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MOTIVATION

Illustration: Edge enhancement by spiral phase filtering vs. monogenic signal
approach

Optical Imaging Fourier Image Processing
plane filtering: Fourier Domain:

Spiral phase filter Riesz/Radial Hilbert Transform
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HILBERT TRANSFORM – ANALYTIC SIGNAL

I Many natural and man-made signals exhibit time-varying frequencies (e.g.,
chirps, images, radio waves).

I Characterization and analysis of such signals f (t), based on

I instantaneous amplitude a(t),
I instantaneous phase ϕ(t),
I instantaneous frequency ω(t) := ϕ′(t),

f (t) = a(t) cos(ϕ(t)).

I It is convinient to use a complexified version of the signal whose real part is a
given real-valued signal f (t).
There are infinitely many ways to define a f (t) + ig(t).
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ANALYTIC SIGNAL

I Gabor (1946) proposed to use the Hilbert transform of f (t) as g(t), and called
the complex-valued f (t) + i(Hf )(t) an analytic signal .

I Vakman (1972) proved that g(t) must be of the Hilbert transform of f (t) if we
impose some a priori physical assumptions:

I g(t) must be derived from f (t).
I Amplitude continuity: a small change in f (t) leds to a small change in

a(t).
I Phase independence of scale: if cf (t), c ∈ R, arbitrary scalr, then the

phase does not change from that of f (t) and its amplitude bacomes c
times that of f (t).

I Harmonic correspondence; if f (t) = a0 cos(ω0t + ϕ0), then a(t) = a0

and ϕ(t) = ω0t + ϕ0.
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MATHEMATICALLY DESCRIPTION

Real part f (t) = a(t) cos(ϕ(t)),

thenH(a(t) cos(ϕ(t))) = a(t)H(cos(ϕ(t))) Bedrosian identity

a(t)H(cos(ϕ(t))) = a(t) sin(ϕ(t)) for a(t) = a0 and ϕ(t) = ω0t + ϕ0.

Using complex numbers: f (t) + i(Hf )(t) = a(t) exp(ϕ(t)).
Generalizations into higher dimensions?

I Analytic signal = boundary values of analytic functions in C2. (Hahn)

I Spiral phase quadrature formula (Larkin)

I Monogenic signal (Felsberg, Sommer)

Using complex numbers, vectors, hypercomplex numbers, quaternions, Clifford
algebras:

I Riesz transformsRj f (~x) = 2
An

∫
Rn

xj−uj
|x−u|n+1 f (u) du.

I H =
∑n

j=1 ejRj Hilbert-Riesz transform, ei ej + ej ei = −2δij .

I Monogenic signal (I +H)f (t) boundary values of null solution of a Dirac
operator.
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MONOGENIC SIGNAL

The monogenic signal are therefore the boundary values of an monogenic function
in the upper half space and can be identfied with a quaternion:

fM = f + e1R1f + e2R2f = Aeuϕ,

where

I A(x1, x2) is the amplitude,

I u(x1, x2) the orientation (vector) and

I ϕ(x1, x2) is the phase.

The monogenic signal will be compared with another generalization the 2D analytic
signal in higher dimensions which is based on several complex variables and the
partial and total Hilbert transforms in C2.
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EXAMPLE 1 – THEORETICAL EXAMPLE
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EXAMPLE 2 – REAL LIFE
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RIESZ-HILBERT TRANSFORM

I Hilbert transformHf (x) =
n∑

j=1
ejRj f (x) ∼ (R1f (x), R2f (x), . . . , Rnf (x))T ,

where Rj are the j-th Riesz transform and with Fourier transform ĥ = iω
|ω| .

I Directional Hilbert transform 〈u,Hu f (x)〉, where u is a unit vector, lead to a

Hilbert-like behavior in direction u: Ĥu(ω)
∣∣∣
ω=ωu

= −i sgn (ω).

I Shift invariance ∀x0 ∈ Rn H{f (· − x0)}(x) = H{f (·)}(x − x0).

I Scale invariance ∀a ∈ R+ H{f (·/a)}(x) = H{f (·)}(x/a).

