

Bernried, Germany, February 29, 2016

Designing Curves and Surfaces : Least square Bézier or B-spline curves

*Christophe Rabut
INSA (IREM, IMT and MAIAA) , Toulouse, France*

Main idea of the talk

Bézier, B-spline curves, or surfaces :

For a given control polygon,

derive curves closer (or further) to the control polygon,

still being in the same vectorial space.

Context, Definitions and Notations

- “B-curve” :

“(generalized) Bézier curve” associated to “B-functions” $(B_i)_{i=0:n}$ and to the “control points” (“polygon”) $(P_i)_{i=0:n} = (x_i, y_i)_{i=0:n}$

$$C(t) = \sum_{i=0:n} P_i B_i(t) = \begin{cases} \sum_{i=0:n} x_i B_i(t) \\ \sum_{i=0:n} y_i B_i(t) \end{cases}$$

- “B-functions” : Bernstein polynomials
B-splines, NURBS
ECC systems

Context, Definitions and Notations

- “B-curve” :

“(generalized) Bézier curve” associated to “B-functions” $(B_i)_{i=0:n}$ and to the “control points” (“polygon”) $(P_i)_{i=0:n} = (x_i, y_i)_{i=0:n}$

$$C(t) = \sum_{i=0:n} P_i B_i(t) = \begin{cases} \sum_{i=0:n} x_i B_i(t) \\ \sum_{i=0:n} y_i B_i(t) \end{cases}$$

- “B-functions” : Bernstein polynomials
B-splines, NURBS
ECC systems

- “(generalized) Bézier surface” :

$$S(u, v) = \sum_{i=0:n} P_i B_i(u, v) = \begin{cases} \sum_{i=0:n} x_i B_i(u, v) \\ \sum_{i=0:n} y_i B_i(u, v) \\ \sum_{i=0:n} z_i B_i(u, v) \end{cases}$$

- B_i :
 - Tensorial product of univariate B-functions
 - “Bernstein polynomials” on triangles
 - Polyharmonic B-splines, ...

“The “shape” of the curve is connected to its distance to the control points”

Usually we say :

- Bézier curves (Bernstein) \Rightarrow quite far from control polygon
- degree 2, 3, 4 splines \Rightarrow further and further the control points/control polygon, **and** \mathcal{C}^1 , \mathcal{C}^2 , \mathcal{C}^3 curves...
- intermediate : fractional splines (non polynomial),
shifted splines, B-splines under tension...

“The “shape” of the curve is connected to its distance to the control points”

Usually we say :

- Bézier curves (Bernstein) \Rightarrow quite far from control polygon
- degree 2, 3, 4 splines \Rightarrow further and further the control points/control polygon, **and** $\mathcal{C}^1, \mathcal{C}^2, \mathcal{C}^3$ curves...
- intermediate : fractional splines (non polynomial),
shifted splines, B-splines under tension...
- Hyperbolic Chebyshevian splines : (pol. + sinh + cosh)
closer to control polygon (also depends on the degree)
- Circular Chebyshevian splines : (pol. + cos + sin)
further to control polygon (also depends on the degree)

“The “shape” of the curve is connected to its distance to the control points”

Usually we say :

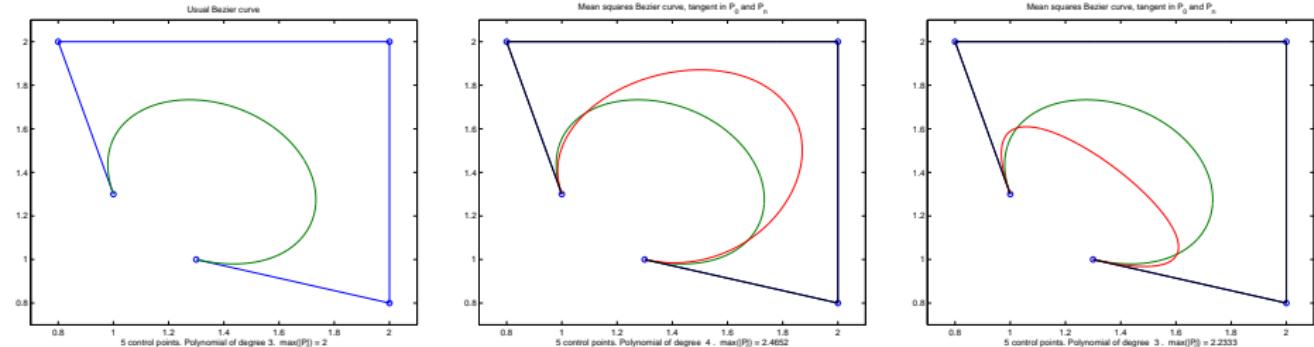
- Bézier curves (Bernstein) \Rightarrow quite far from control polygon
- degree 2, 3, 4 splines \Rightarrow further and further the control points/control polygon, **and** $\mathcal{C}^1, \mathcal{C}^2, \mathcal{C}^3$ curves...
- intermediate : fractional splines (non polynomial),
shifted splines, B-splines under tension...
- Hyperbolic Chebyshevian splines : (pol. + sinh + cosh)
closer to control polygon (also depends on the degree)
- Circular Chebyshevian splines : (pol. + cos + sin)
further to control polygon (also depends on the degree)

So the distance of a curve to the control polygon is very connected to the analytical properties (continuity, vectorial space...) of the curve.

Could we disconnect these two important properties ? ?

