

Rotational Anisotropic Wavelet Transform

Silja Gütschow, Tomas Sauer

Chair of Digital Image Processing University of Passau

> Bernried March 1, 2016

- ▶ industry project with Micro-Epsilon GmbH & Co. KG
- ▶ medium-sized family-run company near Passau
- main focus on measurement technology

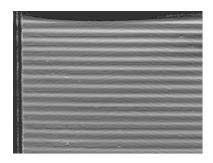


Figure: product surface with chatter marks

Problem

 in metal processing different cold rolls are used for producing metal bands with different thickness

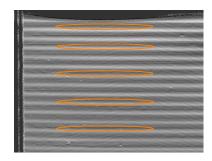


Figure: product surface with chatter marks

Problem

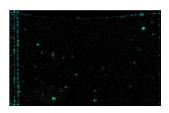
- in metal processing different cold rolls are used for producing metal bands with different thickness
- chatter marks occur when cold rolls are defect
- detect defect cold roll out of characteristics

Aim

Detection of width and direction of chatter marks

Figure: product surface with chatter marks

First Approach



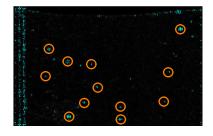
2D wavelet transform

- ▶ translation $b \in \mathbb{R}^2$
- ▶ dilation $a \in \mathbb{R} \setminus \{0\}$
- ▶ rotation $\theta \in [0, 2\pi)$

Pictures

- ▶ above: wavelet transform with a = 3, $\theta = 0$
- ▶ below: original image

First Approach



2D wavelet transform

- translation $b \in \mathbb{R}^2$
- ▶ dilation $a \in \mathbb{R} \setminus \{0\}$
- ▶ rotation $\theta \in [0, 2\pi)$

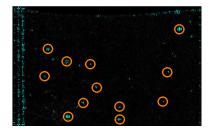
Picture

• wavelet transform with $a = 3, \theta = 0$

Potential and limitations

- ▶ point-like structures ✓
- chatter marks ×

First Approach



2D wavelet transform

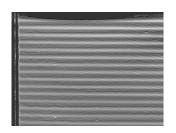
- ightharpoonup translation $b\in {
 m I\!R}^2$
- ▶ dilation $a \in \mathbb{R} \setminus \{0\}$
- ▶ rotation $\theta \in [0, 2\pi)$

Potential and limitations

- ▶ point-like structures ✓
- chatter marks ×

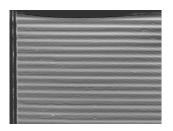
Optimal solution

detect characteristics

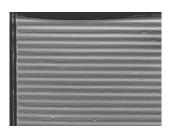


Aim:

▶ anisotropic scaling parameters $s_1, s_2 \in \mathbb{R} \setminus \{0\}$



- ▶ anisotropic scaling parameters $s_1, s_2 \in {\rm I\!R} \setminus \{0\}$
- ▶ rotation parameter $\theta \in [0, 2\pi)$



- ▶ anisotropic scaling parameters $s_1, s_2 \in \mathbb{R} \setminus \{0\}$
- ▶ rotation parameter $\theta \in [0, 2\pi)$
- lacktriangle translation parameter $b\in {
 m I\!R}^2$

- ▶ anisotropic scaling parameters $s_1, s_2 \in \mathbb{R} \setminus \{0\}$
- ▶ rotation parameter $\theta \in [0, 2\pi)$
- lacktriangle translation parameter $b\in {
 m I\!R}^2$
- role model: continuous wavelet transform

- ▶ anisotropic scaling parameters $s_1, s_2 \in \mathbb{R} \setminus \{0\}$
- ▶ rotation parameter $\theta \in [0, 2\pi)$
- lacktriangle translation parameter $b \in {\rm I\!R}^2$
- role model: continuous wavelet transform
 - independence of dyadic scaling parameter

Considered groups

Considered groups

⇒ construction of a wavelet-like transform with these three components

Outline

- Representation Theory
- Rotational Anisotropic Wavelet Transform

Basic Definitions

Definition

A locally compact topological group is a group G with topology such that

- $ightharpoonup G imes G o G, (a,b) \mapsto ab$
- ightharpoonup G
 ightharpoonup G, $a \mapsto a^{-1}$

are continuous and G is locally compact.

