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Sparse Scattered Data on (Sub)Manifolds (Sparse) Scattered Data on (Sub)Manifolds

Problem statement

» M C RY a hypersurface with q = dim M < 4
e closed e compact e without boundary
» = C M a set of sparse sites scattered over M

» T function values to =

Determine a »reasonable« function f : M — R such that

f(&) = ye forall £ € = and correspondingy: € T
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Sparse Scattered Data on (Sub)Manifolds (Sparse) Scattered Data on (Sub)Manifolds

Application

Imagine extrapolation of satellite laser measurements on an asteroid or on earth.
The laser needs time to calibrate (=> only few values on path).

The sattelite can only follow certain distinct orbits.
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Common Approaches

Common Approaches: Charts and Blending

» Use charts and define function spaces there to solve problem locally.

» Blend local solutions to obtain global solution.

e There might be charts without any sites

e Blending tends to produce undesireable »gluing breaks«
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Common Approaches

Common Approaches: Intrinsic Functions

» Determine purely intrinsic function spaces Fy like spherical harmonics on S9.

» Use these for a solution

e These spaces are M-specific and for arbitrary M hard to determine.

e Also, they are often costly to evaluate.
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Common Approaches

Common Approaches: Extrinsic Direct Interpolation

» Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...

» Solve standard interpolation problem in neighbourhood, ignore the geometry of M.

» Restrict the solution to M.

Directly applicable and works always — but how good?
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Common Approaches
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Common Approaches

‘ Periodic cubic spline H Restricted thin-plate spline H Interpolation sites
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Common Approaches
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Common Approaches

‘ Periodic cubic spline interpolant ‘ Restricted thin-plate spline interpolant
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Common Approaches

Common Approaches: Extrinsic Interpolation

» Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...
» Solve standard interpolation problem in neighbourhood, ignore the geometry of M.

» Restrict the solution to M.

o Difficulties occur for sparse data.

e Suffers extremely from intricate geometries.
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New Approach: Setting

New Approach

» Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...
» Transfer intrinsic properties into extrinsic (ambient) properties — approximately.

» Solve approximately intrinsic problem with extrinsic methods.

Pro’s:
e Extrinsic function spaces are well understood.
e Extrinsic function space are applicable to any submanifold.

e Easily understood and implemented even for non-mathematicians.
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New Approach: Setting

Solution idea: Background

(Tangential Derivative)

Letf : M — R be a sufficiently (weakly) differentiable function and f an extension into

U(M). The Tangential Derivative Operator dy is defined as
dyf = df — Ty (df)

and independent of the choice of f.

Lars-B. Maier (Darmstadt) Scattered Data Problems on (Sub)Manifolds 04.03.2016 14 /60



New Approach: Setting

Solution idea: Background

THEOREM

Letf € C?(M), and f an extension that is constant in normal directions of M.
Then the 1% and 2" tangential derivatives of f coincide with the euclidean 1% and 2™

derivatives of f on the tangent space (e.g. [Dziuk/Elliot, 2013]).
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New Approach: Setting

Solution idea: Background

| What does that mean? |

» Euclidean derivatives of f give access to tangential derivatives of f
» Euclidean methods can be used to handle intrinsic problems
» Intrinsic functionals are easily transferred into Euclidean setting

» Also: Laplacian of f allows access to Laplace-Beltrami of f
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New Approach: Setting

Solution idea: Background

(M. 2015)

Letf € C3(M), and f an arbitrary extension. Then the deviations of the 1% and 2"
tangential derivatives of f from the euclidean 1% and 2" derivatives of f on the

tangent space are Lipschitz functions of the first normal derivatives.
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New Approach: Setting

Solution idea: Background

| What does that mean? |

» Euclidean derivatives of f give approximate access to tangential derivatives of f
» Standard methods can be used to handle intrinsic problems approximately

» Intrinsic functionals are easily approximated by standard functionals
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New Approach: Setting

New Approach: Solution Idea

Let U(M) be a neighbourhood of M s.t. any x € U(M) has a unique closest point on M.

Consider a suitable function space F(U(M)) on U (M).

