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Super-Resolution

>» Blurring

High-resolution signal

In frequency domain

X

I 2 ¥ 6 8 10 12 14

Blurred signal 3 =X =xh

(1) = x(1) h(),

where 7 is a low-pass filter, i.e. supp(h) = [T, T].

» Super-resolution

Recover % from low-frequency information samples y(k), k =0,1,....

lll-posed extrapolation problem ! ‘




The Frequency Detection Problem

» Set up
Consider spike train

I
= E ajéwj

with

a €C, a_j =g,

wj€R, w_j=-w;, and

O=w)y<w; < - <w <.

Fourier Stieltjes transform of measure

1
x(t) = /Rei"" di(w) = > g’

j=—1



The Frequency Detection Problem

> pae j/ Sampling of signal
f\ il A I
j(\ /\* # ﬁf\ [\‘ /\ /\l v =j;1£lj .
‘\ ‘ (\ / 1/40 \ / \ | x«\ at finitely many integer nodes
* 1
TR W ‘\/N \/ \\J =3 gt k=0, K.

» Inverse problem
Determine frequencies wj, and a;, j= —I,...,I from data

{x(0), ..., x(K)}.

The difficult part is the determination of the w;’s !




The Frequency Detection Problem

» Inverse problem

Inversion of the non-linear mapping
P2+ ck, Plag, ... ,ar;wo, ... ,wr) = (x(O), ... ,x(K))
> Different Methods

Prony’s method

ESPRIT & MUSIC  [R. Roy, T Kailath ....]

Least squares  [p. Batenkov, Y. Yodom...]

Matrix pencil methods  (G. Beylkin, L. Monzén 2005, D. Potts, M. Tasche, G. Plonka, T. Peter. .. ]
TV minimization [E. Candés, C. Fernandes-Granda, L. Demanet, N. Nguyen ...]

OPUC  [w.B. Jones, E. Saff, 0. Njastad, H.N. Mhaskar, J. Prestin, F.F. ]
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De Prony’s Legacy

» De Prony’s idea

Relate to the signal

1
x(t) = Z ajetei’

j==1
a polynomial

2141
H(z—Cf)f 2ty G=e
Form=10,1... we have
2141 2141 1

Socstirm =3 a3 g

k=0 =0 j=—1
Gaspard Clair Francois Marie Riche de Prony
1755-1839

—ZQJC P(G)

j=—1
=0




De Prony’s Legacy

» De Prony’s idea

Compute coefficients in
2141

P(z) = Z e
k=0

by linear system

x(0) x(1) .. x(2I+1) o
x(1) x(2) .. x(21 4+ 2) c
: : ; : =0
KA+ xQ@+2) ... x(2Q2I+1) earin

Assumption

Number of samples

${x(0),...,x(2N)} > 2(27 + 1), ie. 2[+1<N.



De Prony’s Legacy

» Computation of frequencies

Compute zeros of
2141

P(z) = Z ad
k=0

by solving eigenvalue problem

Cv= Ay,
where
0o 0 ... 0 —co
1 0 e 0 —C]
Cc= o1 ... 0 —cyr
0 0 PN 1 —C2I+1

is the companion matrix.



De Prony’s Legacy

>» Example

x(t) = 14 10cos (%t) + 4cos (gt) + 15cos (gt) + 7 cos (th)

Signal x(r) Frequency locations




De Prony’s Legacy

>» Example

x(f) =1+ 10cos (%t) + 4 cos (gt) + 15 cos (gt) + 7 cos (z?ﬂ-t)

Signal x(r) Frequency locations

+ Method uses minimal number of samples.
- Method is sensitive to noise and spacing of the w;’s.
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OPUC I: Classical Approach

» Reminder

1
x(t) — Z ajeiw/t,

=1
With a_; =@, w_j=—wj, and 0 =wp < w; < -+ <wy < 7.
Assume [ > 0 is known (or predetermined by some model selection method).
» Moments
Let N € N. Consider samples

_f xR, 0<k<ON,
xN(k)f{ 0,  otherwise.

and corresponding autocorrelation sequence

2N
;L,EN) = Z xn (m) xy(m + k).
m=0

(NEN));(GZ is a positive definite sequence, i.e.

n

S e, 2o

k=0 £=0



OPUC I: Classical Approach

>» Representation
Bochner’s Theorem: There is a positive measure uy on T, s.t.