I Maps wavelets into gradient-like wavelets

H
{
ψ

(
· − x0

a

)}
(x) = ∇{ϕ}

(
· − x0

a

)
, ϕ = F−1

{
i
ϕ̂(ω)

|ω|

}
I Self-reversibility ∀f ∈ L2(Rn) H∗Hf (x) =

∑n
j=1R

∗
j Rj f (x) = f (x)
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WHAT KIND OF WAVELET-FRAME ?
Frequency domain design of bandlimited wavelets

Theorem
Let h(ω) be a radial frequency profile such that

1. h(ω) = 0 ∀ω > π (Bandlimited)

2.
∑

l∈Z |h(2lω)|2 = 1 (Self-resersibility)

3. dnh(ω)
dωn

∣∣∣
ω=0

= 0, n = 0, 1, . . . , N (Vanishing moments)

Then the isotropic mother wavelet ψ with ψ̂(ω) = h(|ω|) generates a tight wavelet
frame of L2(Rn) whose basis functions

ψi,k (x) = ψi (x − 2k) with ψi (x) = 2−niψ(2−i x)

are isotropic with vanishing moments up to order N.

Example: Simoncelli’s wavelets

h(ω) =

{
cos
(
π
2 log2

(
2ω
π

))
, π

4 < |ω| ≤ π,
0, otherwise
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CONSTRUCTION

Primary tight wavelet frame of L2(Rn)

∀f ∈ L2(Rn) f (x) =
∑
l∈Z

∑
k∈Zm

〈f , ψl,k〉L2ψl,k (x)

and ψl,k (x) = 2−
lm
2 ψ

(
2−l (x − 2l k)

)
.

Then, {Hψl,k = ∇φl,k} is a tight frame such that

∀f ∈ L2(Rn) f (x) =
∑
l∈Z

∑
k∈Zm

w l,k Hψl,k (x), w l,k = 〈f ,Hψl,k〉

It also consists a monogenic frame whenH is replaces by (I +H).
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WHAT DO WE GET?

Wavelet coefficients: wl [k ] = 〈f , ψl,k〉, w l [k ] = 〈f , Hψl,k〉
For a 2D image we get (wl [k ],w l [k ]) = (A cosϕ, A sinϕ cos θ, A sinϕ sin θ).

Local Orientation: φl (k) = arg(w l (k))

Local Amplitude: Al (k) = |(wl [k ],w l [k ])|

Local Phase: φl (k) = arctan
(
|w l (k)|
wl (k)

)
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WAVELET ANALYSIS
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HIGHER ORDER RIESZ TRANSFORMS

Ri1Ri2 · · ·RiN f , i1, i2, · · · , iN ∈ {1, · · · , n}.

Theorem
The N-th Riesz transform achieves the following decomposition of the identits∑

|m|=N

N!

m!
(Rm1

1 R
m2
2 · · ·R

mn
n )∗(Rm1

1 R
m2
2 · · ·R

mn
n ) = Id

using the multi-index vactor m = (m1, . . . , mn).

The N-th-order Riesz tranform decomposes the signal into
(

N + n − 1
n − 1

)
distinct

components and preseves energy, if

Rmf :=

√
N!

m1! m2! . . .mn!
Rm1

1 · · ·R
mn
n f

then
∑
|m|=N〈R

mf , Rmg〉L2 = 〈f , g〉L2 .
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TEAGER-KAISER-ENERGY OPERATOR – TKEO
TKEO and energy E for an L2(R2) signal:

E{f} =

∣∣∣∣ Df D(Df )
f Df

∣∣∣∣ , D =
∂

∂x
+ i

∂

∂y
,

E{f} = [(fx )2 − (fy )2 − f (fxx − fyy )] + 2i[fx fy − f fxy ].

Riesz transform based energy operator: DR = Rx + iRy

ER{f} = [(Rx )2 − (Ry )2 − f (Rxx −Ryy )] + 2i[RxRy − f Rxy ].
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STEERABILITY

(a) original (a), (c) measured,

(b), (d) Riesz transforms
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MULTIORDER GENERALIZED RIESZ TRANSFORMS
Let UM,N be a matrix of size M × (2N + 1) with M ≥ 1.

Definition
The multiorder generalized Riesz transform with coefficient matrix UM,N is the scalar
to M-vactor signal transformRM,N f whose mth component is given by

[RUM,N f (x)]m =
N∑

n=−N

um,nRnf (x).

Where

Rnf (x , y) = (−∆)−n/2
n∑

n1=0

(
n
n1

)
(−i)n1∂n1

x ∂
n−n1
y f (x , y).

Properties:

I ∂x = ∂
∂x + i ∂

∂y , ∂x f (x) = iR(−∆)1/2f (x) andRf (x) = −i(−∆)−1/2∂x f (x).

I norm preservation, self-invertibility

I steerability: The generalized multiorder Riesz transform is steerable in the
sense that its component impulse responses can be simultaneously rotated to
any spatial orientation by forming suitable linear combinations.
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FRACTIONAL RIESZ-HILBERT TRANSFORM

I The fractional Hilbert transform by Lohmann is widly used in optics and image
processing.

