Error Estimates and Convergence Rates for Filtered Back Projection

Matthias Beckmann and Armin Iske

Department of Mathematics, University of Hamburg

IM-Workshop on Signals, Images, and Approximation March 2, 2016

Outline

- Filtered Back Projection
 - Basic Reconstruction Problem
 - Reconstruction Formula
- $oxed{2}$ Analysis of the Reconstruction Error in the ${
 m L^2 ext{-}Norm}$
 - L²-Error Estimate
 - Refined L²-Error Estimate
- 3 Error Analysis for C^2 -Window Functions
 - Numerical Observations
 - L^2 -Error Estimate for C^2 -Windows
- 4 Error Analysis for C^k -Window Functions
 - L^2 -Error Estimate for C^k -Windows
 - Numerical Results
- 5 Asymptotic L²-Error Estimate

Basic Reconstruction Problem

Problem formulation:

Let $\Omega \subset \mathbb{R}^2$ be bounded. Reconstruct a bivariate function $f \equiv f(x,y)$ with support $\operatorname{supp}(f) \subseteq \Omega$ from given Radon data

$$\{\mathcal{R}f(t,\theta)\mid t\in\mathbb{R},\,\theta\in[0,\pi)\},\$$

where the **Radon transform** $\mathcal{R}f$ of $f\in\mathrm{L}^1(\mathbb{R}^2)$ is defined as

$$\mathcal{R}f(t,\theta) = \int_{\{x\cos(\theta)+y\sin(\theta)=t\}} f(x,y) \,\mathrm{d}x\,\mathrm{d}y \quad \text{ for } (t,\theta) \in \mathbb{R} \times [0,\pi).$$

Basic Reconstruction Problem

Problem formulation:

Let $\Omega \subset \mathbb{R}^2$ be bounded. Reconstruct a bivariate function $f \equiv f(x,y)$ with support $\operatorname{supp}(f) \subseteq \Omega$ from given Radon data

$$\{\mathcal{R}f(t,\theta)\mid t\in\mathbb{R},\,\theta\in[0,\pi)\},\$$

where the **Radon transform** $\mathcal{R}f$ of $f\in \mathrm{L}^1(\mathbb{R}^2)$ is defined as

$$\mathcal{R}f(t,\theta) = \int_{\{x\cos(\theta)+y\sin(\theta)=t\}} f(x,y) \,\mathrm{d}x\,\mathrm{d}y \quad \text{ for } (t,\theta) \in \mathbb{R} \times [0,\pi).$$

Analytical solution:

The inversion of \mathcal{R} involves the **back projection** $\mathcal{B}h$ of $h \in L^1(\mathbb{R} \times [0, \pi))$,

$$\mathcal{B}h(x,y) = \frac{1}{\pi} \int_0^{\pi} h(x\cos(\theta) + y\sin(\theta), \theta) d\theta \quad \text{ for } (x,y) \in \mathbb{R}^2,$$

Basic Reconstruction Problem

Problem formulation:

Let $\Omega \subset \mathbb{R}^2$ be bounded. Reconstruct a bivariate function $f \equiv f(x,y)$ with support $\operatorname{supp}(f) \subseteq \Omega$ from given Radon data

$$\{\mathcal{R}f(t,\theta)\mid t\in\mathbb{R},\,\theta\in[0,\pi)\},\$$

where the **Radon transform** $\mathcal{R}f$ of $f\in\mathrm{L}^1(\mathbb{R}^2)$ is defined as

$$\mathcal{R}f(t,\theta) = \int_{\{x\cos(\theta)+y\sin(\theta)=t\}} f(x,y) \,\mathrm{d}x\,\mathrm{d}y \quad \text{ for } (t,\theta) \in \mathbb{R} \times [0,\pi).$$

Analytical solution:

The inversion of \mathcal{R} involves the **back projection** $\mathcal{B}h$ of $h \in L^1(\mathbb{R} \times [0, \pi))$,

$$\mathcal{B}h(x,y) = \frac{1}{\pi} \int_0^{\pi} h(x\cos(\theta) + y\sin(\theta), \theta) d\theta \quad \text{ for } (x,y) \in \mathbb{R}^2,$$

and is given, for $f \in L^1(\mathbb{R}^2) \cap \mathcal{C}(\mathbb{R}^2)$, by the **filtered back projection formula**

$$f(x,y) = \frac{1}{2} \mathcal{B}\left(\mathcal{F}^{-1}[|S|\mathcal{F}(\mathcal{R}f)(S,\theta)]\right)(x,y) \quad \forall (x,y) \in \mathbb{R}^2.$$

Stabilization: Replace the factor |S| by a **low-pass filter** $A_L : \mathbb{R} \longrightarrow \mathbb{R}$,

$$A_L(S) = |S|W(S/L) = |S|W_L(S)$$

with finite bandwidth L > 0 and an even window function $W : \mathbb{R} \longrightarrow \mathbb{R}$ with compact support supp $(W) \subseteq [-1, 1]$.