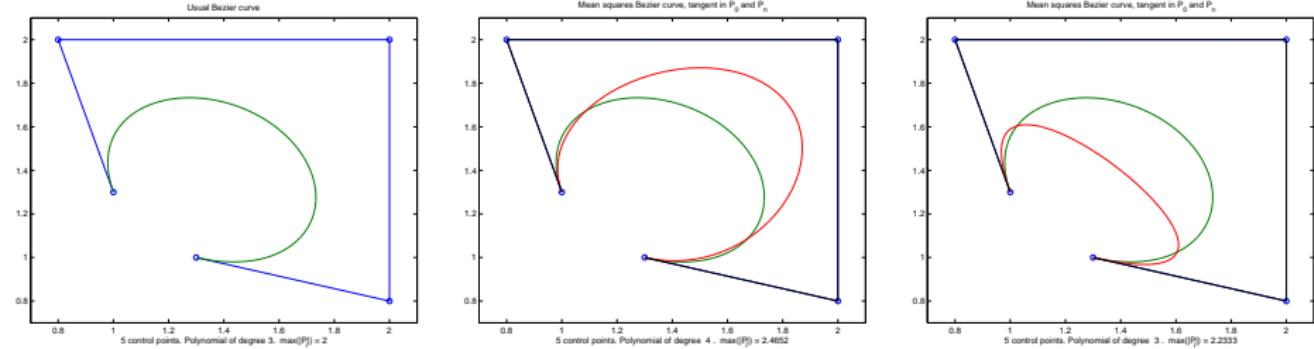
A glance on some results

Usual Bézier curve Closer the control polygon Further the control polygon

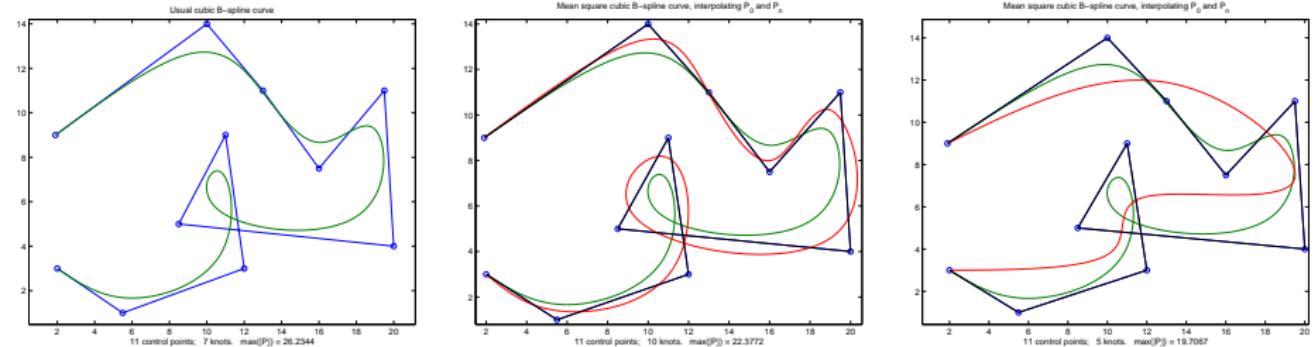


A glance on some results

Usual Bézier curve Closer the control polygon Further the control polygon



Usual B-spline curve Closer the control polyg Further the control polyg



Closer to the control polygon... and still in the same vectorial space

Notation : Control points : $(P_i)_{i=0:n}$

B-curve : $C(t) = \sum_{i=0:n} P_i B_i^n(t)$

“hat functions” : b_i^n . Control polygon : $CP(t) = \sum_{i=0:n} P_i b_i^n(t)$

First idea : $C(t) = \sum_{i=0:n} Q_i B_i^n(t)$. Minimize $\int \|C(t) - CP(t)\|^2 dt$

$\min_{(Q_i)_{i=0:n}} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2$

Two order $n + 1$ linear systems to be solved.

Closer to the control polygon... and still in the same vectorial space

Notation : Control points : $(P_i)_{i=0:n}$

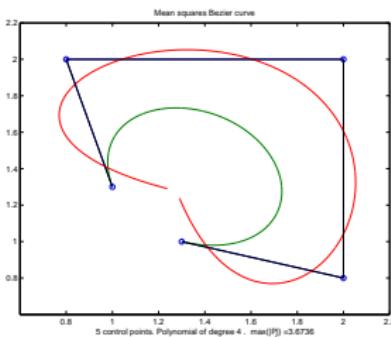
B-curve : $C(t) = \sum_{i=0:n} P_i B_i^n(t)$

“hat functions” : b_i^n . Control polygon : $CP(t) = \sum_{i=0:n} P_i b_i^n(t)$

First idea : $C(t) = \sum_{i=0:n} Q_i B_i^n(t)$. Minimize $\int \|C(t) - CP(t)\|^2 dt$

$\min_{(Q_i)_{i=0:n}} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2$

Two order $n + 1$ linear systems to be solved.



Closer to the control polygon... and still in the same vectorial space

Notation : Control points : $(P_i)_{i=0:n}$

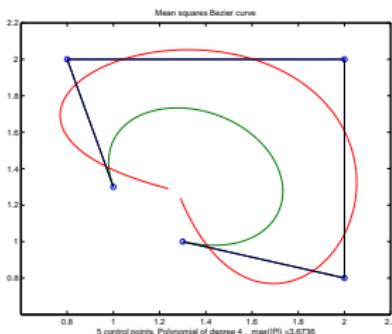
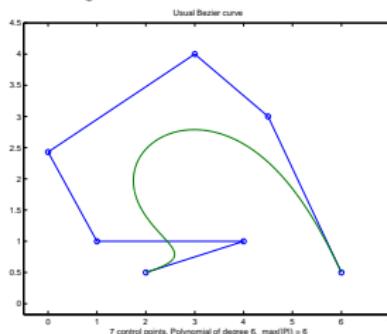
B-curve : $C(t) = \sum_{i=0:n} P_i B_i^n(t)$

“hat functions” : b_i^n . Control polygon : $CP(t) = \sum_{i=0:n} P_i b_i^n(t)$

First idea : $C(t) = \sum_{i=0:n} Q_i B_i^n(t)$. Minimize $\int \|C(t) - CP(t)\|^2 dt$

$\min_{(Q_i)_{i=0:n}} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2 dt$

Two order $n + 1$ linear systems to be solved.