MIEN):/ eikthN(t)_

The measure is given by Z-transform of sequence {xn(k)}, i.e.

N
Xn(z) = Z xy(m)z=™.

m=0

We have
T )
k 2 _ .,
/7we"%|XN(e")| dt = ZxN m) xy(m+ k) = p,
——
dpn (1)

Theorem [Jones, Njastad, Saff, '90]

We have
1 iw;
pN = Z laj* 8¢, G =€,
2N = 7’
forN — oo w.r.t. weak-+ topology on M;(T).

’ Why is this result of any help ?




OPUC I: Classical Approach

> Basics on OPUC
Let n be a probability measureon T={z€ C: ] =1}.
Define the related moment sequence (i ),cz by

fn = / Z'du(z), nez.
T
Note that

N N N )
chna,ﬂnfm = / | chzn| d/J‘(Z) 2 01
T w=0

n=0m=0
i.e. (un)n is a positive definite sequence.

The Toplitz determinant is defined as

Mo H—1 .- H—n
M1 Ho B A |

D, = . . . D_;:=1.
Hn Hp—1 ... Ho

We have D, > 0foralln=0,1,....



OPUC I: Classical Approach

» Basics on OPUC
Related to the moment sequence (). resp. the measure . there is a system of
monic orthogonal polynomials {x}en,

D,
() =2+ ..., / 6n(2) I (2) du2) = S 22
T Dy
which are given as
Ho H—1 H—2 .. —n
I H1 Ho H—1 H—n+t1
#n(2) = D : . .
Hn—1 Hn—2 Hn—3 e H—1
1 z 2 ... "

This can be seen from the orthogonality relation

/]TZM ¢n(Z) d/l(Z) = 611,m m

The ¢, are also called Szegé polynomials.



OPUC I: Classical Approach

» Szego recurrence relation
Let {¢n}nen,, be asystem of OPUC. Then

nt1(2) = 2¢n(2) — an by, (2),  Polz) =1,

where
- ¢ (z) = "¢n(1/7) is the so-called reciprocal polynomial,
-« is the Verblunsky coefficient, where
HO  H—1 e fop—d i
1231 Ho cee He—n42
1 1 Ho
= 0) = — . . . . = —
an = ¢p11(0) D : : : : D,
S R
» Zeros

All zeros of ¢, liein
D={zeC: |z <1},

H—n—1
H—n+2



OPUC I: Classical Approach

» Zeros

Moreover,
én(2) = det(d — C™)

where €™ is the n-th cut-off of the so-called CMV' matrix

* ¥ ¥ X
* ¥ ¥ X

where the entries are given in terms of the Verblunsky coefficients
Crsyj =f({on}) =f{pa}), Jj=0,£1,%2.

The zeros of ¢, are given as eigenvalues of C(")

1 named after Cantero, Moral, Velazquez



OPUC I: Classical Approach

» Measures

We have two measures on T

L& o
dun(t) = g‘ D an(m)e ™| dr,
m=0

I .
o= Z |aj‘25<j7 G =e".

j=—1
Accordingly we have the two systems of monic OPUC
{ONnInen, OPUC w.rt. puw,
{n}nen, OPUC w.rt. p.
» Reminder

We have

1
1 2 iw;j
ﬁMN_)j:Z_[ |a_i| 6Cj7 G =¢e",

in weak-x topology as N — oc.

’ Why is this result of any help?




OPUC I: Classical Approach

» Finite system of OPUC
Since p has finite support we have

D, >0 foro<n<2, Dy, =0,
where D, = det [(pk,g)']:l:o] and py are the moments w.r.t. .

Hence the OPUC system {¢,} w.r.t. p is finite.

Moreover,
1

oun(@) = [[G=¢). G=e.

j==1

Proposition (yones, Njastad, saff, 1990]

For k € 7 fixed we have

1 (N)
— U = i + O(1/N).
2N k k ( / )



OPUC I: Classical Approach

Theorem [Jones, Njastad, Saff, 1990]

Assume ay > 0. Thenforeach 1 <n <2+ 1 we have
lim ¢n.(z) = Pu(z), z€C.
N—oo

In particular

Nim N 2041(2) = darpi(z) = H (z—¢), zeC.

j=—1
On every compact set K C C we have

‘¢N,,¢(Z)—¢n(z)|§CKN71, ZEK, N e N.

