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Problem Formulation

We want to �nd the frequencies yj ∈ R2 and the corresponding
amplitudes cj ∈ C \ {0}, j = 1, ...,M of an exponential sum

f (x) =
M∑
j=1

cje
iyj ·x for x ∈ R2.

Given: Order M of f and samples f (k) taken on a �nite set G .
Typical choice:

GN := {(k1, k2) ∈ Z2 : |k1|, |k2| ≤ N}.

We assume that yj ∈ T2 = [0, 2π)2.
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Univariate Problem

In the univariate case, i.e. yj ∈ [0, 2π),

f (x) =
M∑
j=1

cje
iyjx for x ∈ R,

there are a number of e�cient methods available (ESPRIT, OPUC,
APM,...).

Given: Upper bound N of the order M and the samples

{f (k), k = −N, ...,N}

If yj are well spaced, a stable reconstruction of the frequencies and
the coe�cients is possible.
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Sampling along Lines

Idea: Sample f along a few lines `1, ..., `L, use a univariate method
along these lines and combine the results to obtain an estimate for
the frequency vectors of f .

Restricting f to a line

`v,b = {λv + bη | λ ∈ R}

with v ⊥ η unit vectors gives a univariate exponential sum

f |`
v,b
(λv + bη) =

M∑
j=1

cje
ibyj ·ηe iyj ·vλ =

M∑̀
j=1

c`j e
iλy`

j .

Note that M` ≤ M.
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Scattered Lines

We choose `1 = `v1,b1 , ..., `L = `vL,bL with v1, ..., vL pairwise
non-parallel.

Reconstruction Problem: Given (y `kj , c
`k
j ), j = 1, ...,M`k ,

k = 1, ..., L for which L can we calculate y1, ..., yM?

Reformulation: Fix f . Consider

w : R2 → C, w(x) =

{
cj if x = yj

0 otherwise.

Let X = suppw . We de�ne the projection of w on `v,b by

wv,b(x) =
∑
y∈X
v·y=x

w(y)e iby·η.
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Projection of Point Clouds

It holds that

|suppwv,b| ≤ |v · X | = |{v · x : x ∈ X} ≤ |X | = M.

Theorem (Renyi, 1952)

Assume M + 1 projections wvj ,bj , where vj are pairwise linearly
independent, are given and that suppwvj ,bj = vj · X . Then w is
uniquely determined.

Proof: Consider

X̃ = {x ∈ R2 : vj · x ∈ suppwvj ,bj for all j = 1, ...,M + 1}.

Then X ⊂ X̃ .
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Proof (continued): We show X̃ ⊂ X .
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Exponential Sums

Theorem (Potts, Tasche 2013)

Let G be a collection of points, suitable to apply ESPRIT along
M + 1 non-parallel lines `vj ,bj . Let f be a bivariate exponential sum
of order M. Denote the set of frequencies of f by X . Assume that

vj · X = {Frequencies of f`vj ,bj}.

Then X can be calculated by

X = {x ∈ R2 : x · vj frequency of f`vj ,bj}.

This observation is the key point in the sparse approximate Prony
method, presented in

Daniel Potts and Manfred Tasche. �Parameter estimation for
multivariate exponential sums�. In: Electronic Transactions on

Numerical Analysis 40 (2013), pp. 204�224.
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Projection of Point Clouds: Uniqueness

Is the condition suppwvj ,bj = vj · X necessary?

Theorem (D., Iske, 2015)

Let w : R2 → C, w 6= 0. If wvj ,bj = 0 for v1, ..., vL pairwise
non-parallel, it holds that

|suppw | ≥ 2L.

Corollary (D., Iske, 2015)

Any w : R2 → C with |suppw | ≤ M is uniquely determined by its
restriction on M + 1 non-parallel lines.
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Proof (Theorem):
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Proof (continued):
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Lemma

Let w : R2 → C, w 6= 0 and let wvj ,bj = 0 for v1, ..., vL pairwise
linearly independent be given. Then

1 X̃0 contains X = suppw , where

X̃0 = {x ∈ R2 : x · vj ∈ suppwvj ,bj for two distinct j}.