Closer to the control polygon... and still in the same vectorial space

Notation : Control points : $(P_i)_{i=0:n}$

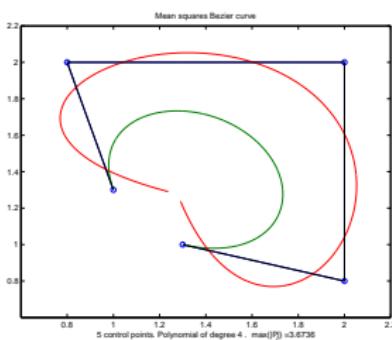
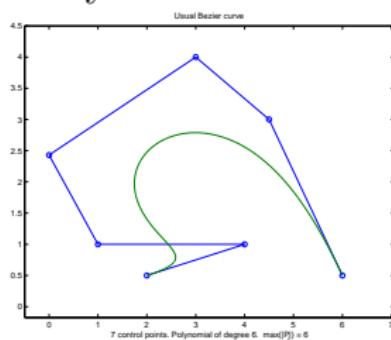
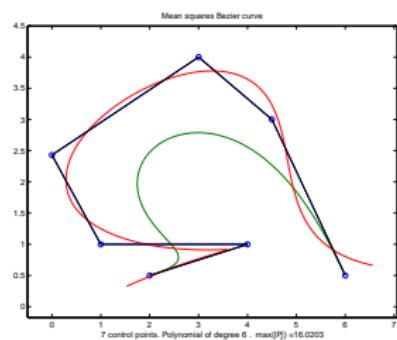
B-curve : $C(t) = \sum_{i=0:n} P_i B_i^n(t)$

“hat functions” : b_i^n . Control polygon : $CP(t) = \sum_{i=0:n} P_i b_i^n(t)$

First idea : $C(t) = \sum_{i=0:n} Q_i B_i^n(t)$. Minimize $\int \|C(t) - CP(t)\|^2 dt$

$\min_{(Q_i)_{i=0:n}} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2 dt$

Two order $n + 1$ linear systems to be solved.



Closer to the control polygon... and still in the same vectorial space

Notation : Control points : $(P_i)_{i=0:n}$

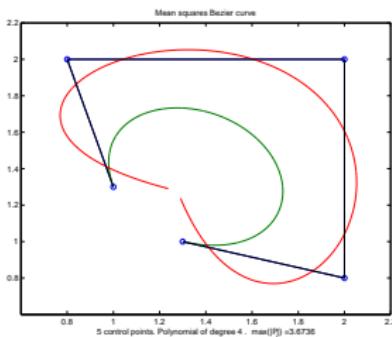
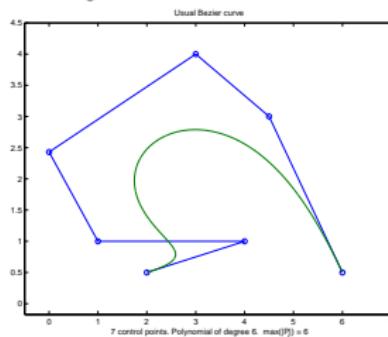
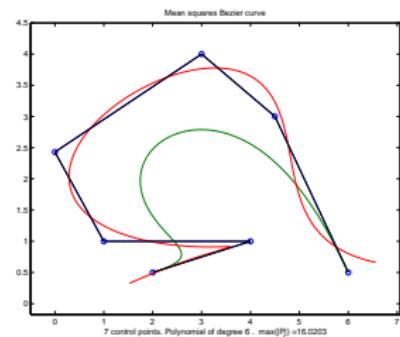
B-curve : $C(t) = \sum_{i=0:n} P_i B_i^n(t)$

“hat functions” : b_i^n . Control polygon : $CP(t) = \sum_{i=0:n} P_i b_i^n(t)$

First idea : $C(t) = \sum_{i=0:n} Q_i B_i^n(t)$. Minimize $\int \|C(t) - CP(t)\|^2 dt$

$\min_{(Q_i)_{i=0:n}} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2 dt$

Two order $n + 1$ linear systems to be solved.



What about the curve at first and last control point ?

Now with interpolating end conditions :

Easy!

$$Q_0 = P_0 \text{ and } Q_n = P_n,$$

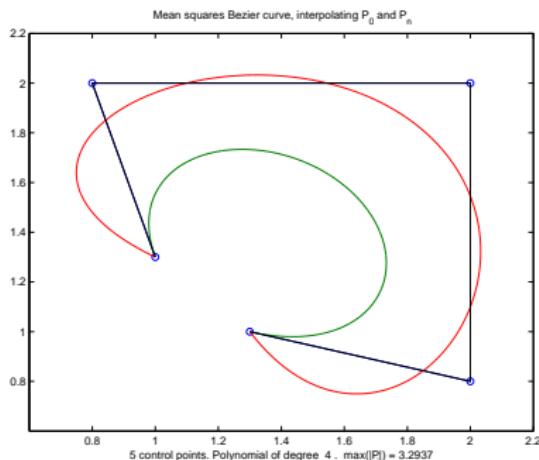
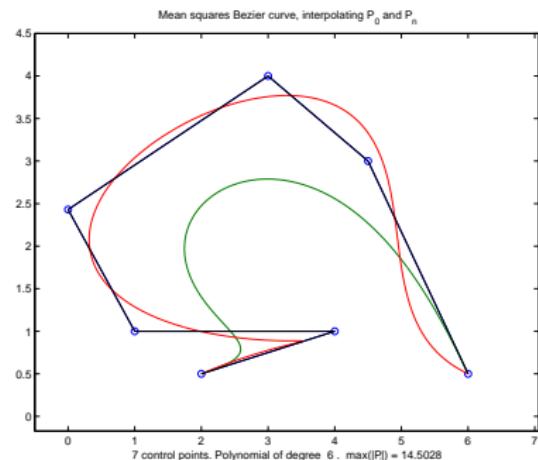
$$\min_{(Q_i)_{i=1:n-1}} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2$$

