Brigitte Forster

Fakultät für Informatik und Mathematik Universität Passau

The first part of a story in three chapters

- Complex frames and bases for signal / image processing.
 Complex B-splines.
 Interpolation with complex B-spline? For a subset of parameters.
 (BF)
- Frame construction? Not in the standard way as it is done with B-splines.
 - Alternative: Pseudo-splines. (Peter Massopust)
- Technique: Unitary Extension Principle UEP. (Ole Christensen)
- Relation to subdivision.
- Relation to the Dubuc interpolation.

- Why not? The Fourier transform is complex-valued, after all. Beautiful physical interpretation: Amplitude at a certain frequency.
- Fighting the dogma "Images are real-valued". Signals and images are not always real-valued: MRI, holography, phase retrieval.
- Real-valued transforms cannot separate one-sided frequency bands.
- The phase in images contains edge and detail information.

(BF: Five good reasons for complex-valued transforms in image processing. In: G. Schmeier and A. Zayed (Eds.): New Perspectives on Approximation and Sampling Theory – Festschrift in honor of Paul Butzers 85th birthday. Birkhäuser. 2014.)

Third reason:

Real bases cannot analyze one-sided frequency bands.

Left: Mexican hat wavelet. Right: Its Fourier transform and spectral envelope.

Fourth reason: The phase of images contains edge and detail information.

Reconstruction from Fourier amplitude and phase:

(Cf. A. V. Oppenheim and J. S. Lim, The importance of phase in signals, Proc. IEEE, 1981.) (Left image: Laurent Condat's Image Database http://www.greyc.ensicaen.fr/~lcondat/imagebase.html.)

Fourth reason: The phase of images contains edge and detail information.

Reconstruction from Fourier amplitude and phase (denoised):

(Cf. A. V. Oppenheim and J. S. Lim, The importance of phase in signals, Proc. IEEE, 1981.) (Left image: Laurent Condat's Image Database http://www.greyc.ensicaen.fr/~Icondat/imagebase.html.)

2. B-splines

Cardinal B-splines B_n of order n, $n \in \mathbb{N}$, with knots in \mathbb{Z} are defined recursively:

- $B_1 = \chi_{[0,1]}$,
- $B_n = B_{n-1} * B_1$ for $n \ge 2$.

Piecewise polynomials of degree at most n and smoothness $C^{n-1}(\mathbb{R})$.

2. B-splines

Classical B-splines

$$B_1 = \chi_{[0,1]}, \quad B_n = B_{n-1} * B_1 \text{ for } n \ge 2,$$

$$\widehat{B}_n(\omega) = \left(\frac{1 - e^{-i\omega}}{i\omega}\right)^n$$

- have a discrete indexing.
- have a discrete order of approximation.
- are real-valued.
- have a symmetric spectrum.

Idea: Complex-valued B-splines

defined in Fourier domain:

$$\widehat{B}_{z}(\omega) = \widehat{B}_{\alpha+i\gamma}(\omega) = \left(\frac{1-e^{-i\omega}}{i\omega}\right)^{z},$$

where $z \in \mathbb{C}$, with parameters $\text{Re } z > \frac{1}{2}$, $\text{Im } z \in \mathbb{R}$.

(BF, T. Blu, M. Unser. Complex B-splines. ACHA, 2006.)

Why is this definition reasonable and useful?

- $\widehat{B}_z(\omega) = \widehat{B}_{\alpha+i\gamma}(\omega) = \left(\frac{1-e^{-i\omega}}{i\omega}\right)^z = \Omega(\omega)^z$ is well defined, since $\Omega(\mathbb{R}) \cap \mathbb{R}_- = \emptyset$.
- $|\widehat{B}_{z}(\omega)| = |\Omega(\omega)^{z}| = |\Omega(\omega)|^{\operatorname{Re} z} e^{-\operatorname{Im} z \operatorname{arg}(\Omega(\omega))}$.

Approximately single-sided frequency analysis!

What do they look like? Representation in time-domain

$$B_{z}(t) = \frac{1}{\Gamma(z)} \sum_{k>0} (-1)^{k} {z \choose k} (t-k)_{+}^{z-1}$$

pointwise for all $t \in \mathbb{R}$ and in the $L^2(\mathbb{R})$ norm.

