , the blind
spot.
A first indicator that this works: (HF, ’12)

F−1C∞c (O) ⊂ Bv0 .

Definition 3

Let r ∈ N be given. f ∈ L1(Rd) has vanishing moments in Oc of order r if
all distributional derivatives ∂αf̂ with |α| < r are continuous functions,
identically vanishing on Oc .
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Fourier envelope

Definition 4
Let O ⊂ Rd denote the dual orbit. Given ξ ∈ O, let dist(ξ,Oc) denote the
euclidean distance of ξ to Oc . Let

A(ξ) = min

(
dist(ξ,Oc)

1 +
√
|ξ|2 − dist(ξ,Oc)2

,
1

1 + |ξ|

)
.

Oc

0

ξ
ξ − ξ′

ξ′

A(ξ) = min
(
|ξ − ξ′|
1 + |ξ′| ,

1
1 + |ξ|

)

with ξ′ = point in Oc closest to ξ
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A general vanishing moment criterion

Theorem 5 (HF/R. Raisi Tousi)

Fix ξ0 ∈ O, and define AH : H → R+ ,AH(h) = A(hT ξ0). Assume that

v0(x , h) ≤ (1 + |x |)sw0(h)

where for suitable e1, . . . , e4 ≥ 0 the following hold:

w0(h±1)AH(h)e1 � 1 , (1)
‖h±1‖AH(h)e2 � 1 , (2)

|det(h±1)|AH(h)e3 � 1 , (3)
∆H(h±1)AH(h)e4 � 1 . (4)

Define r := be1 + e2(2s + 2d + 2) + 3
2e3 + e4c+ 2d + 2.

Then any function ψ with |ψ̂|r ,r <∞ and vanishing moments in Oc of
order r is in Bv0 .
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Constructing compactly supported atoms

Lemma 6 (HF)
There exists a polynomial P ∈ R[X1, . . . ,Xd ] such that

Oc = {ξ ∈ Rd : P(ξ) = 0} .

Construction procedure
Define the partial differential operator DO = P(−iD), where P is the
polynomial from the previous lemma, and D stands for partial
differentiation.
Let r be the required number of vanishing moments from Theorem 5.
Pick f ∈ C∞c (Rd) \ {0}, and define

ψ = Dr
O(f ) .

Then ψ ∈ C∞c (Rd) has vanishing moments of order r in Oc .
Clearly, picking f ∈ C k

c (Rd), for k sufficiently large, is enough.
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differentiation.
Let r be the required number of vanishing moments from Theorem 5.
Pick f ∈ C∞c (Rd) \ {0}, and define

ψ = Dr
O(f ) .

Then ψ ∈ C∞c (Rd) has vanishing moments of order r in Oc .

Clearly, picking f ∈ C k
c (Rd), for k sufficiently large, is enough.
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Application example: Similitude group

Setup: H = R+ · SO(d) (Murenzi). Typical group element: h = rS ,
with r > 0 and S rotation matrix.
Y = Co(Lp(G ))

Open dual orbit: O = Rd \ {0}, with differential operator DO =
Laplacian.

Auxiliary function: AH(h) = min
(
|r |, 1

1+|r |

)
.

Weights on H: |det(h)| = rd ,∆H(h) = 1, w0(h) = max(1,∆G (h)).
 Theorem 5 is applicable, with

e1 = d , e2 = 1 , e3 = d , e4 = 0 .

Resulting number of vanishing moments:

r =

⌊
d

2

⌋
+ 6d + 3 .
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Example: Shearlet group(s)

Setup:

H = Hc =

{
±
(

a b
0 ac

)
: a, b ∈ R, a > 0

}
,

where c can be any real number.
Aim: Construct compactly supported atoms for Co(Lp(G ))

Dual orbit: O = R2 \ ({0} × R)).
Associated differential operator: DO = d

dx1 .

