
Scattered Data Problems on (Sub)Manifolds

Lars-B. Maier

Technische Universität Darmstadt

04.03.2016

Lars-B. Maier (Darmstadt) Scattered Data Problems on (Sub)Manifolds 04.03.2016 1 / 60



Sparse Scattered Data on (Sub)Manifolds

Part I: Sparse Scattered Data on (Sub)Manifolds

Lars-B. Maier (Darmstadt) Scattered Data Problems on (Sub)Manifolds 04.03.2016 2 / 60



Sparse Scattered Data on (Sub)Manifolds (Sparse) Scattered Data on (Sub)Manifolds

Problem statement

Setting:

� M ⊆ R
d a hypersurface with q = dim M < 4

• closed • compact • without boundary

� Ξ ⊆ M a set of sparse sites scattered over M

� Υ function values to Ξ

Task: Determine a »reasonable« function f : M → R such that

f (ξ) = yξ for all ξ ∈ Ξ and corresponding yξ ∈ Υ
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Sparse Scattered Data on (Sub)Manifolds (Sparse) Scattered Data on (Sub)Manifolds

Application

Imagine extrapolation of satellite laser measurements on an asteroid or on earth.

The laser needs time to calibrate (=> only few values on path).

The sattelite can only follow certain distinct orbits.
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Common Approaches

Common Approaches: Charts and Blending

� Use charts and define function spaces there to solve problem locally.

� Blend local solutions to obtain global solution.

Problems:

• There might be charts without any sites

• Blending tends to produce undesireable »gluing breaks«
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Common Approaches

Common Approaches: Intrinsic Functions

� Determine purely intrinsic function spaces FM like spherical harmonics on S
q .

� Use these for a solution

Problems:

• These spaces are M-specific and for arbitrary M hard to determine.

• Also, they are often costly to evaluate.
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Common Approaches

Common Approaches: Extrinsic Direct Interpolation

� Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...

� Solve standard interpolation problem in neighbourhood, ignore the geometry of M.

� Restrict the solution to M.

Directly applicable and works always — but how good?

Lars-B. Maier (Darmstadt) Scattered Data Problems on (Sub)Manifolds 04.03.2016 7 / 60



Common Approaches
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Common Approaches
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Common Approaches
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Common Approaches
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Common Approaches

Common Approaches: Extrinsic Interpolation

� Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...

� Solve standard interpolation problem in neighbourhood, ignore the geometry of M.

� Restrict the solution to M.

Problems:

• Difficulties occur for sparse data.

• Suffers extremely from intricate geometries.
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New Approach: Setting

New Approach

� Use some function space in a suitable ambient neighbourhood of M: RBF, Splines...

� Transfer intrinsic properties into extrinsic (ambient) properties — approximately.

� Solve approximately intrinsic problem with extrinsic methods.

Pro’s:

• Extrinsic function spaces are well understood.

• Extrinsic function space are applicable to any submanifold.

• Easily understood and implemented even for non-mathematicians.
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New Approach: Setting

Solution idea: Background

DEFINITION (Tangential Derivative)

Let f : M → R be a sufficiently (weakly) differentiable function and f̃ an extension into

U(M). The Tangential Derivative Operator dM is defined as

dMf := df̃ − πN(df̃ )

and independent of the choice of f̃ .
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New Approach: Setting

Solution idea: Background

THEOREM

Let f ∈ C2(M), and f an extension that is constant in normal directions of M.

Then the 1st and 2nd tangential derivatives of f coincide with the euclidean 1st and 2nd

derivatives of f on the tangent space (e.g. [Dziuk/Elliot, 2013]).
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New Approach: Setting

Solution idea: Background

What does that mean?

� Euclidean derivatives of f give access to tangential derivatives of f

� Euclidean methods can be used to handle intrinsic problems

� Intrinsic functionals are easily transferred into Euclidean setting

� Also: Laplacian of f allows access to Laplace-Beltrami of f
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New Approach: Setting

Solution idea: Background

THEOREM (M. 2015)

Let f ∈ C2(M), and f̃ an arbitrary extension. Then the deviations of the 1st and 2nd

tangential derivatives of f from the euclidean 1st and 2nd derivatives of f̃ on the

tangent space are Lipschitz functions of the first normal derivatives.
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New Approach: Setting

Solution idea: Background

What does that mean?