Stabilization: Replace the factor |S| by a **low-pass filter** $A_L : \mathbb{R} \longrightarrow \mathbb{R}$,

$$A_L(S) = |S|W(S/L) = |S|W_L(S)$$

with finite bandwidth L > 0 and an even window function $W : \mathbb{R} \longrightarrow \mathbb{R}$ with compact support supp $(W) \subseteq [-1,1]$.

Approximate reconstruction formula:

We can express the resulting approximate FBP reconstruction f_L as

$$f_L = \frac{1}{2} \mathcal{B} \left(\mathcal{F}^{-1} A_L * \mathcal{R} f \right)$$

Stabilization: Replace the factor |S| by a **low-pass filter** $A_L : \mathbb{R} \longrightarrow \mathbb{R}$,

$$A_L(S) = |S|W(S/L) = |S|W_L(S)$$

with finite bandwidth L > 0 and an even window function $W : \mathbb{R} \longrightarrow \mathbb{R}$ with compact support supp $(W) \subseteq [-1,1]$.

Approximate reconstruction formula:

We can express the resulting approximate FBP reconstruction f_L as

$$f_L = \frac{1}{2} \mathcal{B} \left(\mathcal{F}^{-1} A_L * \mathcal{R} f \right) = f * K_L,$$

Stabilization: Replace the factor |S| by a **low-pass filter** $A_L : \mathbb{R} \longrightarrow \mathbb{R}$,

$$A_L(S) = |S|W(S/L) = |S|W_L(S)$$

with finite bandwidth L > 0 and an even window function $W : \mathbb{R} \longrightarrow \mathbb{R}$ with compact support supp $(W) \subseteq [-1,1]$.

Approximate reconstruction formula:

We can express the resulting approximate FBP reconstruction f_L as

$$f_L = \frac{1}{2} \mathcal{B} \left(\mathcal{F}^{-1} A_L * \mathcal{R} f \right) = f * K_L,$$

where we rely, for $f \in L^1(\mathbb{R}^2)$ and $g \in L^1(\mathbb{R} \times [0,\pi))$, on the standard relation

$$\mathcal{B}g * f = \mathcal{B}(g * \mathcal{R}f)$$

and define the **convolution kernel** $K_L : \mathbb{R}^2 \longrightarrow \mathbb{R}$ as

$$K_L(x,y) = \frac{1}{2} \mathcal{B}\left(\mathcal{F}^{-1}A_L\right)(x,y) \quad \text{ for } (x,y) \in \mathbb{R}^2.$$

Aim

Analyse the FBP reconstruction error

$$e_L = f - f_L$$

depending on the window function W and the bandwidth L > 0.

Aim

Analyse the FBP reconstruction error

$$e_L = f - f_L$$

depending on the window function W and the bandwidth L > 0.

Previous results:

ullet Pointwise and L^{∞} -error estimates by [Munshi et al., 1991, Munshi, 1992]

Aim

Analyse the FBP reconstruction error

$$e_L = f - f_L$$

depending on the window function W and the bandwidth L > 0.

Previous results:

- ullet Pointwise and L $^{\infty}$ -error estimates by [Munshi et al., 1991, Munshi, 1992]
- L^p -error estimates in terms of L^p -moduli of continuity by [Madych, 1990]

Aim

Analyse the FBP reconstruction error

$$e_L = f - f_L$$

depending on the window function W and the bandwidth L > 0.