I The monogenic signal is the higher dimensional version of an analytic signal.

I Example n = 2 :
(
ω
|ω|

)α
∼ ei

π
2 α (spiral filter by Larkin).
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HOW TO DEFINE A FRACTIONAL OPERATOR?

What we would like to have: T is a transform defined in an appropriate function
space, usually a Hilbert space.

I T 1 = T ,

I T −1 = T −1 inverse transform,

I T 0 = I identiy operator,

I T αT β = T α+β , semigroup property.

I T f (ξ) =
∫

Kα(ξ, x)f (x) dx , closed form.

I How can we get that? Spectral analysis.
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SPECTRAL ANALYSIS

I T : H → H, where H is a complex separable Hilbert with inner product 〈. , .〉,
I and if there is a complete set of orthonormal eigenfunctions φn with

corresponding eigenvalues λn,

I then any element in the space can be represented as

f =
∞∑

n=0

anφn, an = 〈f , φn〉, so that T f =
∞∑

n=0

anλnφn.

I The fractional transform can be defined as

(T af )(ξ) =
∞∑

n=0

anλ
a
nφn(ξ) =

∞∑
n=0

λa
n〈f , φn〉φn(ξ) = 〈f , Ka(ξ, .)〉,

where

Ka(ξ, x) =
∞∑

n=0

λa
n φn(ξ)φn(x).

I Problem: The Hilbert transform is not compact!
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FIRST CONSTRUCTION

We have

ϕ =
1
2

(I + H)ϕ+
1
2

(I − H)ϕ

and

Hϕ =
1
2

(I + H)ϕ+ (−1)
1
2

(I − H)ϕ.

Therefore we define

Hαϕ =
1
2

(I +H)ϕ+ e−iπα 1
2

(I − H)ϕ

= e−i π2 α
1
2

(
ei π2 α (I + H)ϕ+ e−i π2 α (I − H)

)
ϕ

= e−i π2 α
(

cos
(π

2
α
)

I + i sin
(π

2
α
)

H
)
ϕ
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FRACTIONAL RIESZ-HILBERT TRANSFORM

Definition (First definition)
The fractional Riesz-Hilbert transform is defined as

Hα = e−i π2 α
(

cos
(π

2
α
)

I + i sin
(π

2
α
)

H
)

Hα = (iH)α = cos
(π

2
α
)

I + i sin
(π

2
α
)

H

Therefore the fractional Riesz-Hilbert transform is a linear combination of the
identity operator and the Riesz-Hilbert operator.
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C0-SEMIGROUP

Definition (Semigroup)
A family T = {Tt}t≥0 of bounded linear operators acting on a Banach space E is
called a C0-semigroup if the following three properties are satisfied:

1. T0 = I,

2. Ts+t = TsTt for all s, t ≥ 0,

3. lim
t→0

Tt x = x for all x ∈ E .

If the stronger condition lim
t→0
||Tt − T ||E = 0 is satisfied the group is called norm

continuous.
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C0-SEMIGROUP

We have

ei π2 α H =
∞∑
l=0

i2l
(π

2
α
)2l 1

(2l)!
H2l + i2l+1

(π
2
α
)2l+1 1

(2l + 1)!
H2l+1

=
∞∑
l=0

(−1)l
(π

2
α
)2l 1

(2l)!
I + i(−1)l

(π
2
α
)2l+1 1

(2l + 1)!
H

= cos
(π

2
α
)

I + i sin
(π

2
α
)

H.

and

e−iπα 1
2 (I−H) = e−iαπ2 Ieiαπ2 H

= e−i π2 α
(

cos(
π

2
α) + i sin(

π

2
α)H

)
.
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FRACTIONAL RIESZ-HILBERT TRANSFORM

Definition (Second definition)

Hα = e−iπα 1
2 (I−H), Hα = ei

π
2 αH .

Theorem
The fractional Riesz-Hilbert transforms
Hα, Hα : Lp(R3, H)→ Lp(R3, H), 1 < p <∞, α ∈ R, are linear, shift and scale
invariant and fulfill the following properties

1. the inverse of Hα is H−α and the inverse ofHα isH−α, α ∈ R,
2. Hα is 2-periodic in α, i.e. Hα+2 = Hα, whereasHα is 4-periodic in α, i.e.
Hα+4 = Hα, α ∈ R.

3. If f , g ∈ L2(R3, R) such that 〈f , g〉 = 0 then

〈Hαf , Hαg〉 = 〈Hαf , Hαg〉 = 0.
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THE END!

Thank you for your attentation.
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