Basic Definitions

Definition

A locally compact topological group is a group G with topology such that

- $ightharpoonup G imes G o G, (a,b) \mapsto ab$
- ightharpoonup G
 ightharpoonup G, $a \mapsto a^{-1}$

are continuous and G is locally compact.

Examples

- $ightharpoonup (\mathbb{R}^n,+)$
- every closed subgroup of $Gl_n(\mathbb{R})$ with matrix multiplication

Representation

In the following:

- $ightharpoonup H \neq 0$ Hilbert space,
- \triangleright U(H) unitary operators on H,
- G locally compact topological group

Representation

- $ightharpoonup H \neq 0$ Hilbert space,
- \triangleright U(H) unitary operators on H,
- ► G locally compact topological group

Definition

A unitary representation is a homomorphism $\pi: G \mapsto U(H)$,

- $\pi (ab) = \pi (a) \pi (b)$
- $\pi (a^{-1}) = \pi (a)^{-1}$

that is (strongly) continuous with respect to the strong operator topology.

▶ $a \mapsto \pi(a)x$ is continuous from G to H for any $x \in H$

Square Integrable Representation

Definition

Let

- \blacktriangleright π be a representation of G in H
- $\blacktriangleright \mu$ be a left Haar measure of G

If there exists one vector $0 \neq \varphi \in H$, such that

$$\int_{G} |\langle \pi (\mathbf{a}) \varphi, \varphi \rangle_{H}|^{2} d\mu < \infty$$

then π is square integrable and φ is called admissible for π and μ .

Square Integrable Representation

Theorem¹

Let π be a unitary irreducible square integrable representation of G in H

 $^{^1}$ Grossmann, Morlet, Paul: Transforms associated to square integrable group representations. I. General results. 1985

Square Integrable Representation

Theorem¹

Let π be a unitary irreducible square integrable representation of G in H then

- the set of admissible vectors is dense in H
- ▶ the operator $V_{\varphi}: H \to L_2(G)$, given by

$$V_{\varphi}f(a) := \langle f, \pi(a) \varphi \rangle_{H},$$

is a multiple of the isometry

 $^{^1\}mathrm{Grossmann},$ Morlet, Paul: Transforms associated to square integrable group representations. I. General results, 1985

Back to the Aim

We have:

▶ G_{rot} , G_{dil} , G_{tra} are locally compact topological groups \checkmark

We need:

suitable representation for a semidirect product

Left Regular Representation

Definition

The left regular representation π_L of G on $L_2(G, d\mu_L)$ is given by

$$(\pi_L(a) f)(x) = f(a^{-1}x).$$

Representation for Semidirect Products

Definition

Let

- ▶ $G = M \ltimes_{\sigma} N$ be a semidirect product group with homomorphism σ
- ► *M*, *N* be locally compact groups

The left regular representation π_L of G on $L_2(G, d\mu_L)$ is given by

$$(\pi_L(a,b)f)(x,y) = f(a^{-1}x, \sigma_{a^{-1}}(y \circ b^{-1})).$$

Representation for Semidirect Products

Definition

Let

- $G = M \ltimes_{\sigma} N$ be a semidirect product group
- ► M, N be locally compact groups
- N be abelian

The left quasiregular representation π_L of G on $L_2(N, d\mu_L)$ is given by

$$(\pi_L(a,b) f)(x) = \delta(a)^{-\frac{1}{2}} f(\sigma_{a^{-1}}(y \circ b^{-1})).$$

Back to the Aim

We have

- ▶ G_{rot} , G_{dil} , G_{tra} are (locally) compact topological groups \checkmark
- ▶ left quasiregular representation π_L of $G = M \ltimes_{\sigma} N$ on $L_2(N, d\mu_L) \checkmark$

We need

▶ Which groups are admissible?