Previous results:

- ullet Pointwise and L $^{\infty}$ -error estimates by [Munshi et al., 1991, Munshi, 1992]
- \bullet L^p-error estimates in terms of L^p-moduli of continuity by [Madych, 1990]

Definition (Sobolev space of fractional order)

The Sobolev space $H^{\alpha}(\mathbb{R}^2)$ of fractional order $\alpha \in \mathbb{R}$ is defined as

$$\mathrm{H}^{\alpha}(\mathbb{R}^2) = \left\{ f \in \mathcal{S}'(\mathbb{R}^2) \mid \|f\|_{\alpha} < \infty \right\},$$

where

$$||f||_{\alpha}^{2} = \frac{1}{2\pi} \int_{\mathbb{D}^{2}} (1 + x^{2} + y^{2})^{\alpha} |\mathcal{F}f(x, y)|^{2} dx dy.$$

L²-Error Analysis

Theorem (L^2 -error estimate; see [Beckmann & Iske, 2015])

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ is bounded above by

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} \le \|1 - W\|_{\infty, [-1, 1]} \|f\|_{\mathrm{L}^2(\mathbb{R}^2)} + L^{-\alpha} \|f\|_{\alpha}.$$

L²-Error Analysis

Theorem (L^2 -error estimate; see [Beckmann & Iske, 2015])

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ is bounded above by

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} \le \|1 - W\|_{\infty, [-1, 1]} \|f\|_{\mathrm{L}^2(\mathbb{R}^2)} + L^{-\alpha} \|f\|_{\alpha}.$$

Theorem (Convergence in the L^p -norm, see [Madych, 1990])

Let the convolution kernel $K_L:\mathbb{R}^2\longrightarrow\mathbb{R}$ satisfy $K_L\in\mathrm{L}^1(\mathbb{R}^2)$ with

$$\int_{\mathbb{R}} \int_{\mathbb{R}} K_L(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1.$$

Then, for $f \in L^p(\mathbb{R}^2)$, $1 \le p < \infty$,

$$\|e_L\|_{\mathrm{L}^p(\mathbb{R}^2)} \longrightarrow 0 \quad \text{ for } \quad L \longrightarrow \infty.$$

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ with $\alpha > 0$, $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. By defining

$$W_L(x,y) = W_L(r(x,y))$$

for $r(x,y) = \sqrt{x^2 + y^2}$ and $(x,y) \in \mathbb{R}^2$, we have

$$W_L(x,y) = \mathcal{F}K_L(x,y) \quad \forall (x,y) \in \mathbb{R}^2.$$

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ with $\alpha > 0$, $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. By defining

$$W_L(x,y) = W_L(r(x,y))$$

for $r(x,y) = \sqrt{x^2 + y^2}$ and $(x,y) \in \mathbb{R}^2$, we have

$$W_L(x,y) = \mathcal{F}K_L(x,y) \quad \forall (x,y) \in \mathbb{R}^2.$$

Thus, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ can be written as

$$\|e_L\|_{\mathrm{L}^2}^2 = \|f - f * \mathcal{K}_L\|_{\mathrm{L}^2}^2 = \frac{1}{2\pi} \|\mathcal{F}f - \mathcal{F}f \cdot \mathcal{F}\mathcal{K}_L\|_{\mathrm{L}^2}^2 = \frac{1}{2\pi} \|\mathcal{F}f - \mathcal{W}_L \cdot \mathcal{F}f\|_{\mathrm{L}^2}^2$$

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ with $\alpha > 0$, $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. By defining

$$W_L(x,y) = W_L(r(x,y))$$

for $r(x,y) = \sqrt{x^2 + y^2}$ and $(x,y) \in \mathbb{R}^2$, we have

$$W_L(x,y) = \mathcal{F}K_L(x,y) \quad \forall (x,y) \in \mathbb{R}^2.$$

Thus, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ can be written as

$$\|e_{L}\|_{L^{2}}^{2} = \|f - f * K_{L}\|_{L^{2}}^{2} = \frac{1}{2\pi} \|\mathcal{F}f - \mathcal{F}f \cdot \mathcal{F}K_{L}\|_{L^{2}}^{2} = \frac{1}{2\pi} \|\mathcal{F}f - W_{L} \cdot \mathcal{F}f\|_{L^{2}}^{2}$$

$$= \underbrace{\frac{1}{2\pi} \int_{r \leq L} |(\mathcal{F}f - W_{L} \cdot \mathcal{F}f)(x, y)|^{2} d(x, y)}_{=:I_{1}} + \underbrace{\frac{1}{2\pi} \int_{r > L} |\mathcal{F}f(x, y)|^{2} d(x, y)}_{=:I_{2}}.$$

