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Radial kernels

Radial kernels are suited for sparse multivariate interpolation problems

K(x , y) = Φ(x − y) = φ(‖x − y‖2) =: f (‖x − y‖22 /2) x , y ∈ R
d

with a scalar function φ : [0,+∞) → R.

Properties:

Radial symmetry,

Dimension free,

Invariant under affine
transformations.

Examples of well-known kernels in
literature:

Gaussian,

Multiquadrics,

Whittle-Matérn functions,

Wendland functions,

Polyharmonics,

...
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Fourier transform

The d-variate Fourier transform Φ̂ is radial again and coincides with the Hankel
transform using the f -form of the kernel

Φ̂(ω) = f̂

(
‖ω‖22
2

)
,

with

f̂ (t) :=

∫ ∞

0

f (s)sνhν(st)ds, f (s) =

∫ ∞

0

f̂ (t)tνhν(ts)dt,

and hν(z
2/4) := (z/2)−νJν(z), Jν Bessel function of the first kind and

ν = (d − 2)/2.

Theorem

Let Φ be a continuous function in L1(Rd). Φ is strictly positive definite if and

only if Φ is bounded and its Fourier transform is non-negative and not

identically equal to zero.
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Derivatives

The main ideas in [Bozzini, Rossini, Schaback, V. ’15] are:

to introduce a scaling z ∈ R+ in the transform

f̂ (·z)(u) = z
−ν−1

f̂ (·)(u/z)

to consider a functional λz that act linearly respect to z and commute
with integrals

(λz
f (·z))∧(u) = λz(z−ν−1

f̂ (u/z))

As a linear functional λ we take the k–th derivative respect to z

λz
f (z) =

d
k

dzk
f (z),

so the previous relation becomes

(
dk

dzk
f (·z)

)∧

(u) =
(
f
(k)(·z)(·)k

)∧
(u) =

dk

dzk

(
z
−ν−1

f̂ (·)(u/z)
)
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Derivatives

We specialise to the first derivative k = 1

(
tf

′(tz)
)∧

(u) =
d

dz

(
z
−ν−1

f̂ (·)(u/z)
)

Moreover if we consider z = 1 we have

(
t f

′(t)
)∧

(u) =
d

dz |z=1

(
z
−ν−1

f̂ (·)(u/z)
)

In the following we define the new kernels ψ as the right term and its Fourier
transform ψ̂ the function in the left term.
With this choice and using the previous cited Theorem we will see that new
kernels are positive definite.
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Laplacian

We consider classes of kernels Φ that are closed under taking derivatives in
f -form

f
′
p (s) = c(p)fD(p)(s)

where s = ‖x − y‖2/2 and the parameter p in the definition of the kernel Φ
goes to a new parameter D(p), moreover there is a factor c(p).

Theorem

The transition Φ → −∆Φ on radial kernels generates a radial kernel consisting

of a weighted sum

−∆xΦ(x − y) = −‖x − y‖2f ′′
(‖x − y‖2

2

)
− df

′

(‖x − y‖2
2

)

of two radial kernels, if f is the f –form of Φ, and if the action of −∆ is valid

on the kernel. If, furthermore, the class of kernels is invariant under taking

derivatives of f -forms, then the resulting kernel is a weighted linear

combination of two radial kernels of the same family.
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Derivatives vs Laplacian

Theorem

For all classes of radial kernels that are closed under taking derivatives in

f –form, the procedure with derivatives generates kernels that are images of the

negative Laplacian applied to Fourier transforms of kernels of the same class.

Proof.