‘ Minimize squared 2" derivative in tangent directions over M ‘

such that:

‘ Interpolation in = holds ‘ | Normal derivatives — 0 |
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New Approach: Setting

Optimization Functional: Tensor-Product B-Splines

Minimize for grid width h > 0 and 7, ...7q an ONB of Tp(M)

q
EM[(Sh) Z:/.Zl
M b=

2

82
0107 Sh

such that
sh(f) =ye VE€=

and for any normal direction v ash — 0

8Sh

Tl < h“
v h

with o« > 1.
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New Approach: Setting

A grid region around a smooth submanifold part — function values extended constantly
along normals.
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New Approach: Theory

Theory: Solvability and Convergence

(M. 2015);

1. For TP-B-Splines and sufficiently small h, the above problem is uniquely solvable.
2. For h — 0 the energy Ej(sh) converges to the unique optimal energy in #2(M).

3. Restrictions of optimal splines s |1 approach unique optimum f* € #*(M):

sh = " lly20ny 0 as h—o0.
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New Approach: Examples

‘ Periodic cubic spline interpolant ‘ Restricted thin-plate spline interpolant

Our optimum for h = 0.02
Scattered Data Problems on (Sub)Manifolds 04.03.2016  24/60



New Approach: Examples

Periodic cubic spline interpolant ‘ Restricted thin-plate spline interpolant

Opt. for h = 0.02 (errrys ~ 1072) Opt. for h = 0.01 (errgys ~ 1073%)
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New Approach: Examples

Periodic cubic spline interpolant ‘
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New Approach: Examples

Periodic cubic spline interpolant ‘ Restricted thin-plate spline interpolant

Opt. for h = 0.05 (errrus ~ 1072) Opt. for h = 0.025 (errgys ~ 107°%)
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New Approach: Examples

Periodic cubic spline interpolant ‘

Opt. for h = 0.05 (errrus ~ 1072)
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New Approach: Examples

Periodic cubic spline interpolant ‘

Opt. for h = 0.05 (errrus ~ 1072)

Restricted thin-plate spline interpolant

Opt. for h = 0.025 (errgys ~ 107°%)
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Approach

Sites with values: ‘ s(+e1) =0, s(+ez) =1, s(xes) = —1‘
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Left: S2-reproj. Opt. for h = 0.075 Right: S2-reproj. thin-plate interpol.

aier (Darms
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New Approach: Examples

Equator eval. of our opt. (h = 0.075) ‘ ‘ Equator eval. of thin-plate interpolation
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Approach

Sites with values: ‘ s(+e;) =s(+e2) =1, s(es) =s(—e3) = -1 ‘
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Left: S?-reproj. Opt. for h = 0.0625 Right: S%-reproj. thin-plate interpol.
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New Approach: Examples

Stanford Bunny interpolation on »pumpkin« in 24 (upper row) and 82 (lower row) sites.

Left column: new optimization result Right column: thin-plate interpolation result
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New Approach: Examples

Stanford Bunny interpolation in 179 (upper row) and 676 (lower row) sites.

> ©

Left column: new optimization result Right column: thin-plate interpolation result
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Further remarks

Further remarks

» With fill distance hz i = max,c Minge= ||p — £||, decreasing, the convergence is

about that of thin-plate splines

But: One will have to increase the number of DOF correspondingly to meet
e More interpolation conditions

o Sufficient constance in normal directions
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Discrete Smoothing on (Sub)Manifolds

Part Il: Smoothing on (Sub)Manifolds
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Discrete Smoothing on (Sub)Manifolds

Problem statement

» M C RY a hypersurface with dimM < 4

e closed e compact e without boundary
» = C M a set of data sites scattered over M

» T function values to =, possibly noisy

Determine a »reasonable« function f : M — R such that

f(&) approximate y, for all £ € = and corresponding ye € T w.r.t. smoothness of f
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Common Approaches

Common Approaches: Problems Revisited

Chart&Blending Problems:

e There might be charts without any sites
¢ Blending tends to produce undesireable »gluing breaks«

e What does smoothness in a chart mean for smoothness on M?