Admissible Groups

Theorem¹

Let

- ▶ M be a subgroup of $Gl_n(\mathbb{R})$
- ▶ topological semidirect product $M \ltimes \mathbb{R}^n$
- quasiregular representation has nontrivial subrepresentation with admissible vector

Then M is a closed subgroup of $Gl_n(\mathbb{R})$.

¹ H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Transforms, Springer 2005

Closed Subgroups

Admissible groups^{a,b}

^aBernier and Taylor, Wavelets from square-integrable representations, SIAM, 1996

^bFühr, Zur Konstruktion von Wavelettransformationen in höheren Dimensionen, 1997

Back to the Aim

We have

- ▶ G_{rot} , G_{dil} , G_{tra} are (locally) compact topological groups \checkmark
- ▶ left quasi regular representation π_L of $G = M \ltimes_{\sigma} N$ on $L_2(N, d\mu_L) \checkmark$
- ▶ G_{rot} , G_{dil} , G_{tra} are admissible $\sqrt{}$

Components for the New Transform

Requirements

$$D_{rot} = \left\{ R_{\alpha} = \begin{pmatrix} \cos{(\alpha)} & -\sin{(\alpha)} \\ \sin{(\alpha)} & \cos{(\alpha)} \end{pmatrix} : \alpha \in [0, 2\pi) \right\}$$

$$D_{dil} = \left\{ A_{s} = \begin{pmatrix} s_{1} & 0 \\ 0 & s_{2} \end{pmatrix} : s_{1}, s_{2} \in \mathbb{R} \setminus \{0\} \right\}$$

 \Rightarrow semidirect product $G_{raw} := (D_{rot} \times D_{dil}) \rtimes \mathbb{R}^2$

Components for the New Transform

Requirements

$$D_{rot} = \left\{ R_{\alpha} = \begin{pmatrix} \cos{(\alpha)} & -\sin{(\alpha)} \\ \sin{(\alpha)} & \cos{(\alpha)} \end{pmatrix} : \alpha \in [0, 2\pi) \right\}$$

$$D_{dil} = \left\{ A_{s} = \begin{pmatrix} s_{1} & 0 \\ 0 & s_{2} \end{pmatrix} : s_{1}, s_{2} \in \mathbb{R} \setminus \{0\} \right\}$$

 \Rightarrow semidirect product $G_{raw} := (D_{rot} \times D_{dil}) \rtimes \mathbb{R}^2$

Problem and solution

- $ightharpoonup G_{raw}$: no group structure
- **ightharpoonup** solution: for fixed lpha use group structure of D_{dil}

Rotational Anisotropic Wavelet Transform

Definition

Consider

- $arphi \in L_{2}\left(\mathbb{R}^{2}
 ight)$ admissible for D_{dil}
- $f \in L_2(\mathbb{R}^2)$
- $s_1, s_2 \in \mathbb{R} \setminus \{0\}, \alpha \in [0, 2\pi) \text{ and } b \in \mathbb{R}^2$

The rational anisotropic wavelet transform is given by

$$RAW_{\varphi}f(s,\alpha,b) = \int_{\mathbb{R}^2} f(x) \overline{\varphi_{s,\alpha,b}(x)} dx,$$

with

$$\varphi_{s,\alpha,b}(x) = |s_1 s_2|^{-\frac{1}{2}} \varphi(R_\alpha A_s(x-b)).$$