Using that the radial kernels is closed under taking derivatives and

t f (t) =
‖x‖22
2

Φ (‖x‖2) = 1

2
(−∆Φ̂)∨ (‖x‖2) ,

we have

(
t f

′
p (t)

)∧
(‖ω‖22/2) = c(p)

(
t fD(p)(t)

)∧
(‖ω‖22/2) = − c(p)

2
∆Φ̂D(p)(‖ω‖2).
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New kernels

We have

c(p)
(
t fD(p)(t)

)∧
(‖ω‖22/2) = − c(p)

2
∆Φ̂D(p)(‖ω‖2)

= − c(p)

2

(
‖ω‖2 f̂ ′′D(p)

(
‖ω‖2
2

)
+ d f̂

′
D(p)

(
‖ω‖2
2

))

We define the new kernel and its Fourier transform

ψ(x) = −‖x‖2
2

f̂
′′
D(p)

(
‖x‖2
2

)
− d

2
f̂
′
D(p)

(
‖x‖2
2

)

ψ̂(ω) =
‖ω‖2
2

fD(p)

(
‖ω‖2
2

)

The Fourier transform ψ̂ is non negative and not identically zero because fD(p)

is positive definite, then the function ψ is positive definite.
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“New”Gaussian kernels

φG (x) = exp(−‖x‖2 /2)
φ̂G (ω) = exp(−‖ω‖2 /2)

ψG (x) = (d/2− ‖x‖2) exp(−‖x‖2 /2)

ψ̂G (ω) =
‖ω‖2
2

exp(−‖ω‖2 /2)
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It’s not new because, for d = 2, it is the Mexican hat.
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New inverse multiquadrics kernels

For β > d/2 + 1

φm(x) = (1 + ‖x‖2)−β

φ̂m(ω) =
21−β

Γ(β)
‖ω‖β−d/2

Kβ−d/2(‖ω‖)

ψm(x) =
2−β

Γ(β)

[
d‖x‖β− d

2 Kβ− d
2

(‖x‖)

− ‖x‖β− d
2
+1
Kβ− d

2
−1(‖x‖)

]

ψ̂m(ω) = β‖ω‖2(1 + ‖ω‖2)−β−1
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New Whittle-Matérn kernels

For β > d/2 + 1

φM(x) =
21−β

Γ(β)
‖x‖β−d/2

Kβ−d/2(‖x‖)

φ̂M(ω) = (1 + ‖ω‖2)−β

ψM(x) =
d

2
(1 + ‖x‖2)−β

− β ‖x‖2 (1 + ‖x‖2)−β−1

ψ̂M(ω) =
2−β

Γ(β)
‖ω‖β− d

2
+1

Kβ− d
2
−1(‖ω‖)
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Wavelets

We analyse the properties of the new kernels.
They have a good decay

∣∣∣ψ̂(ω)
∣∣∣ = O(‖ω‖α) ‖ω‖ → 0, for α ≥ 2

∣∣∣ψ̂(ω)
∣∣∣ = O(‖ω‖−γ) ‖ω‖ → +∞, for γ > d + 2

From the construction with derivatives we have

ψ̂(ω) = ‖ω‖2 φ(ω),

φ(ω) is bounded, since it is positive definite, so

ψ̂(0) = 0 =

∫

Rd

ψ(x) dx .

The new kernels ψ ∈ NK := {ψG , ψm, ψM} are wavelets.
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Admissibility condition

All ψ ∈ NK are such that ψ ∈ L1(R2) ∩ L2(Rd).

Moreover they satisfy

Admissibility condition∫
+∞

0

∣∣∣ψ̂(aω)
∣∣∣
2

a
da = Cψ, ∀ω 6= 0 and 0 < Cψ < +∞

We compute the constant for each ψ ∈ NK

CψG
=

1

8
Cψm =

β

8β + 4
CψM

=
4−1−β√πΓ(2β − d)Γ(1 + β − d/2)

Γ2(β)Γ(3/2 + β − d/2)

The admissibility condition allows us to recover a function f ∈ L2(Rd) by the
set of its wavelets coefficients.
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Continuous wavelets transform

Let

ψa,b(x) = a
−dψ

(
x − b

a

)
, a ∈ R

+, b ∈ R
d

The wavelet coefficients of f are the inner product

c(a, b) = (f , ψa,b)L2(Rd ) =
(
f , a−dψ((· − b)/a)

)
L2(Rd )

and they give all the important information about the signal.

