Detection of Hidden Frequencies: An OPUC-based Approach

Frank Filbir

Technische Universität München Helmholtz Center Munich

Workshop on Signals, Images, and Approximation Bernried, 2016

In collaboration with

Hrushikesh N. Mhaskar

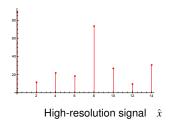
Jürgen Prestin

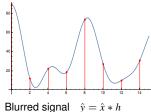
Outline

- (1) The Frequency Detection Problem
- (2) Classical Method: de Prony's Legacy
- (3) OPUC I: Classical Approach
- (4) OPUC II: Kernel-based Approach (Noiseless Recovery)
- (5) OPUC III: Kernel-based Approach (Recovery from Noisy Data)

Super-Resolution

➤ Blurring





In frequency domain

$$y(t) = x(t) h(t),$$

where \hat{h} is a low-pass filter, i.e. supp(h) = [-T, T].

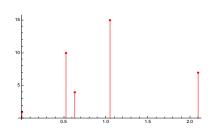
➤ Super-resolution

Recover \hat{x} from low-frequency information samples $y(k), k = 0, 1, \dots$

III-posed extrapolation problem!

The Frequency Detection Problem

> Set up



Consider spike train

$$\hat{x} = \sum_{j=-I}^{I} a_j \, \delta_{\omega_j}$$

with

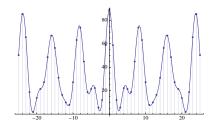
$$a_j \in \mathbb{C}, \ a_{-j} = \overline{a_j},$$
 $\omega_j \in \mathbb{R}, \quad \omega_{-j} = -\omega_j, \quad \text{and}$ $0 = \omega_0 < \omega_1 < \dots < \omega_I < \pi.$

Fourier Stieltjes transform of measure \hat{x}

$$x(t) = \int_{\mathbb{R}} e^{it\omega} d\hat{x}(\omega) = \sum_{j=-I}^{I} a_j e^{i\omega_j t}$$

The Frequency Detection Problem

➤ Data



Sampling of signal

$$x(t) = \sum_{j=-I}^{I} a_j e^{i t \omega_j},$$

at finitely many integer nodes

$$x(k) = \sum_{j=-I}^{I} a_j e^{i k \omega_j}, \quad k = 0, \dots, K.$$

➤ Inverse problem

Determine frequencies ω_j , and a_j , $j=-I,\ldots,I$ from data $\{x(0),\ldots,x(K)\}.$

The difficult part is the determination of the ω_i 's!

The Frequency Detection Problem

➤ Inverse problem

Inversion of the non-linear mapping

$$\mathcal{P}: \mathbb{C}^{2(I+1)} \to \mathbb{C}^K, \qquad \mathcal{P}(a_0, \dots, a_I; \omega_0, \dots, \omega_I) = (x(0), \dots, x(K))$$

➤ Different Methods

```
Prony's method

ESPRIT & MUSIC [R. Roy, T. Kailath . . . ]

Least squares [D. Batenkov, Y. Yodom. . . ]

Matrix pencil methods [G. Beylkin, L. Monzón 2005, D. Potts, M. Tasche, G. Plonka, T. Peter. . . ]

TV minimization [E. Candés, C. Fernandes-Granda, L. Demanet, N. Nguyen . . . ]

OPUC [W.B. Jones, E. Saff, O. Njåstad, H.N. Mhaskar, J. Prestin, F.F. ]
```

Outline

- (1) The Frequency Detection Problem
- (2) Classical Method: de Prony's Legacy
- (3) OPUC I: Classical Approach
- (4) OPUC II: Kernel-based Approach (Noiseless Recovery)
- (5) OPUC III: Kernel-based Approach (Recovery from Noisy Data)

