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Motivation

I industry project with Micro-Epsilon GmbH & Co. KG
I medium-sized family-run company near Passau
I main focus on measurement technology
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Motivation

Figure: product surface with chatter
marks

Problem
I in metal processing different

cold rolls are used for producing
metal bands with different
thickness

I chatter marks occur when cold
rolls are defect

I detect defect cold roll out of
characteristics
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Motivation

Figure: product surface with chatter
marks

Aim
Detection of width and direction of
chatter marks
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First Approach

2D wavelet transform
I translation b ∈R2

I dilation a ∈R \ {0}
I rotation θ ∈ [0, 2π)

Pictures
I above: wavelet transform

with a = 3, θ = 0
I below: original image
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First Approach

2D wavelet transform
I translation b ∈R2

I dilation a ∈R \ {0}
I rotation θ ∈ [0, 2π)

Picture
I wavelet transform with

a = 3, θ = 0

Potential and limitations
I point-like structures X
I chatter marks ×
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First Approach

2D wavelet transform
I translation b ∈R2

I dilation a ∈R \ {0}
I rotation θ ∈ [0, 2π)

Potential and limitations
I point-like structures X
I chatter marks ×

Optimal solution
I detect characteristics
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Second Approach

Aim:
I anisotropic scaling parameters

s1, s2 ∈R \ {0}

I rotation parameter θ ∈ [0, 2π)
I translation parameter b ∈R2

I role model: continuous wavelet
transform

I independence of dyadic scaling
parameter
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Second Approach

Considered groups

I Ddil =
{(

s1 0
0 s2

)
: s1, s2 ∈R \ {0}

}

I Drot =
{(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)
: θ ∈ [0, 2π)

}

I Dtra =
{(

b1
b2

)
: b1, b2 ∈R

}

⇒ construction of a wavelet-like transform with these three components
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Outline

1 Representation Theory

2 Rotational Anisotropic Wavelet Transform
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Basic Definitions

Definition
A locally compact topological group is a group G with topology such that

I G × G → G , (a, b) 7→ ab
I G → G , a 7→ a−1

are continuous and G is locally compact.

Examples
I (Rn,+)
I every closed subgroup of Gln (R) with matrix multiplication
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Representation

In the following:
I H 6= 0 Hilbert space,
I U (H) unitary operators on H,
I G locally compact topological group

Definition
A unitary representation is a homomorphism π : G 7→ U (H),

I π (ab) = π (a)π (b)
I π

(
a−1) = π (a)−1

that is (strongly) continuous with respect to the strong operator topology.

I a 7→ π (a) x is continuous from G to H for any x ∈ H
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Square Integrable Representation

Definition
Let

I π be a representation of G in H
I µ be a left Haar measure of G

If there exists one vector 0 6= ϕ ∈ H, such that∫
G
|〈π (a)ϕ,ϕ〉H |2dµ <∞

then π is square integrable and ϕ is called admissible for π and µ.

Silja Gütschow Rotational Anisotropic Wavelets March 1, 2016 10 / 27



Square Integrable Representation

Theorem1

Let π be a unitary irreducible square integrable representation of G in H

then
I the set of admissible vectors is dense in H
I the operator Vϕ : H → L2 (G), given by

Vϕf (a) := 〈f , π (a)ϕ〉H ,

is a multiple of the isometry

1Grossmann, Morlet, Paul: Transforms associated to square integrable group representations. I.
General results, 1985
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Back to the Aim

We have:
I Grot ,Gdil ,Gtra are locally compact topological groups X

We need:
I suitable representation for a semidirect product
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Left Regular Representation

Definition
The left regular representation πL of G on L2 (G , dµL) is given by

(πL (a) f ) (x) = f
(
a−1x

)
.
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Representation for Semidirect Products

Definition
Let

I G = M nσ N be a semidirect product group with homomorphism σ

I M,N be locally compact groups
The left regular representation πL of G on L2 (G , dµL) is given by

(πL (a, b) f ) (x , y) = f
(
a−1x , σa−1(y ◦ b−1)

)
.
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Representation for Semidirect Products

Definition
Let

I G = M nσ N be a semidirect product group
I M,N be locally compact groups
I N be abelian

The left quasiregular representation πL of G on L2 (N, dµL) is given by

(πL (a, b) f ) (x) = δ (a)−
1
2 f
(
σa−1(y ◦ b−1)

)
.
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Back to the Aim

We have
I Grot ,Gdil ,Gtra are (locally) compact topological groups X
I left quasiregular representation πL of G = M nσ N on L2 (N, dµL)X

We need
I Which groups are admissible?
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Admissible Groups