2 Let J = {j | |suppwvj ,bj | ≥ M − 1}. Then

X̃1 = {x ∈ X̃0 : x · vj ∈ suppwvj ,bj for all j ∈ J}

contains X .

3 Finally, X is contained in

X̃2 = {x ∈ X̃1 : ∀j /∈ J (x · vj ∈ suppwvj ,bj or

∃y ∈ X̃1, x 6= y with x · vj = y · vj)}.
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Example

Measurements
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Example

X̃0
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Example

X̃1
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Example

X̃2
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Back to Exponential Sums

Theorem (D., Iske, 2015)

Let G be a collection of points, suitable to apply ESPRIT along
M + 1 lines. Then the optimization problem

min
c∈C|X̃2|

‖c‖0

subject to:
∑
y∈X̃2

cye
iy·w = f (w) ∀w ∈ G

has a unique solution c = (cy)y∈X̃2
. Moreover, {y ∈ X̃2 | cy 6= 0}

are the frequency vectors of f and cy are the corresponding
coe�cients.
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Remarks:

|X̃2| ≤ cM4 is the best known bound.

‖ · ‖0-minimization is NP-hard.

The restricted isometric property is in general not satis�ed.

If the frequencies along one line are not correctly detected, the
algorithm will break down.

To obtain a stable reconstruction scheme, it seems necessary
to assume well-separated frequency vectors and well-separated
sampling points.

These results are published in

Benedikt Diederichs and Armin Iske. �Parameter estimation for
bivariate exponential sums�. In: Proc. Sampling Theory and

Applications (2015), pp. 493 �497.
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Parallel Lines

Parallel lines do not give multiple projections of the frequency
vectors, but cancellation occurs less often.

f |`1(λv + b1η) =
M∑
j=1

cje
ib1yj ·ηe iyj ·vλ =

M1∑
j=1

c`1j e iλy
`1
j

f |`2(λv + b2η) =
M∑
j=1

cje
ib2yj ·ηe iyj ·vλ =

M2∑
j=1

c`2j e iλy
`2
j .

Note that for b1 6= b2 it might happen that

{y `1j : j = 1, ...,M1} 6= {y `2j : j = 1, ...,M2}
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Lemma

Let `v,j = {λv + jη}, j = 1, ..., 2M be a family of parallel lines.
Further, let f be an exponential sum of order M with frequencies
X . Then

2M⋃
j=1

{Frequencies of f |`
v,j
} = v · X .

If f is sampled on GN = {(m, n) ∈ Z2 | |m|, |n| ≤ N}, we have
samples along the lines

`xk = {(x , k)T , x ∈ R}, `yk = {(k , y)T , y ∈ R}

where k = −N, ...,N. Then we can construct

X̃ = {x = (x1, x2)
T ∈ R2 : x1 ∈ e1 · X , x2 ∈ e2 · X} ⊃ X .
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A Result on TV Minimization

Corollary (Candes, Fernandez-Granda, 2014)

An exponential sum f with frequency vectors satisfying the
separation condition

min
y,y′∈Y , y 6=y′

‖y − y′‖T2,∞ ≥
2.38

N
,

is the unique solution to

min ‖c‖1 subject to
∑

cje
ig·ỹj = f (g) ∀g ∈ GN .

Here, the minimization is carried out over all M ∈ N and c ∈ RM .
The ỹj in the constraint may be chosen arbitrarily for each c.

Problem: This is an in�nite dimensional optimization problem.
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`1 Minimization

Using the result of Candes and Fernandez-Granda on
TV-Minimization, we are able to reconstruct the frequency vectors
by solving a minimization problem:

Theorem

Let f be a bivariate exponential sum of order M with well-separated
frequencies. Then

min
c∈C|X̃ |

‖c‖1

subject to:
∑
y∈X̃

cye
iy·w = f (w) ∀w ∈ GN

has a unique solution c = (cy)y∈X̃ . Moreover, {y ∈ X̃ | cy 6= 0} are
the frequency vectors of f and cy are the corresponding coe�cients.
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Simultaneous Frequency Estimation

If we implement this directly, we would have to

use a univariate method along each of the 2N(2N + 1) lines

calculate the union of the x- and y - components of the
frequencies

calculate X̃

solve the `1 minimization.