Due to the admissibility condition we can reconstruct a function f with the
wavelet continuous transform

f (x) =
1

Cψ

∫ +∞

0

∫

Rd

c(a, b)ψa,b(x) db
da

a

Elena Volontè Radial Kernels via Scale Derivatives and Wavelets 01/03/16



Numerical examples

Signal

Coe�cients  c(a,b)  for Ã
m 
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Discrete wavelets transform

It is interesting to consider discrete case with shift k ∈ Zd and refinement
matrix M, usually M = 2I.

Remark ([Ron, Shen ’97])

The function ψ whose Fourier transform is positive a.e. cannot generate tight

frames of the form ψ(2j · −k).

For our ψ ∈ NK we can not consider the classical construction of tight frames
in the stationary case, we refer to a non-stationary setting.

Let M = 2I we can define

ψ̂j (ω) =
ψ̂(ω)√
σj (ω)

, where σj (ω) :=
∑

k∈Zd

∣∣∣ψ̂(ω + 2j+1πk)
∣∣∣
2

is a 2j+1π periodic function.
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Wavelet generators

With M = 2I we have to consider 2d − 1 cosets and the set

{ψ(ℓ)
j (· − 2−j

k), j ∈ Z, k ∈ Z
d , ℓ = 1, . . . , 2d − 1}.

We call

Wj := span{ψ(ℓ)
j (· − 2−jk), k ∈ Zd , ℓ = 1, . . . , 2d − 1}

we want that
⋃

j
Wj is dense in L2(Rd) so ψ

(ℓ)
j are generators of L2(Rd).

For this set of functions we have to show that they satisfy

Frequency localization property

Given a compact set K ⊂ Rd \ {0} and ε > 0, there exists N ∈ N s.t.

∑

j>N

sup
ω∈K

|ψ̂(ℓ)
j (ω)|2 < ε and

∑

j<−N

sup
ω∈K

|ψ̂(ℓ)
j (ω)|2 < ε,

for all ℓ = 1, . . . , 2d − 1.
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Orthonormal basis

In particular we want to construct an orthonormal basis.
In this sense, let E := M[0, 1)d ∩ Zd and E0 := E \ {0} we observe

σj (ω) = σj+1(ω) +

2d−1∑

ℓ=1

σj+1(ω + 2j+1πθℓ), θℓ ∈ E0.

In order to have orthogonality

respect to ℓ = 1, . . . , 2d − 1 with j fixed
∑

γ∈E

e−i<πγ,η(ℓ)−η(m)>

σj (ω)

√

σj+1(ω + 2j+1π(θℓ + γ))σj+1(ω + 2j+1π(θm + γ)) = δℓ,m,

between Wj−1 and Wj

∑

γ∈E

e i<πγ,η(ℓ)>
√

σj+1(ω + 2j+1π(θℓ + γ))σj+1(ω + 2j+1πγ) = 0.

should be satisfied for η : {1, . . . , 2d − 1} → E0, an opportune permutation of
the representative of cosets in E0.
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Wavelet basis in d = 2

In two dimensions we consider the functions

ψ̂
(ℓ)
j (ω) = 2−j−1

e
−i<2−j−1ω,η(ℓ)>

√
σj+1(ω + 2j+1πθℓ)

σj (ω)

ψ̂(ω)

σj+1(ω)

where

η :

1 7→ θ1 = (1, 0)t

2 7→ θ3 = (1, 1)t

3 7→ θ2 = (0, 1)t

We proved that

{ψ(ℓ)
j (· − 2−j

k), k ∈ Z
2, j ∈ Z, ℓ = 1, 2, 3}

are an orthonormal basis for
⊕

j∈Z

Wj .
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Thank you for the attention
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Radial kernels via scale derivatives,

Advances in Computational Mathematics, 41 (2), 277–291, 2015.

◮ M.D. Buhmann,
Radial basis functions: theory and implementations,
Cambridge university press, 12, 2003.

◮ CK. Chui, J. Stöckler, JD. Ward,
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Elena Volontè Radial Kernels via Scale Derivatives and Wavelets 01/03/16