➤ De Prony's idea

Gaspard Clair François Marie Riche de Prony 1755-1839

Relate to the signal

$$x(t) = \sum_{j=-I}^{I} a_j e^{i \omega_j t}$$

a polynomial

$$P(z) = \prod_{j=-I}^{I} (z - \zeta_j) = \sum_{k=0}^{2I+1} c_k z^k, \quad \zeta_j = e^{i\omega_j}$$

For $m = 0, 1 \dots$ we have

$$\sum_{k=0}^{2l+1} c_k x(k+m) = \sum_{k=0}^{2l+1} c_k \sum_{j=-l}^{l} a_j \zeta_j^{k+m}$$
$$= \sum_{j=-l}^{l} a_j \zeta_j^m P(\zeta_j)$$
$$= 0$$

➤ De Prony's idea

Compute coefficients in

$$P(z) = \sum_{k=0}^{2I+1} c_k z^k$$

by linear system

$$\begin{pmatrix} x(0) & x(1) & \dots & x(2I+1) \\ x(1) & x(2) & \dots & x(2I+2) \\ \vdots & \vdots & & \vdots \\ x(2I+1) & x(2I+2) & \dots & x(2(2I+1)) \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{2I+1} \end{pmatrix} = \mathbf{0}.$$

Assumption

Number of samples

$$\sharp\{x(0),\ldots,x(2N)\} \ge 2(2I+1),$$
 i.e. $2I+1 \le N.$

➤ Computation of frequencies

Compute zeros of

$$P(z) = \sum_{k=0}^{2I+1} c_k z^k$$

by solving eigenvalue problem

$$C v = \lambda v$$
,

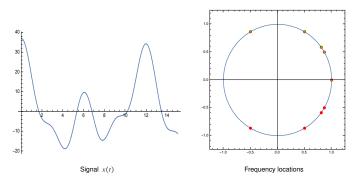
where

$$C = \begin{pmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & \dots & 0 & -c_{2I} \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & \dots & 1 & -c_{2I+1} \end{pmatrix}$$

is the companion matrix.

> Example

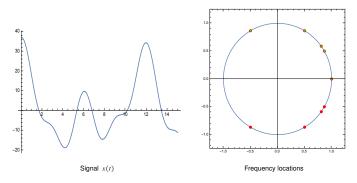
$$x(t) = 1 + 10\cos(\frac{\pi}{6}t) + 4\cos(\frac{\pi}{5}t) + 15\cos(\frac{\pi}{3}t) + 7\cos(\frac{2\pi}{3}t)$$



- + Method uses minimal number of samples.
- Method is sensitive to noise and spacing of the ω_i 's.

> Example

$$x(t) = 1 + 10\cos(\frac{\pi}{6}t) + 4\cos(\frac{\pi}{5}t) + 15\cos(\frac{\pi}{3}t) + 7\cos(\frac{2\pi}{3}t)$$



- + Method uses minimal number of samples.
- Method is sensitive to noise and spacing of the ω_i 's.

Outline

- (1) The Frequency Detection Problem
- (2) Classical Method: de Prony's Legacy
- (3) OPUC I: Classical Approach
- (4) OPUC II: Kernel-based Approach (Noiseless Recovery)
- (5) OPUC III: Kernel-based Approach (Recovery from Noisy Data)

> Reminder

$$x(t) = \sum_{j=-I}^{I} a_j e^{i \omega_j t},$$

with $a_{-j} = \overline{a_j}$, $\omega_{-j} = -\omega_j$, and $0 = \omega_0 < \omega_1 < \dots < \omega_I < \pi$.

Assume I > 0 is known (or predetermined by some model selection method).