Now with interpolating end conditions :

Easy!

$$Q_0 = P_0 \text{ and } Q_n = P_n,$$

$$\min_{(Q_i)_{i=1:n-1}} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2$$

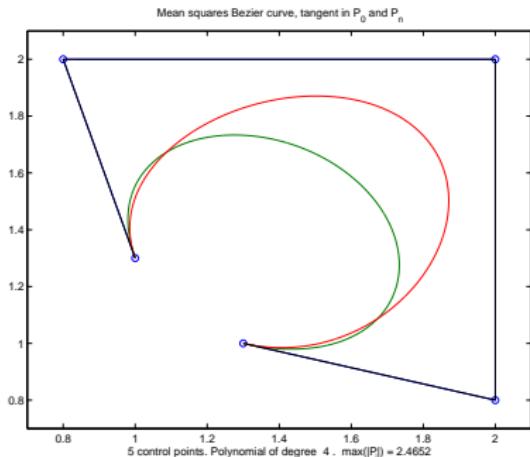
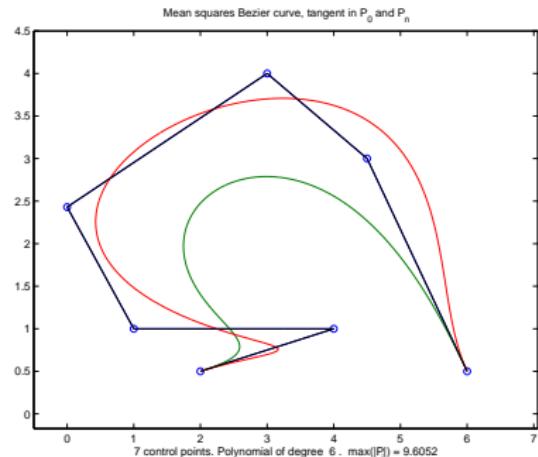


Now with tangent end conditions :

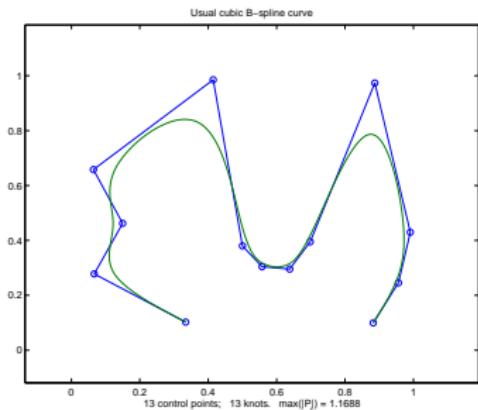
$$Q_0 = P_0, Q_1 = P_1,$$

$$Q_{n-1} = P_{n-1} \text{ and } Q_n = P_n,$$

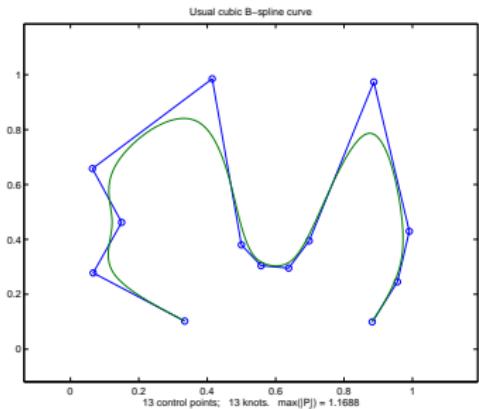
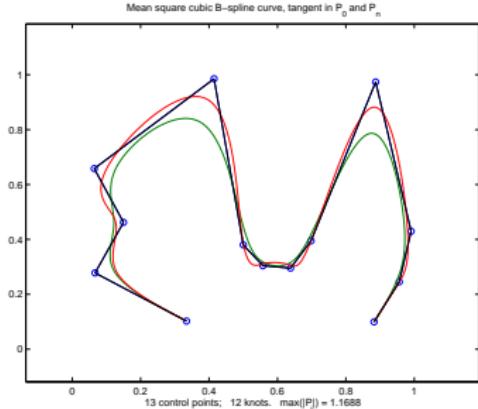
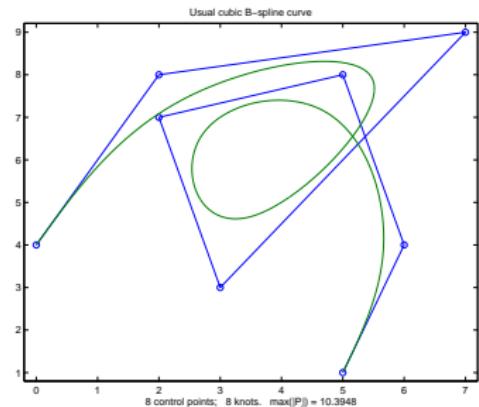
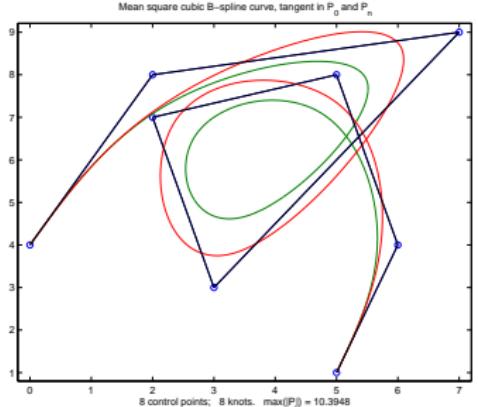
$$\min_{(Q_i)_i=2:n-2} \int \left\| \sum_{i=0:n} Q_i B_i^n(t) - P_i b_i^n(t) \right\|^2$$



Some curves with cubic B-splines



Some curves with cubic B-splines



Even closer to the control polygon !