Compare:

The cardinal B-spline B_n , $n \in \mathbb{N}$, has the representation

$$B_n(t) = \frac{1}{(n-1)!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (t-k)_+^{n-1}$$
$$= \frac{1}{\Gamma(n)} \sum_{k=0}^{\infty} (-1)^k \binom{n}{k} (t-k)_+^{n-1}.$$

- Complex B-splines B_z are piecewise polynomials of complex degree.
- Smoothness and decay tunable via the parameter Re z.
 - $B_z \in W_2^r(\mathbb{R})$ for $r < \operatorname{Re} z \frac{1}{2}$
 - $B_z(x) = \mathcal{O}(x^{-m})$ for $m < \text{Re } z + 1, |x| \to \infty$.
- Recursion: $B_{z_1} * B_{z_2} = B_{z_1+z_2}$
- They are scaling functions and generate multiresolution analyses and wavelets.
- Simple implementation in Fourier domain → Fast algorithm.
- Nearly optimal time frequency localization.
- However, no compact support.

(Here Re z, Re z_1 , Re $z_2 > 1$.)

 Relate fractional or complex differential operators with difference operators.

Difference operator of complex order:

$$abla^z g(t) := \sum_{k=0}^{\infty} (-1)^k {z \choose k} g(t-k), \quad z \in \mathbb{C}, \ \operatorname{Re} z \geq 1.$$

(P.L. Butzer, M. Hauss, M. Schmidt, Factorial functions and Stirling numbers of fractional orders, Results Math. 1989)

Consequence for complex B-splines:

$$B_{z}(t) = \frac{1}{\Gamma(z)} \nabla^{z} t_{+}^{z-1}.$$

Compare with the cardinal splines

$$B_n(t) = \frac{1}{(n-1)!} \nabla^n t_+^{n-1}.$$

Complex divided differences for the knot sequence \mathbb{N}_0 :

$$[z; \mathbb{N}_0]g := \sum_{k \geq 0} (-1)^k \frac{g(k)}{\Gamma(z-k+1)\Gamma(k+1)}.$$

Representation for complex B-splines:

$$B_z(t) = z[z, \mathbb{N}_0](t - \bullet)_+^{z-1}$$

(BF, P. Massopust: Splines of Complex Order: Fourier, Filters and Fractional Derivatives. Sampling Theory in Signal and Image Processing, 2011.

BF, P. Massopust: Statistical Encounters with Complex B-Splines. Constructive Approximation, 2009

BF, P. Massopust: Some Remarks about the Connection between Fractional Divided Differences, Fractional B-Splines, and the Hermite-Genocchi Formula. Int. J. of Wavelets, Multiresolution and Information Processing, 2008.)

Theorem: Relations to differential operators

(BF, P. Massopust, 2008)

Let Re z > 0 and $g \in \mathcal{S}(\mathbb{R}^+)$. Then

$$[z;\mathbb{N}_0]g=rac{1}{\Gamma(z+1)}\int_{\mathbb{R}}B_z(t)g^{(z)}(t)\,dt,$$

where $g^{(z)} = W^z g$ is the complex Weyl derivative.

For
$$n = \lceil \text{Re } z \rceil$$
, $\nu = n - z$,

$$W^{z}g(t)=(-1)^{n}\frac{d^{n}}{dt^{n}}\left[\frac{1}{\Gamma(\nu)}\int_{t}^{\infty}(x-t)^{\nu-1}g(x)\,dx\right].$$

Sketch of proof:

$$\frac{1}{\Gamma(z+1)} \int_{\mathbb{R}} B_{z}(t) g^{(z)}(t) dt = \frac{1}{\Gamma(z+1)} \int_{\mathbb{R}} z[z, \mathbb{N}_{0}](t-\bullet)_{+}^{z-1} W^{z} g(t) dt$$

$$= [z, \mathbb{N}_{0}] \frac{1}{\Gamma(z)} \int_{\bullet}^{\infty} (t-\bullet)_{+}^{z-1} W^{z} g(t) dt = [z, \mathbb{N}_{0}] W^{-z} W^{z} g = [z, \mathbb{N}_{0}] g.$$