Theorem1

Let
I M be a subgroup of Gln (R)
I topological semidirect product M nRn

I quasiregular representation has nontrivial subrepresentation with
admissible vector

Then M is a closed subgroup of Gln (R) .
1 H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Transforms, Springer 2005
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Closed Subgroups

Admissible groupsa,b

I for c ∈R : Dshe =
{(

a b
0 ac

)
: a, b ∈R, a > 0

}

I Ddil =
{(

s1 0
0 s2

)
: s1, s2 ∈R \ {0}

}

I Drot =
{(

a b
−b a

)
: (a, b) ∈R2 \ {(0, 0)}

}
aBernier and Taylor, Wavelets from square-integrable representations, SIAM, 1996
bFühr, Zur Konstruktion von Wavelettransformationen in höheren Dimensionen, 1997
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Back to the Aim

We have
I Grot ,Gdil ,Gtra are (locally) compact topological groups X

I left quasi regular representation πL of G = M nσ N on L2 (N, dµL)X

I Grot ,Gdil ,Gtra are admissible X
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Components for the New Transform

Requirements

Drot =
{

Rα =
(

cos (α) − sin (α)
sin (α) cos (α)

)
: α ∈ [0, 2π)

}

Ddil =
{

As =
(

s1 0
0 s2

)
: s1, s2 ∈R \ {0}

}

⇒ semidirect product Graw := (Drot × Ddil) oR2

Problem and solution
I Graw : no group structure
I solution: for fixed α use group structure of Ddil
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Rotational Anisotropic Wavelet Transform

Definition
Consider

I ϕ ∈ L2
(
R

2) admissible for Ddil
I f ∈ L2

(
R

2)
I s1, s2 ∈R \ {0}, α ∈ [0, 2π) and b ∈R2

The rational anisotropic wavelet transform is given by

RAWϕf (s, α, b) =
∫
R2

f (x)ϕs,α,b (x)dx ,

with

ϕs,α,b (x) = |s1s2|−
1
2ϕ (RαAs (x − b)) .
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Admissible Rotational Anisotropic Wavelets

Tensor product wavelets

ϕ1, ϕ2 are 1D wavelets⇒
∫
R̂2

|ϕ̂ (ξ1, ξ2) |2
|ξ1ξ2|

dξ1dξ2 <∞,

where ϕ (x , y) = ϕ1 (x)ϕ2 (y)
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Frequency Domain
1
s2

1
s1

Figure: support of rotational anisotropic wavelets
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Essential Support

Lemma [G.]
Let ϕs,α,b with s1, s2 ∈R \ {0}, α ∈ [0, 2π) be a rotational wavelet then

ess sup
x∈R2

ϕs,α,b (x) = R−1
α A−1

s ess sup
x∈R2

ϕ (x) and

ess sup
x∈R̂2

ϕ̂s,α,b (ξ) = R−1
α As ess sup

ξ∈R̂2
ϕ̂ (ξ) .
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Wavefront Set

In the following:
I tempered distribution t ∈ S ′ (Rn)
I x is a regular point
I ϕ cutoff function

singularities of t

ϕ x
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Wavefront Set
tempered distribution t ∈ S ′ (Rn)

x is a regular point
ϕ cutoff function

Definition
Then a pair (x , s) ∈R2 ×R is a regular directed point if there exists a
neighbourhood Vs of s such that for all N ∈N and µ = (µ1, µ2)

(ϕt)∧ (µ) = O
(
(1 + |µ|)−N

)
with µ2

µ1
∈ Vs .

singularities of t

ϕ x

µ
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Wavefront Set

singularities of t

ϕ
x

µ

Definition
The wavefront set WF (t) is the complement of the regular directed points.
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Wavefront Set

x2

x1

Figure: time domain

µ2

µ1

Figure: frequency domain

Wavefront set of line singularity
For δx2=p+qx1 the wavefront set is

WF (δx2=p+qx1) = {(x1, x2) |x2 = p + qx1} ×
{
−1

q

}
.
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Line Singularities

Theorem [G.]
Let g (x) = δx2=qx1 (x) for q 6= 0.
For b2 = qb1 and tan (α) = 1

q

RAWΨg (s, α, b) ∼ |s1|−
1
2 |s2|−

3
2 , for s1, s2 → 0,

otherwise RAWΨv (s, α, b) decays rapidly.
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Back to the Motivation

Figure: 2D wavelet transform of product surface with chatter marks

Improvements
I wavelet like transform with rotation and anisotropic scaling
I detect line singularities (demonstration)
I fast implementation with FFT
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Thank you for your attention!
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