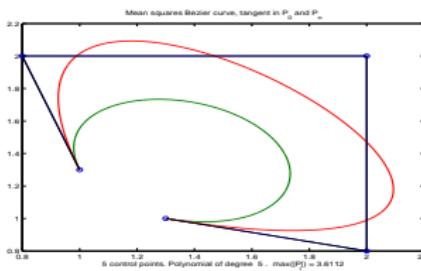
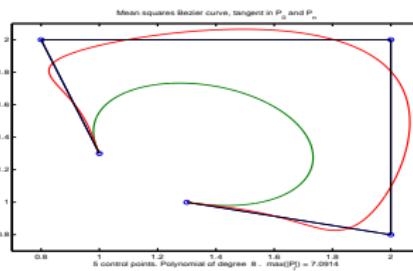
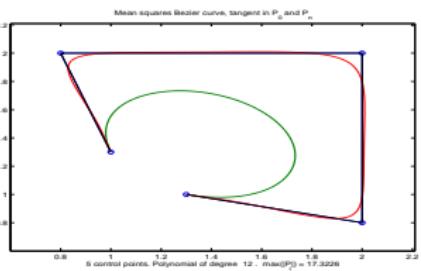
Even closer to the control polygon !

Increase the degree of the polynomial (keeping same data P) :

$$N > n. \quad Q_0 = P_0 \quad Q_1 = P_0 + \frac{n}{N}(P_1 - P_0),$$

$$Q_n = P_n \text{ and } Q_{n-1} = P_n - \frac{n}{N}(P_n - P_{n-1})$$

$$\min_{(Q_i)_{i=2:N-2}} \int \left\| \sum_{i=0:N} Q_i B_i^N(t) - \sum_{j=0:n} P_j b_j^n(t) \right\|^2$$



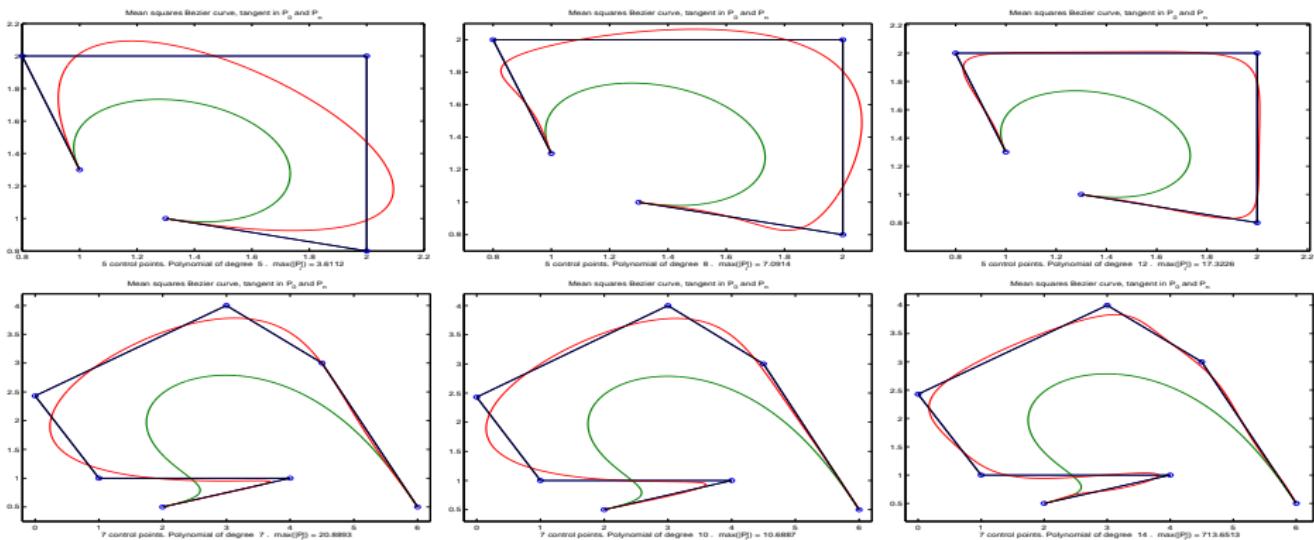
Even closer to the control polygon !

Increase the degree of the polynomial (keeping same data P) :

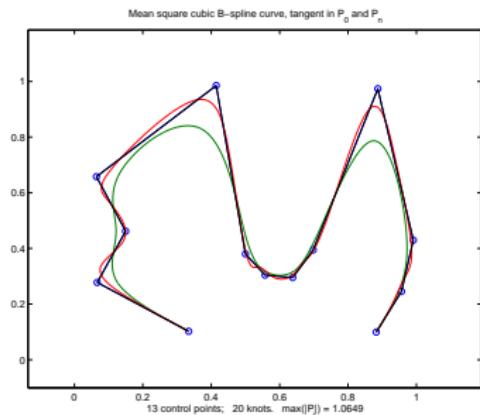
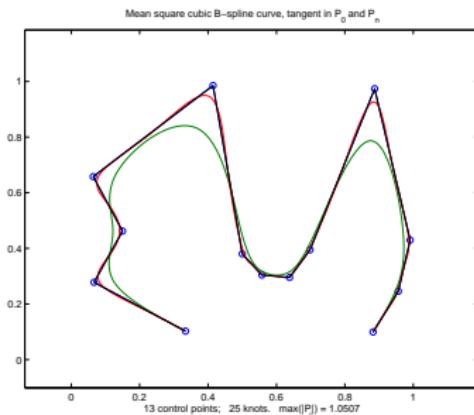
$$N > n. \quad Q_0 = P_0 \quad Q_1 = P_0 + \frac{n}{N}(P_1 - P_0),$$