Corrolary [Jones, Njastad, Saff, 1990]

Assume ay >0, 1 <n<2[+1. Letzglvll be the zero of ¢y 2141 which is closest to
¢ =e“. Thenfor j=—I,...,1 we have

—1
‘Z21+1,j Gl<CNT



OPUC I: Classical Approach

» Wiener-Levinson algorithm
Compute zeros zg,vlu,j =0,...,2I+1,0f ¢y 241 via
CcHDy = 7y,

where the matrix is the five diagonal CMV matrix

* * *
* * * *
* * * * *
C(21+1) _ * * * * *
with entries ¢*/+D computable from moments p,.

kik+j

This procedure is known as the Wiener-Levinson algorithm.



OPUC I: Classical Approach
>» Pros and Cons

+ Spectral theory of the CMV matrix well studied.
[ B. Simon, Orthogonal Polynomials on the Unit Circle, AMS, Vol 54, 1 & Il ]

- Convergence of the Wiener-Levinson algorithm is slow ( ~ N~1).
Improvements
Consider modified moments

“EN#’) ZW(I’) x m X m+k),
m=0

where w](j’)k are defined by

PN
(It My =3 Wl -

k=0

+ Convergence rate ~ N ".
- Loss of OPUC structure.

[K. C. Pan, A refined Wiener-Levinson method in frequency analysis, SIAM J. Math. Anal. 1996]

Can we have both, fast convergence and OPUC structure?
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OPUC IlI: Kernel-based Approach (Noiseless Recovery)

» Localized kernel

Let H: R — R be a even smooth filter function
with compact support, i.e.

H € C°(R), supp(H) = [—1,1].

For N > 1 define a kernel by
Dy(r) = ZH<%) el
mez

Remark:
dy is a trigonometric polynomial of degree N — 1.



OPUC IlI: Kernel-based Approach (Noiseless Recovery)

Theorem Prestin, F.]

Let N>1 beanintegerand H : R — [0,1], H € C°(R) be a filter function with
H(t)=0 for |[t| > 1. If

N> (HH(2)||DO>1/27

3IH]ly
then 1A
N ||H|;
—5 - s max[Py()| = en(0) <2V L.
Moreover,
Pn(0)
[V < € Gy

Hence @y decays away from ¢ =0 like |¢f|~*.



OPUC IlI: Kernel-based Approach (Noiseless Recovery)

» Using the kernel

Discrete measure

Kernel approximation to discrete measure

Discrete measure

I

= la* s

j=—I
generated a finite system of OPUC

1

b0, b, dun1(@) =[] =)

j==1
Problem
e not computable from samples x(k).

Hence Wiener-Levinson algorithm not applicable.

Idea
Replace p by some discrete measure

I
(V) — Z A, 59_

j=—1

s.t. related moments are computable.



OPUC IlI: Kernel-based Approach (Noiseless Recovery)

Kernel approximation to discrete measure

Modified discrete measure

For N > 1 consider suitable kernel

and let

Define

and let

INOEDY H(%) el

meZ

Dy (wj — wy
WN,jfzaja 7] )

=, @n(0)
AN UN TN —; N
S = 3 st
j=—1



OPUC IlI: Kernel-based Approach (Noiseless Recovery)

» Discrete measure

o . Modified discrete measure

1
v = 3" Ay,

j=—1

Modified discrete measure
> Moments

For the moments sequence we have
()

1
W) _ oL MY oy SR +x(m = k)
" 71';1)%(}(7 ‘PN(O)r;ZH(N)X( ) .

(V)

(i) v ()

. N
is real and v, :uik),

and hopefully

Z Z Cn Ck Vrglj)k > 0.
n k



OPUC IlI: Kernel-based Approach (Noiseless Recovery)

Theorem [mhaskar, Prestin, .

Let N > 1 be aninteger. Let H: R — [0,1] be aneven C* fctwith H(t) =0 for
[t| > 1. Further let

(N) 1 m x(m+ k) + x(m — k)
= H(Z dmrhjram=r
YE T an(0) ,;z (N> xm) 2
Then we have
(i) the moments v are all real and v = v k € z.
(ii)
™ _ v L B — wp)
N iwik — i —
= Avj e Ay = Re —_— ).
s v EE )

(2) 1/2
(iii) For N > max{2/ + 1, (“’;HHHT") } we have

Clajl?
(Naq)’

In particular, if N > C q~! then {V,EM}k is positive definite.