Auxiliary function: For h = ±
(

a b
0 ac

)
∈ H we obtain

AH(h) = min
( |a|
1 + |b| ,

1
1 + |(a, b)T |

)
.

|det(h)| = |a|1+c , ∆H(h) = |a|c−1 , ‖h‖ ∼ max(|a|, |a|c , |b|)
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Shearlet example continued

The control weight for Lp(G ) is v0(x , h) = w0(h) = max(1, |a|−2).
 Theorem 5 is applicable, with s = 0 and

e1 = 2 , e2 = 1 + |c | , e3 = |1 + c| , e4 = |1− c | ,

Resulting number of vanishing moments:

r =

⌊
6|c |+ |1 + c |3

2
+ |1− c |

⌋
+ 14 .

In the classical shearlet case (c = 1/2), vanishing moments of order
19 suffice.
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Verifying the conditions

Theorem 7 (HF/R. Raisi Tousi)
Assume that H fulfills the standing assumption, and belongs to one of the
following classes:

H = R+ · SO(d); or
H is abelian; or
H is a generalized shearlet dilation group, i.e. there exists a closed
abelian matrix group S consisting of unipotent matrices, the shearing
subgroup), and a diagonal matrix Y generating the scaling subgroup
such that

H = {exp(rY )s : r ∈ R, s ∈ S} , or
any group constructed from the above using direct products and
conjugation by arbitrary invertible matrices.

Then H fulfills the conditions of Theorem 5, with explicitly computable
exponents e1, . . . , e4.
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Outline

1 Higher dimensional continuous wavelet transform

2 Coorbit space theory

3 Constructing compactly supported atoms

4 Decomposition space description of coorbit spaces

5 Characterizing the wavefront set
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An alternative description of wavelet coorbit spaces

Decomposition spaces (Feichtinger/Gröbner)

Main idea: Uniformly cover the frequencies by a family of open sets.
Decompose functions using a subordinate partition of unity. Introduce
a norm by locally taking Lp-norms, and then globally combine using
weighted `q.
Very flexible scheme: Describes (homogeneous and inhomogeneous)
Besov spaces, modulation spaces, shearlet and curvelet approximation
spaces, and...

Theorem 8 (HF, F. Voigtlaender)

Every wavelet coorbit space Co(Lp,qv ) is a decomposition space. The
frequency covering underlying the latter is computed using the dual action.
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Co (Lp,qv )

Group H


(hi )i∈I well-spread in H

(continuous) weight v : H → (0,∞)

F

y o
y

pξ0 : H → O, h 7→ hT ξ0
proper orbit map

D (Q, Lp, `qu)

Dual orbit O


Q =

(
h−Ti Q

)
i∈I

admissible covering

ui := |det (hi )|
1
2−

1
q · v (hi ) discrete weight

Decomposition space norm
Fix a suitable partition of unity (ϕi )i∈I on O subordinate to Q and define

‖f ‖D(Q,Lp ,`qu) =
∥∥∥(∥∥F−1 (ϕi f )

∥∥
p

)
i∈I

∥∥∥
`qu

=
∥∥∥(ui · ∥∥F−1 (ϕi f )

∥∥
p

)
i∈I

∥∥∥
`q
.
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Application: Embedding theorems

Note: Decomposition spaces are a Fourier-analytic description, which
justifies calling them smoothness spaces.
Decomposition space view provides a common framework for coorbit
spaces over different groups.
There is a far-reaching embedding theory for decomposition spaces,
even for those with qualitatively different coverings (F. Voigtlaender).
Sample applications (F. Voigtlaender, 2015): Embedding statements
of the following types can be established in terms of the involved
parameters. The criteria are usually sharp.

I CoH(Lp1,q1
v ) ↪→ Ḃp2,q2

s (R2), and vice versa, where H is a shearlet
dilation group with arbitrary anisotropy parameter c.

I CoH1(Lp1,q1
v1 ) ↪→ CoH2(Lp2,q2

v2 ), where H1,H2 are shearlet dilation groups
with different anisotropy parameters.