$$Q_n = P_n \text{ and } Q_{n-1} = P_n - \frac{n}{N}(P_n - P_{n-1})$$

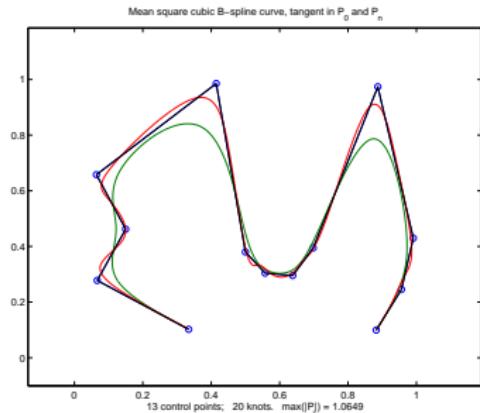
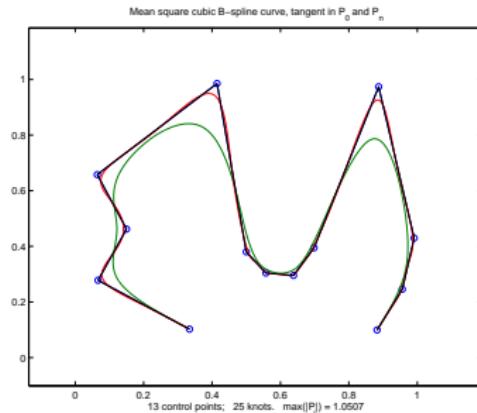
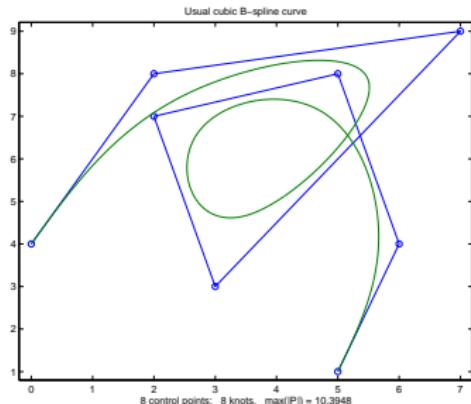
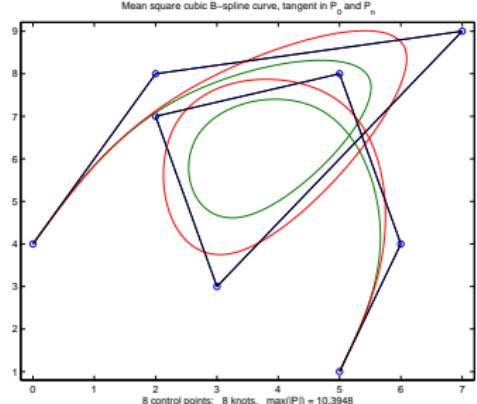
$$\min_{(Q_i)_{i=2:N-2}} \int \left\| \sum_{i=0:N} Q_i B_i^N(t) - \sum_{j=0:n} P_j b_j^n(t) \right\|^2$$



... or the number of knots of the spline :



... or the number of knots of the spline :

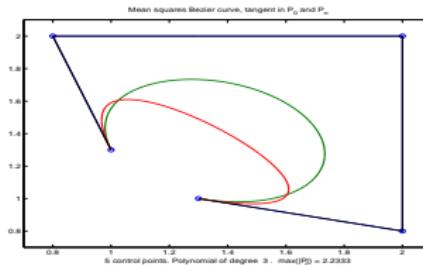


Now a “flatter” curve

Decrease the degree of the polynomial, or the number of knots of the B-spline $N < n$, $Q_0 = P_0$, $Q_1 = P_0 + \frac{n}{N}(P_1 - P_0)$,

$$Q_{n-1} = P_n - \frac{n}{N}(P_n - P_{n-1}) \text{ and } Q_n = P_n,$$

$$\min_{(Q_i)_{i=2:N-2}} \int \left\| \sum_{i=0:N} Q_i B_i^N(t) - \sum_{j=0:n} P_j b_j^n(t) \right\|^2$$

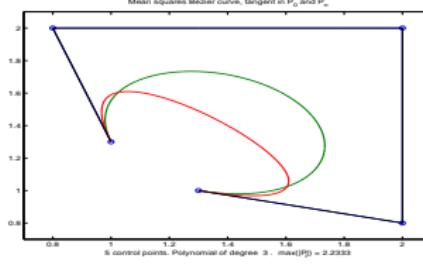
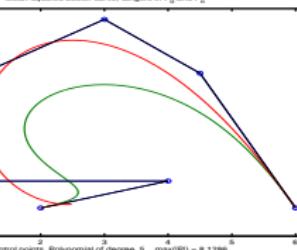
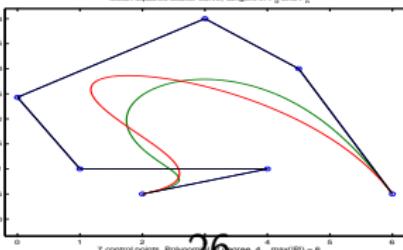
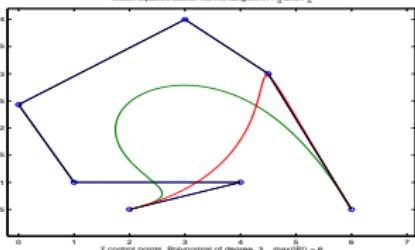