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ with $\alpha > 0$, $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. By defining

$$W_L(x,y) = W_L(r(x,y))$$

for $r(x,y) = \sqrt{x^2 + y^2}$ and $(x,y) \in \mathbb{R}^2$, we have

$$W_L(x,y) = \mathcal{F}K_L(x,y) \quad \forall (x,y) \in \mathbb{R}^2.$$

Thus, the L^2 -norm of the FBP reconstruction error $e_L=f-f_L$ can be written as

$$\|e_{L}\|_{L^{2}}^{2} = \|f - f * K_{L}\|_{L^{2}}^{2} = \frac{1}{2\pi} \|\mathcal{F}f - \mathcal{F}f \cdot \mathcal{F}K_{L}\|_{L^{2}}^{2} = \frac{1}{2\pi} \|\mathcal{F}f - W_{L} \cdot \mathcal{F}f\|_{L^{2}}^{2}$$

$$= \underbrace{\frac{1}{2\pi} \int_{r \leq L} |(\mathcal{F}f - W_{L} \cdot \mathcal{F}f)(x, y)|^{2} d(x, y)}_{=:I_{1}} + \underbrace{\frac{1}{2\pi} \int_{r > L} |\mathcal{F}f(x, y)|^{2} d(x, y)}_{=:I_{2}}.$$

The integral I_2 is bounded above by

$$I_2 \leq \frac{1}{2\pi} \int_{r(x,y) > L} \left(1 + x^2 + y^2 \right)^{\alpha} L^{-2\alpha} |\mathcal{F}f(x,y)|^2 d(x,y) \leq L^{-2\alpha} \|f\|_{\alpha}^2.$$

The integral I_1 can be written as

$$I_1 = rac{1}{2\pi} \int_{r(x,y) \leq L} rac{\left|1 - W_L(x,y)\right|^2}{\left(1 + x^2 + y^2\right)^{lpha}} \left(1 + x^2 + y^2\right)^{lpha} |\mathcal{F}f(x,y)|^2 d(x,y)$$

The integral I_1 can be written as

$$I_1 = \frac{1}{2\pi} \int_{r(x,y) \le L} \frac{\left|1 - W_L(x,y)\right|^2}{\left(1 + x^2 + y^2\right)^{\alpha}} \left(1 + x^2 + y^2\right)^{\alpha} |\mathcal{F}f(x,y)|^2 d(x,y)$$

and estimated by

$$I_1 \leq \left(\sup_{S \in [-L,L]} \frac{(1-W_L(S))^2}{(1+S^2)^{\alpha}}\right) \frac{1}{2\pi} \int_{r(x,y) \leq L} \left(1+x^2+y^2\right)^{\alpha} |\mathcal{F}f(x,y)|^2 d(x,y)$$

The integral I_1 can be written as

$$I_1 = \frac{1}{2\pi} \int_{r(x,y) \le L} \frac{\left|1 - W_L(x,y)\right|^2}{\left(1 + x^2 + y^2\right)^{\alpha}} \left(1 + x^2 + y^2\right)^{\alpha} |\mathcal{F}f(x,y)|^2 d(x,y)$$

and estimated by

$$I_{1} \leq \left(\sup_{S \in [-L,L]} \frac{(1-W_{L}(S))^{2}}{(1+S^{2})^{\alpha}}\right) \frac{1}{2\pi} \int_{r(x,y) \leq L} \left(1+x^{2}+y^{2}\right)^{\alpha} |\mathcal{F}f(x,y)|^{2} d(x,y)$$

$$\leq \left(\sup_{S \in [-1,1]} \frac{(1-W(S))^{2}}{(1+L^{2}S^{2})^{\alpha}}\right) \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \left(1+x^{2}+y^{2}\right)^{\alpha} |\mathcal{F}f(x,y)|^{2} dx dy.$$

The integral I_1 can be written as

$$I_1 = \frac{1}{2\pi} \int_{r(x,y) \le L} \frac{\left|1 - W_L(x,y)\right|^2}{\left(1 + x^2 + y^2\right)^{\alpha}} \left(1 + x^2 + y^2\right)^{\alpha} |\mathcal{F}f(x,y)|^2 d(x,y)$$

and estimated by

$$I_{1} \leq \left(\sup_{S \in [-L,L]} \frac{(1-W_{L}(S))^{2}}{(1+S^{2})^{\alpha}}\right) \frac{1}{2\pi} \int_{r(x,y) \leq L} \left(1+x^{2}+y^{2}\right)^{\alpha} |\mathcal{F}f(x,y)|^{2} d(x,y)$$

$$\leq \left(\sup_{S \in [-1,1]} \frac{(1-W(S))^{2}}{(1+L^{2}S^{2})^{\alpha}}\right) \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \left(1+x^{2}+y^{2}\right)^{\alpha} |\mathcal{F}f(x,y)|^{2} dx dy.$$