Theorem: Generalized Hermite-Genocchi-Formula

Let Δ^{∞} be the infinite-dimensional simplex

$$\Delta^{\infty} := \{u := (u_j) \in (\mathbb{R}_0^+)^{\mathbb{N}_0} | \sum_{j=0}^{\infty} u_j = 1\} = \varprojlim \Delta^n,$$

 μ_e^{∞} the generalized Dirichlet measure $\mu_e^{\infty} = \varprojlim \Gamma(n+1)\lambda^n$, and λ^n the Lebesgue measure on Δ^n . Then

$$[z, \mathbb{N}_0]g = \frac{1}{\Gamma(z+1)} \int_{\Delta^{\infty}} g^{(z)}(\mathbb{N}_0 \cdot u) d\mu_e^{\infty}(u)$$
$$= \frac{1}{\Gamma(z+1)} \int_{\mathbb{R}} B_z(t) g^{(z)}(t) dt$$

for all real-analytic $g \in \mathcal{S}^{\omega}(\mathbb{R}^+)$.

How about interpolation with complex B-splines?

How about interpolation with complex B-splines?

Some interpolating complex splines for Re z=4, Im $z=0,0.1,\ldots,0.5$: (Real and imaginary part)

(BF, Peter Massopust, Ramūnas Garunkštis, and Jörn Steuding. Complex B-splines and Hurwitz zeta functions. LMS Journal of Computation and Mathematics, 16, pp. 61–77, 2013.)

Aim: Interpolating splines L_z of fractional or complex order.

Interpolation problem:

$$L_{z}(m) = \sum_{k \in \mathbb{Z}} c_{k}^{(z)} B_{z}(m-k) = \delta_{m,0}, \quad m \in \mathbb{Z},$$

Fourier transform:

$$\widehat{L}_{z}(\omega) = rac{\widehat{B}_{z}(\omega)}{\displaystyle\sum_{k \in \mathbb{Z}} \widehat{B}_{z}(\omega + 2\pi k)} = rac{1/\omega^{z}}{\displaystyle\sum_{k \in \mathbb{Z}} rac{1}{(\omega + 2\pi k)^{z}}}, \quad \operatorname{Re} z \geq 1.$$

Question: When is the denominator well-defined?

Rescale denominator.

$$\widehat{L}_z(\omega) = rac{1/\omega^z}{\displaystyle\sum_{k\in\mathbb{Z}}rac{1}{(\omega+2\pi k)^z}},\quad \operatorname{Re}z\geq 1$$

Let $\omega \neq 0$ and $a := \omega/2\pi$.

$$\sum_{k \in \mathbb{Z}} \frac{1}{(k+a)^z} = \sum_{k=0}^{\infty} \frac{1}{(k+a)^z} + e^{\pm i\pi z} \sum_{k=0}^{\infty} \frac{1}{(k+1-a)^z}$$
$$= \left[\zeta(z,a) + e^{\pm i\pi z} \zeta(z,1-a). \right]$$

This is a sum of Hurwitz zeta functions $\zeta(z, a)$, 0 < a < 1.

4. Special case: Fractional order

Theorem: (Spira, 1976)

If Re $z \ge 1 + a$, then $\zeta(z, a) \ne 0$.

Thus: For 0 < a < 1 and for $\sigma \in \mathbb{R}$ with $\sigma \ge 2$ and $\sigma \notin 2\mathbb{N} + 1$:

$$\zeta(\sigma, a) + e^{\pm i\pi\sigma} \zeta(\sigma, 1-a) \neq 0$$
.

Theorem: (BF, P. Massopust 2011)

For $\sigma \in \mathbb{R}$ with $\sigma \geq 2$ and $\sigma \notin 2\mathbb{N} + 1$ the complex spline L_z solves the interpolation problem.

Remember: Interpolation with B-splines of odd degree is covered by Schoenberg's symmetric versions of the splines.

4. Special case: Fractional order

Interpolating spline L_{σ} in time domain for $\sigma = 2.0, 2.1, \dots, 2.9$. $\sigma = 2$: Classical case of linear interpolation.