Now a “flatter” curve

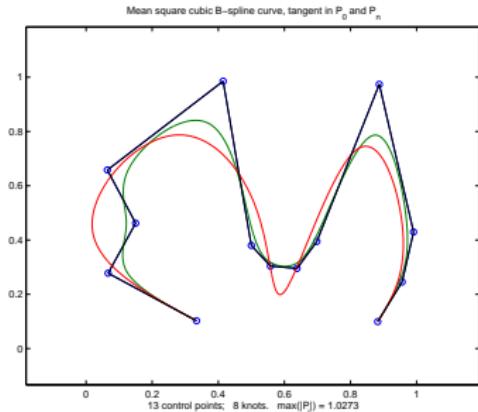
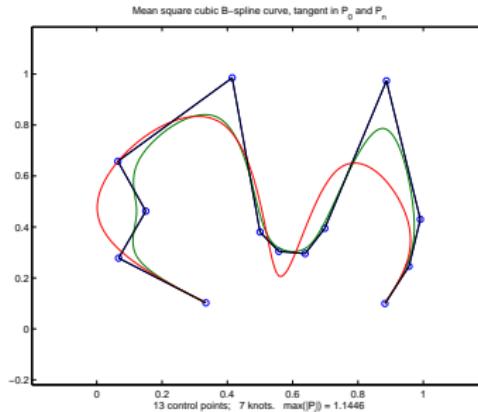
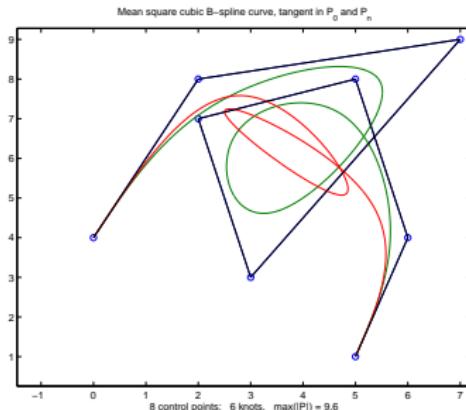
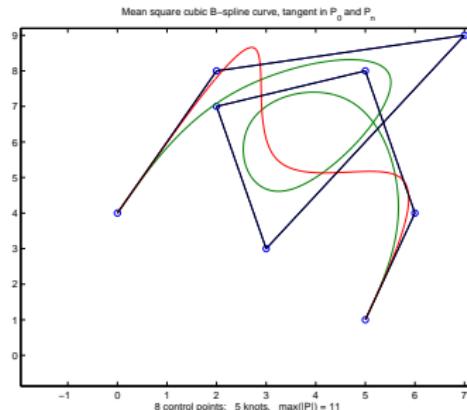
Decrease the degree of the polynomial, or the number of knots of the B-spline $N < n$, $Q_0 = P_0$, $Q_1 = P_0 + \frac{n}{N}(P_1 - P_0)$,

$$Q_{n-1} = P_n - \frac{n}{N}(P_n - P_{n-1}) \text{ and } Q_n = P_n,$$

$$\min_{(Q_i)_{i=2:N-2}} \int \left\| \sum_{i=0:N} Q_i B_i^N(t) - \sum_{j=0:n} P_j b_j^n(t) \right\|^2$$



Less knots for cubic B-spline curves



“Least square B-functions”

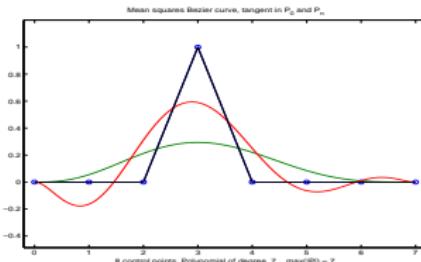
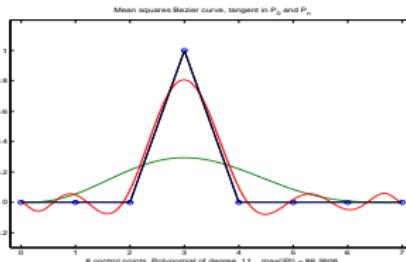
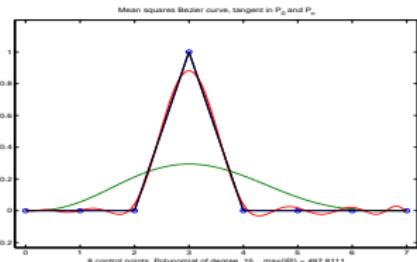
Since the “hat functions” generate the control polygon, just apply the criterion (closer/further) to the hat functions in order to derive new B-functions :

Let N be $N = n$, or $N > n$, or $N < n$

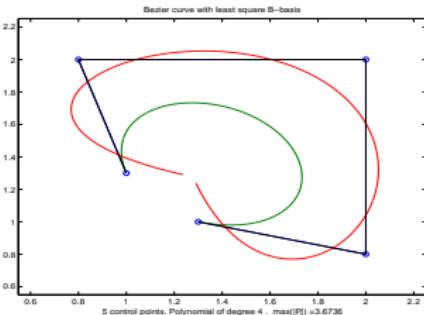
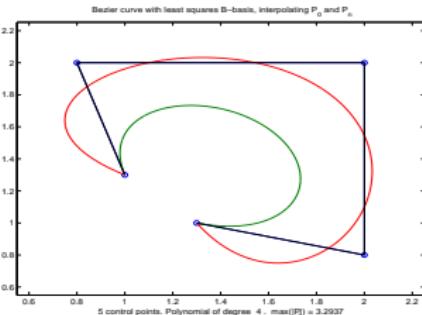
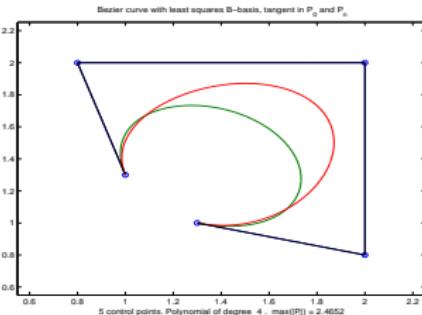
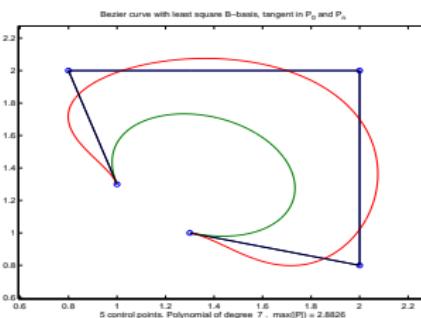
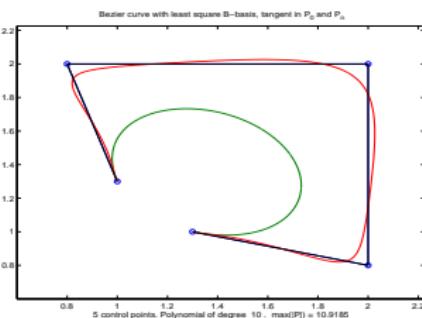
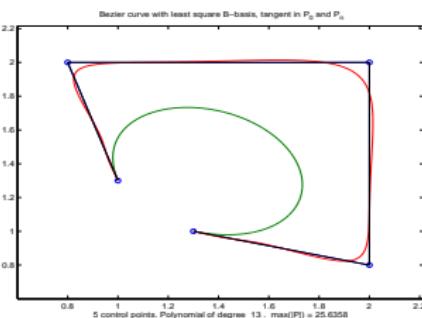
Let C_i^N be the i^{th} “new” B-function.