> Moments

Let $N \in \mathbb{N}$. Consider samples

$$x_N(k) = \begin{cases} x(k), & 0 \le k \le 2N, \\ 0, & \text{otherwise.} \end{cases}$$

and corresponding autocorrelation sequence

$$\mu_k^{(N)} = \sum_{m=0}^{2N} x_N(m) x_N(m+k).$$

 $(\mu_k^{(N)})_{k\in\mathbb{Z}}$ is a positive definite sequence, i.e.

$$\sum_{k=0}^{n} \sum_{\ell=0}^{n} c_k \, \overline{c_\ell} \, \mu_{k-\ell}^{(N)} \ge 0.$$

➤ Representation

Bochner's Theorem: There is a positive measure μ_N on $\mathbb T$, s.t.

$$\mu_k^{(N)} = \int_{-\pi}^{\pi} e^{ikt} d\mu_N(t).$$

The measure is given by *Z*-transform of sequence $\{x_N(k)\}$, i.e.

$$X_N(z) = \sum_{m=0}^{2N} x_N(m) z^{-m}.$$

We have

$$\int_{-\pi}^{\pi} e^{ikt} \underbrace{\frac{1}{2\pi} |X_N(e^{it})|^2 dt}_{d\mu_N(t)} = \sum_{m=0}^{2N} x_N(m) x_N(m+k) = \mu_k^{(N)}$$

Theorem [Jones, Njåstad, Saff, '90]

We have

$$\frac{1}{2N} \mu_N \to \sum_{j=-I}^I |a_j|^2 \, \delta_{\zeta_j}, \quad \zeta_j = e^{i\omega_j},$$

for $N \to \infty$ w.r.t. weak-* topology on $M_b(\mathbb{T})$.

Why is this result of any help?

➤ Basics on OPUC

Let μ be a probability measure on $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$.

Define the related moment sequence $(\mu_n)_{n\in\mathbb{Z}}$ by

$$\mu_n = \int_{\mathbb{T}} z^n d\mu(z), \quad n \in \mathbb{Z}.$$

Note that

$$\sum_{n=0}^{N} \sum_{m=0}^{N} c_n \overline{c_m} \, \mu_{n-m} = \int_{\mathbb{T}} \left| \sum_{n=0}^{N} c_n \, z^n \right|^2 \mathrm{d}\mu(z) \ge 0,$$

i.e. $(\mu_n)_n$ is a positive definite sequence.

The Töplitz determinant is defined as

$$D_{n} = \begin{vmatrix} \mu_{0} & \mu_{-1} & \dots & \mu_{-n} \\ \mu_{1} & \mu_{0} & \dots & \mu_{-n+1} \\ \vdots & \vdots & & \vdots \\ \mu_{n} & \mu_{n-1} & \dots & \mu_{0} \end{vmatrix} \qquad D_{-1} := 1.$$

We have $D_n > 0$ for all $n = 0, 1, \ldots$

➤ Basics on OPUC

Related to the moment sequence $(\mu_n)_n$ resp. the measure μ there is a system of monic orthogonal polynomials $\{\phi_n\}_{n\in\mathbb{N}_0}$,

$$\phi_n(z) = z^n + \dots,$$

$$\int_{\mathbb{T}} \phi_n(z) \, \phi_m(z) \, \mathrm{d}\mu(z) = \delta_{n,m} \frac{D_n}{D_{n-1}}$$

which are given as

$$\phi_n(z) = \frac{1}{D_{n-1}} \begin{vmatrix} \mu_0 & \mu_{-1} & \mu_{-2} & \dots & \mu_{-n} \\ \mu_1 & \mu_0 & \mu_{-1} & \dots & \mu_{-n+1} \\ \vdots & \vdots & & \vdots & \vdots \\ \mu_{n-1} & \mu_{n-2} & \mu_{n-3} & \dots & \mu_{-1} \\ 1 & z & z^2 & \dots & z^n \end{vmatrix}.$$

This can be seen from the orthogonality relation

$$\int_{\mathbb{T}} z^m \, \phi_n(z) \, \mathrm{d}\mu(z) = \delta_{n,m} \, \frac{D_n}{D_{n-1}}.$$

The ϕ_n are also called **Szegö polynomials**.