Question:

Are there complex exponents $z \in \mathbb{C}$ with Re z > 3 and Re $z \notin 2\mathbb{N} + 1$, such that the denominator of the Fourier representation of the fundamental spline satisfies

$$\zeta(z,a) + e^{\pm i\pi z}\zeta(z,1-a) \neq 0$$

for all 0 < a < 1.

Consequence:

The interpolation construction also holds for certain B-splines L_z of complex order z.

Why was the problem on zero-free regions so resisting?

$$f_{\pm}(z,a) := \zeta(z,a) + e^{\pm i\pi z} \zeta(z,1-a)$$

Closely related to the famous Riemann hypothesis.

(Bernhard Riemann, Source: Wikipedia)

Why was the problem on zero-free regions so resisting?

$$f_{\pm}(z,a) := \zeta(z,a) + e^{\pm i\pi z} \zeta(z,1-a)$$

- Involves the Hurwitz zeta function aside the "interesting domain" around Re $z = \frac{1}{2}$.
- Rouché's theorem seems to be suitable to find zeros, but not to exclude them.
 - The problem is that the estimates have to be uniform in a.
- Numerical examples fail, because the Hurwitz zeta function is implemented via meromorphic approximations.

However, there exist classes of interpolating B-splines of complex order.

Curves of zeros:

Denote

$$f_{\pm}(z,a) := \zeta(z,a) + e^{\pm i\pi z} \zeta(z,1-a).$$

Consider the zero trajectories

$$\frac{\partial z(a)}{\partial a} = -\frac{\frac{\partial f_{\pm}(z,a)}{\partial a}}{\frac{\partial f_{\pm}(z,a)}{\partial z}},$$

where z = z(a) and $f_{\pm}(z(a), a) = 0$ with initial conditions provided at the zeros z = 2n + 1, $n \in \mathbb{N}$, a = 1/2.

Functional equation:

$$f_{\pm}(z, 1-a) = e^{\pm i\pi z} f_{\mp}(z, a).$$

We can reduce the problem to $0 < a \le \frac{1}{2}$. Define

$$g_{\pm}(z,a) = a^{z} f_{\pm}(z,a) = 1 + e^{\pm i\pi z} \left(\frac{a}{1-a}\right)^{z} + B$$

Basic estimations of the first two terms and *B* yield squares of zero-free regions:

$$S = \{z \in \mathbb{C} : z = 2(n+1) + s, |\text{Re } s| \le X < \frac{1}{2}, |\text{Im } s| \le Y\}.$$

Consider again the first terms:

$$1 + e^{\pm i\pi z} \left(\frac{\alpha}{1-\alpha}\right)^z = 0 \quad \text{for } 0 < \alpha < 1,$$

describes circles:

$$z \in \left\{ s : |s-k+\frac{1}{2}| = |k+\frac{1}{2}|, k \in \mathbb{Z} \right\}.$$

Crescent shaped zero-free regions

For

$$\left\{s:\left|s-rac{2k+2+\delta}{2}
ight|=rac{2k+2+\delta}{2},\,0<\left|\delta
ight|<\delta_{0},
ight.$$
 $\sigma_{0}\leq\operatorname{\mathsf{Re}} s\leq2n+2+\delta_{0}\}$

with $\delta_0 < 1$ and $2 < \sigma_0 < 2n + 2 + \delta_0$, the first two terms are located between the circles of zeros,

$$\bullet \left| 1 + e^{\pm i\pi s} \left(\frac{\alpha}{1 - \alpha} \right)^{s} \right| \ge \frac{1}{2},$$

• and the term B satisfies $|B| < \frac{1}{2}$.

Example:

Interpolating complex B-splines with Re z=10, Im $z=0,0.1,\ldots,0.5$ (Real and imaginary part).

Summary

- Complex B-splines are a natural extension of the Schoenberg splines to a complex degree.
- They are related to fractional difference operators, fractional differential operators, Dirichlet means, . . .
- The allow for interpolation as their real valued relatives, if their complex degree z stays away from the zero curves of a certain sum of Hurwitz zeta functions.

Thank you!