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Subdivision schemes
Subdivision operator

`(Z) 3 c 7→ Sac =
∑
k∈Z

a(· − 2α) c(α)

& iteration
cn = Sacn−1, n ∈ N.

Uniform Convergence

1 Concept: cn ' f (2−nZ).
2 Existence of uniformly continuous fc such that

lim
n→∞

max
α∈Z

∣∣Sn
a c(α)− fc(2−nα)

∣∣ = 0.

3 Nontriviality: fc 6= 0 for at least one c .
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Extensions . . .
Generalizations

1 level-dependent schemes

cn =
∑
k∈Z

a[n](· − 2α)cn−1(α) = Sa[n]cn−1, n ∈ N.

2 vector schemes
cn = SAc

n−1, n ∈ N,
with

c
n =




cn
0

(α)
cn
1

(α)
...

cnd (α)

 : α ∈ Z

 , A =


 a00(α) . . . a0d (α)

...
ad0(α) . . . add (α)

 : α ∈ Z



Hermite subdivision:
Level-dependent + vector data (function & consecutive
derivatives)
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Hermite Subdivision

Rule

f
n(α) = (Sn

Ac) (α)

∼

with D = diag
[
2−j : j = 0, . . . , d

]
.

Hermite subdivision operator

f n 7→ D−(n+1)SAD
nf

n

=: S̃
A

[n]f
n

Level dependent subdivision
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Preservation of polynomials

Scalar stationary schemes: preservation of polynomials

SaΠd ⊆ Πd

associated to the regularity of the limit function

In particular, necessary condition

Sn
a convergent ⇒ Sa1 = 1.
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Preservation of polynomials

Observations

1 Difference operator: ∆c := c(·+ 1)− c

2 is a convolution: ∆c = (. . . , 0, 1,−1, 0, . . . ) ∗ c .
3 ∆c = 0⇔ c = 1

∆ is an "annihilator"

Result: Minimality
∆ is minimal: Sg1 = 0 ⇔ Sg = Sb∆.

Factorization

= Sa1

⇒ ∆Sa = Sb∆.
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The Spectral Condition

Special sequences

C d(R) 3 f 7→ v f :=
([
f (k)(α) : k = 0, . . . , d

]
, α ∈ Z

)

Spectral condition (Dubuc & Merrien)
There exist pj ∈ Πj , j = 0, . . . , d , such that

SAv pj = 2−jv pj

Preservation of polynomials – sum rule.

Attention
is the same!
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The Taylor Operator

Merrien-Sauer:

SA satisfies spectral condition ⇒ TdSA = SBTd

(factorization)
v = v(p), p ∈ Πd ⇔ Tdv = 0 (kernel)
SCv(Πd) = {0} ⇔ SC = SBTd (minimality)

Td : =


∆ −1 . . . − 1

(d−1)!
− 1

d!

∆
. . . ... ...
. . . −1 ...

∆ −1
∆


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The Question

Yet another extension

1 For Λ ⊂ C set

Vd ,Λ = Πp ⊕ span {e±λ : λ ∈ Λ}
= span

{
1, x , . . . , xp, eλ1x , e−λ1x , . . . , eλrx , e−λrx

}
2 Hermite subdivision of order d = p + 2r that

preserves Vd ,Λ.
3 Vd ,Λ-spectral condition:

SAVd ,Λ ⊆ Vd ,.

“Reparametrization” due to subdivision effect

4 Convergence? Factorization?
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Annihilator - the pattern

In search of ...

1 Convolution operator: Hf = H ∗ f =
∑
H(· − α) f (α).

2 Cancellation operator: H ∗ V = 0, V subspace.
3 Minimal cancellation operator:

SCV = 0 ⇒ SC = SB H

Remember: preservation...

... implies factorization
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Annihilator - Exponentials and polynomials

Characterization of minimal annihilators
An operator Hd ,Λ is a minimal cancellation operator for
the space Vd ,Λ = Πp ⊕ span {e±Λ} iff its symbol satisfies

H∗d ,Λ(z) =

[
T ∗p(z) Q∗(z)

0 R∗(z)

]

and

H∗d ,Λ
(
e±λ
)


1

±λ
...