C

P it < Nay

and | — | <

Here q = minj |w; — wi| is the separation distance.



OPUC IlI: Kernel-based Approach (Noiseless Recovery)

> Related OPUC
Since {I/,EN>}[( is a positive definite sequence there exists a finite system of OPUC

I

PN,05 - -+ PN,2I5 <PN,21+1(Z) = H (Z - §j)~
j=—I

Moments {V,EN) }« are computable. Hence Verblunsky coefficients
(N yn
on = (—1)"—det[('/j*“')"’k°}.
det[(v ™) ]
are computable.

Eigenvalues of related CMV matrix ¢+ give ¢j, j= —1,...,I.

)



OPUC IlI: Kernel-based Approach (Noiseless Recovery)

>» Example

Define the kernel

mezZ
by
1, ifo<r<1/2,
H(r) = exp<7w>, if1/2<1<1,
0, ifr>1.

Consider the signal
x(t) = sin (zt) + sin (Et) + sin (Et) + 10sin (3—7rt),
6 3 2 4
and samples {x(k)}}%_qo-

Results

wj || £0.523489 | £1.047079 | +£1.570719 | £2.356193

w; || £0.523598 | +£1.047197 | £1.570796 | +2.356194
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OPUC lll: Kernel-based Approach (Recovery from Noisy Data)

» Statistical setting
We consider
F(k) = x(k) + k), x(1) = Z aj et
j=—1
with the following assumptions regarding the noise

(a) {e(k)}xez independent random variables with E[e(k)] = 0.
(b) e(k) € [—¢, €] almost everywhere for all k € Z.
(c) {e(k)e(£)}«,¢ independent random variables.

We do not assume that the random variables (k) are identically distributed.

We write ]
Em(£) = E{E(m +4) +e(m—0)}
and

o (k) = Var[e(k)] = E[{e(k) — E[e(0)]}’] = E[(=(K))’]

We assume o2 (k) is known or can be estimated by statistical methods.



OPUC lll: Kernel-based Approach (Recovery from Noisy Data)

» Unbaised estimator

Define

vy _ 1 Hﬂ~kw_§ o™ o2
Ve (IDN(O){’;Z (§)*® 2 0”‘% (¥ ()}
Independence of (k) implies
EpM =EW™M], k=-N,...,N,

i.e. 5™ is an unbaised estimator for v



OPUC lll: Kernel-based Approach (Recovery from Noisy Data)

Theorem Prestin, F]

Let H:R — [0,1] beaneven C* fctwith H(r) =0 for |f| > 1. Letaa>0and N € N
with

(1) N > max {7,21+ 1, (ng—l‘(‘zl){}l‘]oo)l/z}

() N> @
> i,
« 0g 1/2
(@) o < () <,

Then with probability exceeding 1 — % , we have
(i)

N (M) < (a+2)logN\1/2 _
|7 v ‘N(iN ) , k=—N,...,N,

(i) {5} is a positive definite sequence.
Hence the sequence of monic OPUC {&n .} exists and, in particular,

1

evarni(@) = [[ =)

j==1

The points ¢;, j = —1,...,I can be estimated by the zero C} of @y r41-



OPUC lll: Kernel-based Approach (Recovery from Noisy Data)

» Numerical aspects

(21+1)

Since estimates of ¢; are given by eigenvalues of CMV matrix C we make use of

Theorem [Bauer-Fike]
LetA,E € C"%" such that

X7'AX = diag(Af, ..., \a).
and let A; be any eigenvalue of A + E. Then

in [N — M| < [|IXY X IE]|-
12-12"‘/ vl < I X IXIIE]



OPUC lll: Kernel-based Approach (Recovery from Noisy Data)

» Numerical aspects

Theorem Prestin, F.]

Let « > 0 and N € N satisfying the conditions as above.

There is ¢* > 0 depending on u, «, H, s satisfying the following condition with
probability exceeding 1 — =

c*C(8)<IO%N>l/2 <3

where C(¢) is a specific constant depending on e.

)

For each ¢ there is exactly one point ¢;, j = —I,...,I in the disc

{z €C:|z—¢ < c*C(e)(lo%N)l/z}



The End

"There's never
enough time to do
all the nothing you

want."

-Calvin & Hobbes