I Bp1,q1
s (R2) ↪→ Ḃp2,q2

s (R2), and vice versa.
I Co(Lp,q) ↪→W k,p(Rn).
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Wavefront set: Definition

Definition 9 (Cones and truncated cones)

Given ξ ∈ Sd−1 and ε,R > 0, we let

C (ξ, ε) = {rξ′ : ξ′ ∈ Sd−1 ∩ Bε(ξ), r > 0}
C (ξ, ε,R) = C (ξ, ε) \ BR(0)

Definition 10 (Wavefront set)

Let u ∈ S ′(Rd). A pair (x , ξ) ∈ Rd × Sd−1 is not in the wavefront set
WF (u) if there exists ϕ ∈ C∞c (Rd), identically one in a neighborhood of x ,
as well as ε > 0 such that for all N ∈ N

∀ξ′ ∈ C (ξ, ε) :
∣∣(uϕ)∧ (ξ′)

∣∣ � (1 + |ξ′|)−N , (5)

or equivalently, for any R > 0:

∀ξ′ ∈ C (ξ, ε,R) :
∣∣(uϕ)∧ (ξ′)

∣∣ � |ξ′|−N . (6)
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Cone-affiliated subsets of H

Aim for a characterization of the following type:
(x , ξ) 6∈WF (u) iff |Wψu(y , h)| � ‖h‖N , for all N ∈ N and all
small-scale wavelets π(y , h)ψ supported near x and oscillating in a
direction close to ξ.
Challenge: How do you formalize that?

If O ⊂ Rd is the open orbit, and ξ ∈ O, then R+ξ ⊂ O. We fix ξ0 ∈ O.

Definition 11
Let ξ ∈ O ∩ Sd−1, and ε, δ,R > 0 be such that Bδ(ξ0) ⊂ O and
C (ξ, ε) ⊂ O. We define sets Ki (ξ, ε, δ,R) ⊂ Ko(ξ, ε, δ,R) ⊂ H by

Ki (ξ, ε, δ,R) = {h ∈ H : h−TBδ(ξ0) ⊂ C (ξ, ε,R)}
Ko(ξ, ε, δ,R) = {h ∈ H : h−TBδ(ξ0) ∩ C (ξ, ε,R) 6= ∅}
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Wavelet characterization of WF (u)

Theorem 12 (HF/J. Fell/F. Voigtlaender)
Assume that the dual action is microlocally admissible, and has the cone
approximation property. Let u ∈ S ′(Rd)

and (x , ξ) ∈ Rd × (O ∩ Sd−1).
Then (x , ξ) 6∈WF (u) iff there exists a neighborhood U of x , ε,R > 0 and
constants CN > 0 (for N ∈ N) such that,

∀y ∈ U ∀h ∈ Ko(ξ, ε, δ,R) : |Wψu(y , h)| ≤ CN‖h‖N .

Here the wavelet ψ can be any nonzero Schwartz function ψ with ψ̂
supported in a sufficiently small ball.

Meaning of the conditions
Microlocal admissibility allows to use the matrix norm of h as scale
parameter.
The cone approximation property formalizes the ability of the wavelet
system to distinguish more directions, as the scale goes to zero.
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Meaning of the conditions
Microlocal admissibility allows to use the matrix norm of h as scale
parameter.
The cone approximation property formalizes the ability of the wavelet
system to distinguish more directions, as the scale goes to zero.
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Generalized shearlet groups

Theorem 13 (HF/S. Dahlke/G. Alberti/F. DeMari/E. DeVito)
Let H < GL(d ,R) be a generalized shearlet dilation group. Assume that
the diagonal matrix Y generating the scaling subgroup of H has entries
(1, c2, . . . , cd) with 0 < ci < 1, for i = 2, . . . , d . Then the associated
wavelet transform characterizes the wavefront set.

Remarks
ci ∈ (0, 1) is crucial. In particular, anisotropic scaling is needed to
ensure cone approximation and microlocal admissibility.
Previously known: Shearlet characterization for d = 2 and α2 = 1/2.
(Kutyniok/Labate, Grohs)
In higher dimensions, there are many fundamentally different shearlet
dilation groups to which this theorem is applicable.
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