Admissible Rotational Anisotropic Wavelets

Tensor product wavelets

$$arphi_1, arphi_2$$
 are 1D wavelets $\Rightarrow \int_{\hat{\mathbb{R}}^2} rac{|\hat{arphi}\left(\xi_1, \xi_2
ight)|^2}{|\xi_1 \xi_2|} d\xi_1 d\xi_2 < \infty,$

where
$$\varphi(x, y) = \varphi_1(x) \varphi_2(y)$$

Frequency Domain

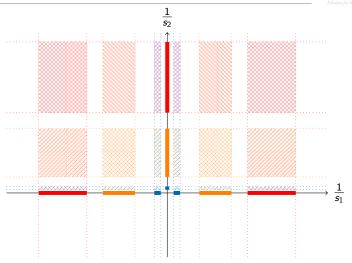


Figure: support of rotational anisotropic wavelets

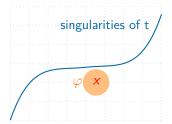
Essential Support

Lemma [G.]

Let $\varphi_{s,\alpha,b}$ with $s_1,s_2\in {\rm I\!R}\setminus\{0\}$, $\alpha\in[0,2\pi)$ be a rotational wavelet then

In the following:

- ▶ tempered distribution $t \in S'(\mathbb{R}^n)$
- x is a regular point
- $ightharpoonup \varphi$ cutoff function

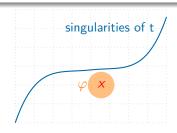


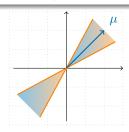
tempered distribution $t \in S'(\mathbb{R}^n)$ x is a regular point φ cutoff function

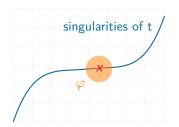
Definition

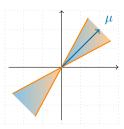
Then a pair $(x,s) \in \mathbb{R}^2 \times \mathbb{R}$ is a regular directed point if there exists a neighbourhood V_s of s such that for all $N \in \mathbb{N}$ and $\mu = (\mu_1, \mu_2)$

$$\left(arphi t
ight)^{\wedge}\left(\mu
ight)=O\left(\left(1+|\mu|
ight)^{-N}
ight) \ ext{with}\ rac{\mu_2}{\mu_1}\in \mathit{V_s}.$$









Definition

The wavefront set WF(t) is the complement of the regular directed points.

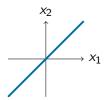


Figure: time domain

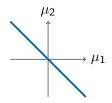


Figure: frequency domain

Wavefront set of line singularity

For $\delta_{x_2=p+qx_1}$ the wavefront set is

WF
$$(\delta_{x_2=p+qx_1}) = \{(x_1,x_2) | x_2 = p + qx_1\} \times \{-\frac{1}{q}\}.$$

Line Singularities

Theorem [G.]

Let
$$g(x) = \delta_{x_2=qx_1}(x)$$
 for $q \neq 0$.
For $b_2 = qb_1$ and $\tan(\alpha) = \frac{1}{q}$

$$RAW_{\Psi}g\left(s,\alpha,b\right)\sim|s_{1}|^{-\frac{1}{2}}|s_{2}|^{-\frac{3}{2}},\ \ \text{for}\ s_{1},s_{2} o 0,$$

otherwise $RAW_{\Psi}v\left(s,\alpha,b\right)$ decays rapidly.

Back to the Motivation

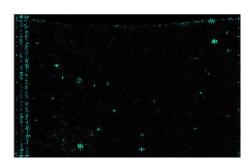


Figure: 2D wavelet transform of product surface with chatter marks

Back to the Motivation

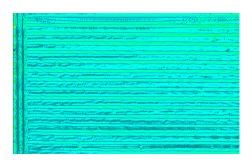
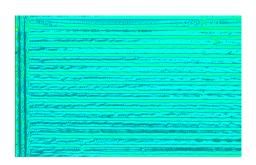


Figure: rotational anisotropic wavelet transform of chatter marks

Back to the Motivation



Improvements

- wavelet like transform with rotation and anisotropic scaling
- detect line singularities (demonstration)
- ▶ fast implementation with FFT

Thank you for your attention!