Define C_i^N as being the function approximating the i^{th} order n hat function, and let $C(t) = \sum_{i=0:N} P_i C_i^N$.

We obtain :



We so obtain...

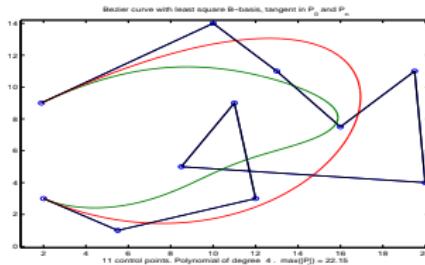
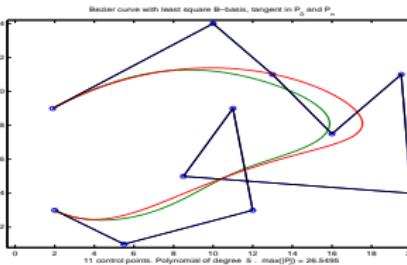
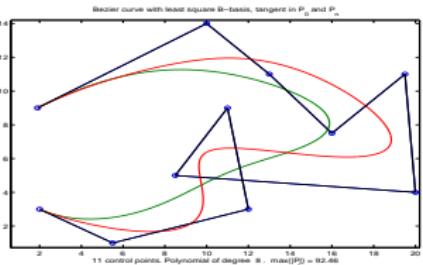
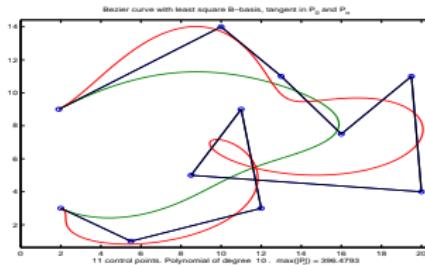
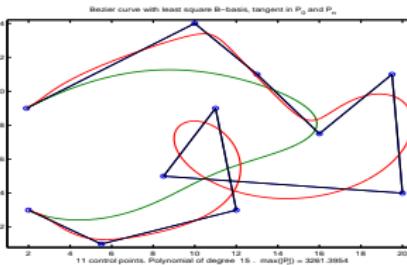
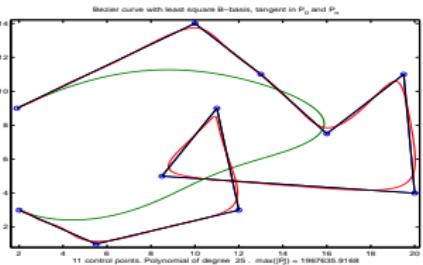


...the same curves !

Convergence towards control polygon

Since polynomials and splines are dense on the space of continuous functions, the B-curve converges towards the control polygon when N tends to infinity.

However be careful with the condition number for polynomials!



Other criteria, other optimizations

In addition to the “classical” B-curve ($Q_i = P_i$), we may be interested in some mix of minimizing

- Distance to the control polygon :

$$E_1 = \int_0^1 (\sum_{i=0:n} Q_i B_i^n(t) - \sum_{j=0:k} P_j b_j^n(t))^2 dt$$

- Distance to the control points :

$$E_2 = \left(\sum_{j=0:k} Q_i B_i^n(j/n) - P_j \right)^2$$

- “Smooth curve” : $E_3 = \int \left\| \sum_{j=0:k} Q_i (B_i^n)''(t) \right\|^2 dt$

- Choosing $k \neq n, k+1$ being the dimension of the “B-space” (degree of polynomial, number of knots of the spline function...).

In order to “mix” these criteria, minimize $E = \rho_1 E_1 + \rho_2 E_2 + \rho_3 E_3 \dots$

How to design curves or surfaces

- **Choose a vectorial space and associated B-functions**

Polynomials (Bernstein)

Polynomial splines, NURBS, polyharmonic splines

Fractional (polynomial or polyharmonic) splines

ECC spaces (hyperbolic or circular,
and polynomials, sum of monomials,...)

...

- Choose a control polygon (polyhedron for surfaces)
- Choose a level of distance to the control polygon
- Compute the associated B-curve
- Go back to any above item if necessary

What to remember from this talk

DISCONNECT the form of the curves (or surfaces) (ie the functional space in which they are) from the distance of the curve (surface) to the control points.

It is easy to **CHOOSE AND MINIMIZE A “DESIRED DISTANCE”** for given B-functions (space) and control polygon.

Doing a **global minimization** is equivalent to using “**new B-functions**”.

Thank you for your attention

Mathematics is beautiful !

Enjoy your mathematics !