➤ Szegö recurrence relation

Let $\{\phi_n\}_{n\in\mathbb{N}_0}$, be a system of OPUC. Then

$$\phi_{n+1}(z) = z \phi_n(z) - \alpha_n \phi_n^*(z), \quad \phi_0(z) = 1,$$

where

- $\phi_n^*(z) = z^n \overline{\phi_n(1/\overline{z})}$ is the so-called reciprocal polynomial,
- α_n is the Verblunsky coefficient, where

$$\alpha_n = \overline{\phi_{n+1}(0)} = \frac{1}{D_n} \begin{vmatrix} \mu_0 & \mu_{-1} & \dots & \mu_{-n-1} \\ \mu_1 & \mu_0 & \dots & \mu_{-n+2} \\ \vdots & \vdots & \vdots & \vdots \\ \mu_n & \mu_{n-1} & \dots & \mu_{-1} \\ 1 & 0 & \dots & 0 \end{vmatrix} = \frac{1}{D_n} \begin{vmatrix} \mu_{-1} & \dots & \mu_{-n-1} \\ \mu_0 & \dots & \mu_{-n+2} \\ \vdots & \vdots & \vdots \\ \mu_{n-1} & \dots & \mu_{-1} \end{vmatrix}$$

> Zeros

All zeros of ϕ_n lie in

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \},$$

> Zeros

Moreover,

$$\phi_n(z) = \det(z\mathbf{I} - \mathbf{C}^{(n)})$$

where $C^{(n)}$ is the *n*-th cut-off of the so-called CMV¹ matrix

where the entries are given in terms of the Verblunsky coefficients

$$C_{k,k+j} = f(\{\alpha_n\}) = f(\{\mu_n\}), \quad j = 0, \pm 1, \pm 2.$$

The **zeros** of ϕ_n are given as **eigenvalues** of $C^{(n)}$

¹ named after Cantero, Moral, Velazguez

> Measures

We have two measures on $\, \mathbb{T} \,$

$$d\mu_N(t) = \frac{1}{2\pi} \Big| \sum_{m=0}^{2N} x_N(m) e^{-imt} \Big|^2 dt,$$

$$\mu = \sum_{j=-I}^{I} |a_j|^2 \delta_{\zeta_j}, \quad \zeta_j = e^{i\omega_j}.$$

Accordingly we have the two systems of monic OPUC

$$\begin{aligned} \{\phi_{N,n}\}_{n\in\mathbb{N}_0} & & \text{OPUC w.r.t.} \quad \mu_N, \\ \{\phi_n\}_{n\in\mathbb{N}_0} & & \text{OPUC w.r.t.} \quad \mu. \end{aligned}$$

> Reminder

We have

$$\frac{1}{2N} \mu_N \to \sum_{j=-I}^I |a_j|^2 \, \delta_{\zeta_j}, \quad \zeta_j = e^{i\omega_j},$$

in weak-* topology as $N \to \infty$.

Why is this result of any help?

➤ Finite system of OPUC

Since μ has finite support we have

$$D_n > 0$$
 for $0 \le n \le 2I$, $D_{2I+1} = 0$,

where $D_n = \det \left[(\mu_{k-\ell})_{k,\ell=0}^n \right]$ and μ_k are the moments w.r.t. μ .

Hence the OPUC system $\{\phi_n\}$ w.r.t. μ is finite.

Moreover,

$$\phi_{2I+1}(z) = \prod_{j=-I}^{I} (z - \zeta_j), \quad \zeta_j = e^{i\omega_j}.$$

Proposition [Jones, Njåstad, Saff, 1990]

For $k \in \mathbb{Z}$ fixed we have

$$\frac{1}{2N}\mu_k^{(N)} = \mu_k + \mathcal{O}(1/N).$$

Theorem [Jones, Njåstad, Saff, 1990]