Better: Estimate the x (and y) components in a single step.
Example: Consider two exponential sums

f (x) =

M1∑
j=1

cje
iyjx , g(x) =

M2∑
j=1

c̃je
i ỹjx .

Let M = |{yj} ∪ {ỹj}| ≤ M1 +M2.
Given: f (0), ..., f (2N − 1) and g(0), ..., g(2N − 1) with M ≤ N.
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Simultaneous Estimation - ESPRIT

We can apply a modi�ed ESPRIT algorithm. Let

HP,Q = (f (m + n − 1))m=P,n=Q
m=1,n=1 ∈ CP×Q

H̃P,Q = (g(m + n − 1))m=P,n=Q
m=1,n=1 ∈ CP×Q .

Let N ≤ L ≤ M. Let

G =

(
H2N−L,L+1

H̃2N−L,L+1

)
We denote by G0,G1 the matrices we obtain by deleting the �rst
resp. last column of G. Then, the frequencies {yj , ỹj} are the rank
reducing numbers of the matrix pencil

G1 − µG0.

This can be reformulated as an eigenvalue problem.
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A Closer Look on the Coe�cients

We reconsider the restriction to the set of parallel lines
`xk = {(x , k)T , x ∈ R}:

f |`x
k
(x) =

M∑
j=1

cje
ik(yj )2e ix(yj )1 =

M1∑
j=1

cj(k)e
ixyj,1 .

We �x j = 1, ...,M1. Let yn1 , ..., ynrj be the frequency vectors with

(ynl )1 = yj ,1, l = 1, ..., rj .

Then the coe�cients are again an exponential sum:

cj(k) =

rj∑
l=1

cnl e
ik(ynl )2
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A New Algorithm

Let now r = max rj . Then each `xk , k ∈ Z gives one value for each
of the exponential sums c1, ..., cM1

.

To use a univariate algorithm, we need 2r parallel lines. Then, we
obtain frequencies and coe�cients of the sums

cj(x) =

rj∑
l=1

cnl e
ixy

(j)
l =

rj∑
l=1

cnl e
ix(ynl )2 .

The frequency vectors of f are then given by{
(yj ,1, y

(j)
l )T , j = 1, ...,M1, l = 1, ..., rj

}
.
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Projection-based Algorithm

Projection-based Algorithm

Given: f (k), k ∈ GN , N ≥ M

1 Apply a univariate method along `xk , k = −N, ...,N. Let

{yj ,1, j = 1, ...,M1}

be the set of all frequencies, cj(k) be the corresponding
coe�cient along `xk .

2 Apply a univariate method to cj(k), k = −N, ...,N. Let

{y (j)l , l = 1, ..., rj} denote the observed frequencies, cj ,l the
coe�cients.

3 The frequency vectors and coe�cients are given by{
(cj ,l , (yj ,1, y

(j)
l )T ), j = 1, ...,M1, l = 1, ..., rj

}
.
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Example

We consider M = 3 frequencies and let

f (x) =
3∑

j=1

e iyj ·x.

Then we take noisy samples, where we add equidistributed,
independent noise in [−1, 1] + i [−1, 1]

f̃ (n) = f (n) + ε(n)

This is a lot! Example:

2.31-0.95i 0.97+2.24i -2.17+0.98i
2.56-0.06i 1.09+2.98i -2.29+0.29i
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Result
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Result - Let's double the noise
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Example II

As a second example, let M = 5 and G40, we add equidistributed
noise in 0.3([−1, 1] + i [−1, 1]).



Introduction Scattered Lines Parallel Lines Numerical Examples

Let's double the noise again
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Example (Coe�cient-based Method)

We test with randomly chosen frequencies and sample along

{(m, j) | m = 0, ...,N − 1, j = 0, 1}∪
{(j ,m) | m = 0, ...,N − 1, j = 0, 1}

Hence, we use 4N − 4 samples.

Number of Freq. N Noise Fails/100

5 15 0 0
5 15 10−4 1
20 50 0 0
20 50 10−6 18
50 150 0 3
50 150 10−8 52



Thank you

for your attention!
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