Intrinsic Space Problems:

e These spaces are M-specific and for arbitrary M hard to determine.
e Also, they are often costly to evaluate. e Accessing »smoothness« and intrinsic

derivatives is complicated.
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Common Approaches

‘ Direct Extrinsic Smoothing Problems: ‘

e Difficulties occur for sparse data.
o Suffers extremely from difficult geometries.

e The smoothest function w.r.t. 2" derivatives is a least squares linear polynomial.
What does that mean on M?
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Common Approaches

‘ Direct Extrinsic Smoothing Problems: ‘

e Difficulties occur for sparse data.
e Suffers extremely from difficult geometries.

e The smoothest function w.r.t. 2" derivatives is a least squares linear polynomial.

What does that mean on M? Nothing!
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Common Approaches

‘ Direct Extrinsic Smoothing Problems: ‘

e The smoothest function w.r.t. 2" derivatives is a least squares linear polynomial.

What does that mean on M? Nothing!

Linear Least Squares Polynomial, evaluated on the submanifolds
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Common Approaches

New Approach: Solution Idea

Let U(M) be a neighbourhood of M s.t. any x € U(M) has a unique closest point on M.

Consider a suitable function space F(U(M)) on U (M).

‘ Convex weighted Minimization ‘

of

‘ Squared 2" derivative in tangent directions on M ‘

versus

‘ Discrete approximation error in = ‘

such that:

| Normal derivatives — 0 |
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New Approach: Theory

Optimization Functional: Tensor-Product B-Splines

Minimize for grid width h > 0, 71, ...7q¢ an ONB of Tp(M), n €]0, 1], ¢ €]0, 1]V¢ € =

+ (@ =m)> e (sn(8) — ve)?

£e=

Ene.n(sn) i=77'/zq:

M b=l

82

such that for any normal direction v ash — 0

8Sh

Tl < h®
v h

with o« > 1.
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New Approach: Theory

Further Remarks

» 7 balances smoothness and discrete approximation (as usual)
» The {n¢}¢c= can be used to balance data density

» Additional strict interpolation conditions are possible
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New Approach: Theory

Theory: Solvability and Convergence

(M. 2015):

1. For TP-B-Splines and sufficiently small h, the above problem is uniquely solvable.

2. For h — 0 the energy Eu,,(Sn) converges to the unique optimal balanced energy in
H2(M).

3. Restrictions of optimal splines sy | approach unique optimum f;; € HZ(M):

||sh —f;HHZ(M) —~ 0as h—o.
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New Approach: Examples

Direct extrinsic smoothing on S* for different weights with thin-plate splines:

There is an obvious non-constant minimal second tangential derivative square integral!
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New Approach: Examples

Approximate intrinsic smoothing on S* for different weights with h = 0.05:

Square tangential derivative integrals can achieve arbitrary small values!
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New Approach: Examples

Direct extrinsic smoothing on »Flower« for different weights with thin-plate splines:

Geometric features of M are reproduced and ruin the smoothness!
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New Approach: Examples

Approximate intrinsic smoothing on »Flower« for different weights with h = 0.02:

Geometric features of M play no relevant role!
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New Approach: mples
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Noisy and irregular sampling of Stanford Bunny: Front view.
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New Approach: mples
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Noisy and irregular sampling of Stanford Bunny: Back view.
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New Approach: Examples

Outcome of Bunny Smoothing on »Pumpkin« for different smoothing weights.
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New Approach: Examples

Outcome of Bunny Smoothing on »Pumpkin« for different smoothing weights.
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Approach: Examples

Bunny approximation on »Pumpkin« in 38 (upper row) and 353 (lower row) sites.

Left column: Interpolation Right column: Slight Smoothing
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Approach: Examples

Bunny approximation on »Pumpkin« in 751 (upper row) and 3781 (lower row) sites.

Left column: Interpolation Right column: Slight Smoothing
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Summary

Summary

New approaches to sparse scattered data interpolation and discrete data smoothing on

submanifolds:
» Overcome common difficulties
» Apply well-known concepts in novel setting
» Easy to implement

» Produce pleasant results
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