� Euclidean derivatives of f̃ give approximate access to tangential derivatives of f

� Standard methods can be used to handle intrinsic problems approximately

� Intrinsic functionals are easily approximated by standard functionals

Lars-B. Maier (Darmstadt) Scattered Data Problems on (Sub)Manifolds 04.03.2016 18 / 60



New Approach: Setting

New Approach: Solution Idea

Let U(M) be a neighbourhood of M s.t. any x ∈ U(M) has a unique closest point on M.

Consider a suitable function space F(U(M)) on U(M).

Minimize squared 2nd derivative in tangent directions over M

such that:

Interpolation in Ξ holds Normal derivatives → 0
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New Approach: Setting

Optimization Functional: Tensor-Product B-Splines

Minimize for grid width h > 0 and τ1, ...τq an ONB of Tp(M)

EM(sh) :=

∫

M

q
∑

i,j=1

∣

∣

∣

∣

∂2

∂τi∂τj
sh

∣

∣

∣

∣

2

such that

sh(ξ) = yξ ∀ξ ∈ Ξ

and for any normal direction ν as h → 0

∣

∣

∣

∣

∂sh

∂ν

∣

∣

∣

∣

≤ hα

with α > 1.
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New Approach: Setting
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New Approach: Theory

Theory: Solvability and Convergence

THEOREM (M. 2015):

1. For TP-B-Splines and sufficiently small h, the above problem is uniquely solvable.

2. For h → 0 the energy EM(sh) converges to the unique optimal energy in H2(M).

3. Restrictions of optimal splines sh|M approach unique optimum f ∗ ∈ H2(M):

||sh − f ∗||
H2(M) → 0 as h → 0.
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples
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New Approach: Examples

Sites with values: s(±e1) = 0, s(±e2) = 1, s(±e3) = −1
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New Approach: Examples

Left : S2-reproj. Opt. for h = 0.075 Right : S2-reproj. thin-plate interpol.
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New Approach: Examples

Equator eval. of our opt. (h = 0.075) Equator eval. of thin-plate interpolation
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New Approach: Examples

Sites with values: s(±e1) = s(±e2) = 1, s(e3) = s(−e3) = −1
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New Approach: Examples

Left : S2-reproj. Opt. for h = 0.0625 Right : S2-reproj. thin-plate interpol.
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New Approach: Examples

Stanford Bunny interpolation on »pumpkin« in 24 (upper row) and 82 (lower row) sites.

Left column: new optimization result Right column: thin-plate interpolation result
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New Approach: Examples

Stanford Bunny interpolation in 179 (upper row) and 676 (lower row) sites.

Left column: new optimization result Right column: thin-plate interpolation result
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Further remarks

Further remarks

� With fill distance hΞ,M = maxp∈M minξ∈Ξ ||p − ξ||2 decreasing, the convergence is

about that of thin-plate splines

But: One will have to increase the number of DOF correspondingly to meet

• More interpolation conditions

• Sufficient constance in normal directions
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Discrete Smoothing on (Sub)Manifolds

Part II: Smoothing on (Sub)Manifolds
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Discrete Smoothing on (Sub)Manifolds

Problem statement

Setting:

� M ⊆ R
d a hypersurface with dimM < 4

• closed • compact • without boundary

� Ξ ⊆ M a set of data sites scattered over M

� Υ function values to Ξ, possibly noisy

Task: Determine a »reasonable« function f : M → R such that

f (ξ) approximate yξ for all ξ ∈ Ξ and corresponding yξ ∈ Υ w.r.t. smoothness of f
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Common Approaches

Common Approaches: Problems Revisited

Chart&Blending Problems:

• There might be charts without any sites

• Blending tends to produce undesireable »gluing breaks«

• What does smoothness in a chart mean for smoothness on M?

Intrinsic Space Problems:

• These spaces are M-specific and for arbitrary M hard to determine.

• Also, they are often costly to evaluate. • Accessing »smoothness« and intrinsic

derivatives is complicated.
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Common Approaches

Direct Extrinsic Smoothing Problems:

• Difficulties occur for sparse data.