Assume $a_0 > 0$. Then for each $1 \le n \le 2I + 1$ we have

$$\lim_{N\to\infty}\phi_{N,n}(z)=\phi_n(z),\quad z\in\mathbb{C}.$$

In particular

$$\lim_{N \to \infty} \phi_{N,2I+1}(z) = \phi_{2I+1}(z) = \prod_{j=-I}^{I} (z - \zeta_j), \quad z \in \mathbb{C}.$$

On every compact set $K \subset \mathbb{C}$ we have

$$|\phi_{N,n}(z) - \phi_n(z)| \le C_K N^{-1}, \quad z \in K, \quad N \in \mathbb{N}.$$

Corrolary [Jones, Njåstad, Saff, 1990]

Assume $a_0>0,\ 1\leq n\leq 2I+1$. Let $z_{2I+1,j}^{(N)}$ be the zero of $\phi_{N,2I+1}$ which is closest to $\zeta_j=\mathrm{e}^{\mathrm{i}\omega_j}$. Then for $j=-I,\ldots,I$ we have

$$|z_{2I+1,j}^{(N)} - \zeta_j| \le C N^{-1}.$$

➤ Wiener-Levinson algorithm

Compute zeros $z_{2I+1,j}^{(N)}, j=0,\ldots,2I+1,$ of $\phi_{N,2I+1}$ via

$$C^{(2I+1)}v = z v$$

where the matrix is the five diagonal CMV matrix

with entries $C_{k,k+j}^{(2l+1)}$ computable from moments μ_n .

This procedure is known as the Wiener-Levinson algorithm.

> Pros and Cons

- + Spectral theory of the CMV matrix well studied.
 - [B. Simon, Orthogonal Polynomials on the Unit Circle, AMS, Vol 54, I & II]
- Convergence of the Wiener-Levinson algorithm is slow ($\approx N^{-1}$). Improvements

Consider modified moments

$$\mu_k^{(N,p)} = \sum_{m=0}^{pN} w_{N,k}^{(p)} x(m) x(m+k),$$

where $w_{N,k}^{(p)}$ are defined by

$$(1+t+\cdots+t^N)^p = \sum_{k=0}^{pN} w_{N,k}^{(p)} t^k.$$

- + Convergence rate $\approx N^{-p}$.
- Loss of OPUC structure.

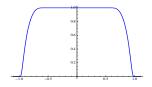
[K. C. Pan, A refined Wiener-Levinson method in frequency analysis, SIAM J. Math. Anal. 1996]

Can we have both, fast convergence and OPUC structure?

Outline

- (1) The Frequency Detection Problem
- (2) Classical Method: de Prony's Legacy
- (3) OPUC I: Classical Approach
- (4) OPUC II: Kernel-based Approach (Noiseless Recovery)
- (5) OPUC III: Kernel-based Approach (Recovery from Noisy Data)

➤ Localized kernel



Let $H: \mathbb{R} \to \mathbb{R}$ be a even **smooth filter function** with compact support, i.e.

$$H \in C^s(\mathbb{R}), \quad \text{supp}(H) = [-1, 1].$$

For $N \ge 1$ define a kernel by

$$\Phi_N(t) = \sum_{m \in \mathbb{Z}} H\left(\frac{m}{N}\right) e^{imt}.$$

Remark:

 Φ_N is a trigonometric polynomial of degree N-1.

Theorem [Mhaskar, Prestin, F.]

Let $N \ge 1$ be an integer and $H: \mathbb{R} \to [0,1], H \in C^s(\mathbb{R})$ be a filter function with H(t)=0 for $|t|\ge 1$. If

$$N \ge \left(\frac{\|H^{(2)}\|_{\infty}}{3\|H\|_1}\right)^{1/2},$$

then

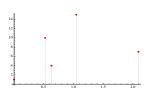
$$\frac{N \|H\|_1}{2} \le \max_{t \in \mathbb{R}} |\Phi_N(t)| = \Phi_N(0) \le 2N - 1.$$

Moreover,

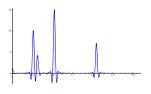
$$\left|\Phi_N(t)\right| \leq C \frac{\Phi_N(0)}{(N|t|)^s}.$$

Hence Φ_N decays away from t=0 like $|t|^{-s}$.