(±λ)d

 = 0, λ ∈ Λ.

(Symbol: H∗(z) =
∑

α H(α)zα)
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Example - Case d = 3

Space: V3,λ = span{1, x , eλ, e−λ}

H∗
3,λ(z) =


z−1 − 1 −1 2−e−λ−eλ

2λ2
2λ+e−λ−eλ

2λ3

0 z−1 − 1 e−λ−eλ
2λ

2−e−λ−eλ
2λ2

0 0 z−1 − e−λ+eλ

2

e−λ−eλ
2λ

0 0 λ e−λ−eλ
2

z−1 − e−λ+eλ

2


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The Annihilator

Theorem

1 If SCVd ,Λ = 0, then SC = SBHd ,Λ.
2 If SAVd ,Λ ⊆ Vd ,Λ/2 (Vd ,Λ-spectral condition), then there

exists B s.t.
Hd ,Λ/2SA = SBHd ,Λ

Hd ,Λ is the minimal annihilator.

Corollary
The Taylor operator is the minimal annihilator for
“polynomials only”.

Remark
Proof needs pairs of frequencies ±Λ.
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Subdivion Schemes

Hermite subdivision operators preserving only
polynomials

S̃
A

[n] := D−n−1SAD
n, n ∈ N.

1 Spaces to be reproduced: Vd ,2−nΛ.
2 Factorization:

Hd ,2−(n+1)ΛSA[n] = S
B

[n]Hd ,2−nΛ

3 In the limit: preservation of Πd .
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Definition: Weak contractivity

The scheme S(A[n] : n ≥ 0) is said to be weakly
contractive if

∞∑
n=0

‖S
A

[n] S
A

[n−1] · · · S
A

[0]‖ <∞.

Remark: generalization of classical contractivity in the
case of level-independent schemes.
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Definition: Convergence

C d-convergence: existence of a uniformly continuous
vector field φ : R→ Rd+1, such that

1 lim
n→∞

sup
α∈Z

∥∥φ (2−nα)− f n(α)
∥∥
∞ = 0

2 φ0 ∈ C d
u (R),

d jφ0
dx j

= φj , j = 1, . . . , d
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Convergence result I

If:

1 the Hermite subdivision operators S
A

[n] satisfy the
Vp,Λ-spectral condition
(⇒ Hd ,2−(n+1)ΛSA[n] = S

B
[n]Hd ,2−nΛ)

2 the supports of the masks A[n], n ∈ N0, are contained
in some finite subset of Z

3 there exists a mask A such that lim
n→∞
‖A[n] −A‖∞ = 0,

4 the sequence (2dS
B

[n] : n ≥ 0) produces a weakly
contractive subdivision scheme,

then

the corresponding Hermite scheme S(A[n] : n ≥ 0) is
C d-convergent.
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Definition: Restricted convergence

Restricted C k-convergence: existence of a uniformly
continuous vector field φ : R→ Rd+1, such that

1 lim
n→∞

sup
α∈Z

∥∥φ (2−nα)− [I k 0]f n(α)
∥∥
∞ = 0

2 φ0 ∈ C k(R),
d jφ0
dx j

= φj , j = 1, . . . , k
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Convergence result II

If:

1 the Hermite subdivision operators S
A

[n] satisfy the
Vp,Λ-spectral condition
(⇒ Hd ,2−(n+1)ΛSA[n] = S

B
[n]Hd ,2−nΛ)

2 the supports of the masks A[n], n ∈ N0, are contained
in some finite subset of Z

3 there exists a mask A such that lim
n→∞
‖A[n] −A‖∞ = 0,

4 the sequence (2kS
B

[n] : n ≥ 0) produces a weakly
contractive subdivision scheme, with 0 ≤ k ≤ d ,

then

the corresponding Hermite scheme S(A[n] : n ≥ 0)
provides restricted C k-convergence
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Work in progress/future work

1 Case of exponential polynomials
2 Several variables
3 (Multi)wavelet counterpart

Thank you!
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