• Suffers extremely from difficult geometries.

• The smoothest function w.r.t. 2nd derivatives is a least squares linear polynomial.

What does that mean on M?
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Common Approaches

Direct Extrinsic Smoothing Problems:

• Difficulties occur for sparse data.

• Suffers extremely from difficult geometries.

• The smoothest function w.r.t. 2nd derivatives is a least squares linear polynomial.

What does that mean on M? Nothing!

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Lars-B. Maier (Darmstadt) Scattered Data Problems on (Sub)Manifolds 04.03.2016 44 / 60



Common Approaches

Direct Extrinsic Smoothing Problems:

• The smoothest function w.r.t. 2nd derivatives is a least squares linear polynomial.

What does that mean on M? Nothing!
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Common Approaches

New Approach: Solution Idea

Let U(M) be a neighbourhood of M s.t. any x ∈ U(M) has a unique closest point on M.

Consider a suitable function space F(U(M)) on U(M).

Convex weighted Minimization

of

Squared 2nd derivative in tangent directions on M

versus

Discrete approximation error in Ξ

such that:

Normal derivatives → 0
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New Approach: Theory

Optimization Functional: Tensor-Product B-Splines

Minimize for grid width h > 0, τ1, ...τq an ONB of Tp(M), η ∈]0, 1[, ηξ ∈]0, 1]∀ξ ∈ Ξ

EM,η(sh) := η ·

∫

M

q
∑

i,j=1

∣

∣

∣

∣

∂2

∂τi∂τj
sh

∣

∣

∣

∣

2

+ (1 − η)
∑

ξ∈Ξ

ηξ · (sh(ξ)− yξ)
2

such that for any normal direction ν as h → 0

∣

∣

∣

∣

∂sh

∂ν

∣

∣

∣

∣

≤ hα

with α > 1.
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New Approach: Theory

Further Remarks

� η balances smoothness and discrete approximation (as usual)

� The {ηξ}ξ∈Ξ can be used to balance data density

� Additional strict interpolation conditions are possible
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New Approach: Theory

Theory: Solvability and Convergence

THEOREM (M. 2015):

1. For TP-B-Splines and sufficiently small h, the above problem is uniquely solvable.

2. For h → 0 the energy EM,η(sh) converges to the unique optimal balanced energy in

H2(M).

3. Restrictions of optimal splines sh|M approach unique optimum f ∗η ∈ H2(M):

∣

∣

∣

∣sh − f ∗η
∣

∣

∣

∣

H2(M)
→ 0 as h → 0.
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New Approach: Examples

Direct extrinsic smoothing on S
1 for different weights with thin-plate splines:
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There is an obvious non-constant minimal second tangential derivative square integral!
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New Approach: Examples

Approximate intrinsic smoothing on S
1 for different weights with h = 0.05:

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Square tangential derivative integrals can achieve arbitrary small values!
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New Approach: Examples

Direct extrinsic smoothing on »Flower« for different weights with thin-plate splines:
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Geometric features of M are reproduced and ruin the smoothness!
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New Approach: Examples

Approximate intrinsic smoothing on »Flower« for different weights with h = 0.02:
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Geometric features of M play no relevant role!
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New Approach: Examples

Noisy and irregular sampling of Stanford Bunny: Front view.
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New Approach: Examples

Noisy and irregular sampling of Stanford Bunny: Back view.
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New Approach: Examples

Outcome of Bunny Smoothing on »Pumpkin« for different smoothing weights.
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New Approach: Examples

Outcome of Bunny Smoothing on »Pumpkin« for different smoothing weights.
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New Approach: Examples

Bunny approximation on »Pumpkin« in 38 (upper row) and 353 (lower row) sites.

Left column: Interpolation Right column: Slight Smoothing
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New Approach: Examples

Bunny approximation on »Pumpkin« in 751 (upper row) and 3781 (lower row) sites.

Left column: Interpolation Right column: Slight Smoothing
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Summary

Summary

New approaches to sparse scattered data interpolation and discrete data smoothing on

submanifolds:

� Overcome common difficulties

� Apply well-known concepts in novel setting

� Easy to implement

� Produce pleasant results
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