➤ Using the kernel



Discrete measure



Kernel approximation to discrete measure

Discrete measure

$$\mu = \sum_{j=-I}^{I} |a_j|^2 \, \delta_{\zeta_j}$$

generated a finite system of OPUC

$$\phi_0, \dots, \phi_{2I}, \quad \phi_{2I+1}(z) = \prod_{j=-I}^{I} (z - \zeta_j).$$

Problem

 μ_k not computable from samples x(k).

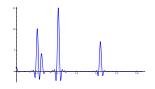
Hence Wiener-Levinson algorithm not applicable.

Idea

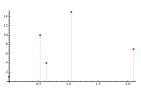
Replace μ by some discrete measure

$$\nu^{(N)} = \sum_{j=-I}^{I} \lambda_{N,j} \, \delta_{\zeta_j}$$

s.t. related moments are computable.



Kernel approximation to discrete measure



Modified discrete measure

For $N \ge 1$ consider suitable kernel

$$\Phi_N(t) = \sum_{m \in \mathbb{Z}} H\left(\frac{m}{N}\right) e^{imt}$$

and let

$$w_{N,j} = \sum_{\ell=-I}^{I} a_j \, \overline{a_\ell} \, \frac{\Phi_N(\omega_j - \omega_\ell)}{\Phi_N(0)}.$$

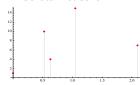
Define

and let

$$\lambda_{N,j} = \frac{w_{N,j} + \overline{w_{N,j}}}{2}$$

$$\nu^{(N)} = \sum_{j=-I}^{I} \lambda_{N,j} \, \delta_{\zeta_j}.$$

➤ Discrete measure



Modified discrete measure

$$\nu^{(N)} = \sum_{j=-I}^{I} \lambda_{N,j} \, \delta_{\zeta_j}.$$

Modified discrete measure

> Moments

For the moments sequence we have

(i)

$$\nu_k^{(N)} = \sum_{j=-I}^{I} \lambda_{N,j} \, \zeta_j^k = \frac{1}{\Phi_N(0)} \sum_{m \in \mathbb{Z}} H(\frac{m}{N}) \, x(m) \, \frac{x(m+k) + x(m-k)}{2}.$$

 $(\mathrm{ii}) \ \ \nu_k^{(N)} \ \ \mathrm{is\ real\ and} \ \ \nu_k^{(N)} = \nu_{-k}^{(N)},$

and hopefully

$$\sum_{n}\sum_{k} c_{n} \,\overline{c_{k}} \,\nu_{n-k}^{(N)} \geq 0.$$

Theorem [Mhaskar, Prestin, F.]

Let $N \ge 1$ be an integer. Let $H: \mathbb{R} \to [0,1]$ be an even C^s fct with H(t) = 0 for $|t| \ge 1$. Further let

$$\nu_k^{(N)} = \frac{1}{\Phi_N(0)} \sum_{m \in \mathbb{Z}} H\left(\frac{m}{N}\right) x(m) \frac{x(m+k) + x(m-k)}{2}.$$

Then we have

- (i) the moments $\nu_k^{(N)}$ are all real and $\nu_k^{(N)}=\nu_{-k}^{(N)},\ k\in\mathbb{Z}.$
- (ii)

$$\nu_k^{(N)} = \sum_{k=-I}^I \lambda_{N,j} e^{i\omega_j k}, \quad \lambda_{N,j} = \mathfrak{Re} \left(a_k \sum_{\ell=-I}^I \overline{a_\ell} \frac{\Phi_N(\omega_j - \omega_\ell)}{\Phi_N(0)} \right).$$

(iii) For $N \ge \max\{2I + 1, \left(\frac{\|H^{(2)}\|_{\infty}}{3\|H\|_1}\right)^{1/2}\}$ we have

$$\left|\lambda_{N,j}-|a_j|^2\right|\leq rac{C\,|a_j|^2}{(N\,\mathfrak{q})^s},\quad ext{ and }\quad |
u_k^{(N)}-\mu_k|\leq rac{C}{(N\,\mathfrak{q})^s}.$$

In particular, if $N \ge C \mathfrak{q}^{-1}$ then $\{\nu_k^{(N)}\}_k$ is positive definite.

Here $\mathfrak{q} = \min_{j \neq k} |\omega_j - \omega_k|$ is the separation distance.

> Related OPUC

Since $\{\nu_k^{(N)}\}_k$ is a positive definite sequence there exists a finite system of OPUC

$$\varphi_{N,0},\ldots,\varphi_{N,2I},\quad \varphi_{N,2I+1}(z)=\prod_{j=-I}^I(z-\zeta_j).$$

Moments $\{\nu_k^{(N)}\}_k$ are **computable**. Hence Verblunsky coefficients

$$\alpha_n = (-1)^n \frac{\det[(\nu_{j-\ell-1}^{(N)})_{j,\ell=0}^n]}{\det[(\overline{\nu_{j-\ell}^{(N)}})_{j,\ell=0}^n]}.$$

are computable.

Eigenvalues of related CMV matrix $C^{(2I+1)}$ give ζ_j , $j=-I,\ldots,I$.

➤ Example

Define the kernel

$$\Phi_N(t) = \sum_{m \in \mathbb{Z}} H\left(\frac{m}{N}\right) e^{\mathrm{i} \, m \, t}$$

by

$$H(t) := \begin{cases} 1, & \text{if } 0 \le t \le 1/2, \\ \exp\left(-\frac{\exp(2/(1-2t))}{1-t}\right), & \text{if } 1/2 < t < 1, \\ 0, & \text{if } t \ge 1. \end{cases}$$

Consider the signal

$$x(t) = \sin\left(\frac{\pi}{6}t\right) + \sin\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{2}t\right) + 10\sin\left(\frac{3\pi}{4}t\right),$$

and samples $\{x(k)\}_{k=-199}^{199}$.

Results

ω_{j}	±0.523489	±1.047079	±1.570719	± 2.356193
$ ilde{\omega}_j$	±0.523598	±1.047197	±1.570796	± 2.356194

Outline

- (1) The Frequency Detection Problem
- (2) Classical Method: de Prony's Legacy
- (3) OPUC I: Classical Approach
- (4) OPUC II: Kernel-based Approach (Noiseless Recovery)
- (5) OPUC III: Kernel-based Approach (Recovery from Noisy Data)

> Statistical setting

We consider

$$\tilde{x}(k) = x(k) + \varepsilon(k), \quad x(t) = \sum_{j=-1}^{I} a_j e^{i\omega_j t}$$

with the following assumptions regarding the noise

- (a) $\{\varepsilon(k)\}_{k\in\mathbb{Z}}$ independent random variables with $\mathbb{E}[\varepsilon(k)] = 0$.
- (b) $\varepsilon(k) \in [-\varepsilon, \varepsilon]$ almost everywhere for all $k \in \mathbb{Z}$.
- (c) $\{\varepsilon(k)\varepsilon(\ell)\}_{k,\ell}$ independent random variables.

We do not assume that the random variables $\varepsilon(k)$ are identically distributed.

We write

$$\tilde{\varepsilon}_m(\ell) = \frac{1}{2} \{ \varepsilon(m+\ell) + \varepsilon(m-\ell) \}$$

and

$$\sigma^2(k) = \mathrm{Var}\big[\varepsilon(k)\big] = \mathbb{E}\big[\{\varepsilon(k) - \mathbb{E}[\varepsilon(k)]\}^2\big] = \mathbb{E}[(\varepsilon(k))^2]$$

We assume $\sigma^2(k)$ is known or can be estimated by statistical methods.

Unbaised estimator

Define

$$\tilde{\nu}_k^{(N)} := \frac{1}{\Phi_N(0)} \left\{ \sum_{m \in \mathbb{Z}} H\left(\frac{m}{N}\right) \tilde{x}(k) \frac{\tilde{x}(m+k) + \tilde{x}(m-k)}{2} - \delta_{0,k} \sum_{m \in \mathbb{Z}} H\left(\frac{m}{N}\right) \sigma^2(m) \right\}$$

Independence of $\varepsilon(k)$ implies

$$\mathbb{E}[\tilde{\nu}_k^{(N)}] = \mathbb{E}[\nu_k^{(N)}], \quad k = -N, \dots, N,$$

i.e. $\tilde{\nu}_k^{(N)}$ is an **unbaised estimator** for $\nu_k^{(N)}$.

Theorem [Mhaskar, Prestin, F.]

Let $H:\mathbb{R} \to [0,1]$ be an even C^s fct with H(t)=0 for $|t|\geq 1$. Let $\alpha>0$ and $N\in\mathbb{N}$ with

(1)
$$N \ge \max\left\{7, 2I + 1, \left(\frac{\|H^{(2)}\|_{\infty}}{3\|H\|_{1}}\right)^{1/2}\right\}$$

(2)
$$N \geq \frac{(2LM)^s}{\mathfrak{q}}$$
,

(3)
$$\frac{C(\varepsilon)}{(N\mathfrak{q})^s} \le \left(\frac{(\alpha+2)\log N}{N}\right)^{1/2} \le 1.$$

Then with probability exceeding $1 - \frac{2}{N\alpha}$, we have

(i)

$$|\tilde{\nu}_k^{(N)} - \nu_k^{(N)}| \lesssim \left(\frac{(\alpha+2)\log N}{N}\right)^{1/2}, \quad k = -N, \dots, N,$$

(ii) $\{\tilde{\nu}_k^{(N)}\}_k$ is a positive definite sequence.

Hence the sequence of monic OPUC $\{\tilde{\varphi}_{N,n}\}_n$ exists and, in particular,

$$\tilde{\varphi}_{N,2I+1}(z) = \prod_{j=-I}^{I} (z - \tilde{\zeta}_j).$$

The points $\zeta_j, j=-I,\ldots,I$ can be estimated by the zero $\tilde{\zeta}_j$ of $\tilde{\varphi}_{N,2I+1}$.

➤ Numerical aspects

Since estimates of ζ_j are given by eigenvalues of CMV matrix $\tilde{\pmb{C}}^{(2l+1)}$ we make use of

Theorem [Bauer-Fike]

Let $A, E \in \mathbb{C}^{n \times n}$ such that

$$X^{-1}AX = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

and let $\tilde{\lambda}_i$ be any eigenvalue of A + E. Then

$$\min_{1\leq j\leq n}|\lambda_j-\tilde{\lambda}_j|\leq \|\boldsymbol{X}^{-1}\|\ \|\boldsymbol{X}\|\ \|\boldsymbol{E}\|.$$

➤ Numerical aspects

Theorem [Mhaskar, Prestin, F.]

Let $\alpha > 0$ and $N \in \mathbb{N}$ satisfying the conditions as above.

There is $c^\star>0$ depending on μ,α,H,s satisfying the following condition with probability exceeding $1-\frac{2}{N^\alpha}$

$$c^{\star}C(\varepsilon)\left(\frac{\log N}{N}\right)^{1/2}<\frac{\mathfrak{q}}{\pi},$$

where $C(\varepsilon)$ is a specific constant depending on ε .

For each ℓ there is exactly one point ζ_i , $j = -I, \ldots, I$ in the disc

$$\left\{ z \in \mathbb{C} : |z - \tilde{\zeta}_{\ell}| \le c^{\star} C(\varepsilon) \left(\frac{\log N}{N} \right)^{1/2} \right\}$$