For the sake of brevity, we define the function $\Phi_{lpha,W,L}:[-1,1]\longrightarrow \mathbb{R}$ via

$$\Phi_{\alpha,W,L}(S) = \frac{(1 - W(S))^2}{(1 + L^2 S^2)^{\alpha}}$$
 for $S \in [-1, 1]$

The integral I_1 can be written as

$$I_1 = \frac{1}{2\pi} \int_{r(x,y) \le L} \frac{\left|1 - W_L(x,y)\right|^2}{\left(1 + x^2 + y^2\right)^{\alpha}} \left(1 + x^2 + y^2\right)^{\alpha} |\mathcal{F}f(x,y)|^2 d(x,y)$$

and estimated by

$$I_{1} \leq \left(\sup_{S \in [-L,L]} \frac{(1-W_{L}(S))^{2}}{(1+S^{2})^{\alpha}}\right) \frac{1}{2\pi} \int_{r(x,y) \leq L} \left(1+x^{2}+y^{2}\right)^{\alpha} |\mathcal{F}f(x,y)|^{2} d(x,y)$$

$$\leq \left(\sup_{S \in [-1,1]} \frac{(1-W(S))^{2}}{(1+L^{2}S^{2})^{\alpha}}\right) \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \left(1+x^{2}+y^{2}\right)^{\alpha} |\mathcal{F}f(x,y)|^{2} dx dy.$$

For the sake of brevity, we define the function $\Phi_{lpha,W,L}:[-1,1]\longrightarrow \mathbb{R}$ via

$$\Phi_{\alpha,W,L}(S) = \frac{(1 - W(S))^2}{(1 + L^2 S^2)^{\alpha}}$$
 for $S \in [-1, 1]$

and obtain

$$I_1 \leq \left(\sup_{S \in [-1,1]} \Phi_{\alpha,W,L}(S) \right) \|f\|_{\alpha}^2 = \Phi_{\alpha,W}(L) \|f\|_{\alpha}^2.$$

Theorem (Refined L^2 -error estimate)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, let $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ is bounded above by

$$\|e_L\|_{L^2(\mathbb{R}^2)} \leq \left(\Phi_{\alpha,W}^{1/2}(L) + L^{-\alpha}\right) \|f\|_{\alpha},$$

where

$$\Phi_{\alpha,W}(L) = \sup_{S \in [-1,1]} \frac{(1-W(S))^2}{(1+L^2S^2)^{\alpha}} \quad \text{ for } L > 0.$$

Theorem (Refined L^2 -error estimate)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, let $W \in L^{\infty}(\mathbb{R})$ and $K_L \in L^1(\mathbb{R}^2)$. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ is bounded above by

$$\|e_L\|_{L^2(\mathbb{R}^2)} \leq \left(\Phi_{\alpha,W}^{1/2}(L) + L^{-\alpha}\right) \|f\|_{\alpha},$$

where

$$\Phi_{\alpha,W}(L) = \sup_{S \in [-1,1]} \frac{(1-W(S))^2}{(1+L^2S^2)^{\alpha}} \quad \text{ for } L > 0.$$

Theorem (Convergence of $\Phi_{\alpha,W}$)

Let the window function W be continuous on [-1,1] and satisfy W(0)=1. Then, for all $\alpha>0$,

$$\Phi_{\alpha,W}(L) = \max_{S \in [-1,1]} \frac{(1-W(S))^2}{(1+L^2S^2)^{\alpha}} \longrightarrow 0 \quad \text{for} \quad L \longrightarrow \infty.$$

Corollary (L^2 -Convergence of the reconstruction error)

Let
$$f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$$
 for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and $W \in \mathcal{C}([-1,1])$ with $W(0) = 1$. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ satisfies $\|e_L\|_{L^2(\mathbb{R}^2)} = o(1)$ for $L \longrightarrow \infty$.

Corollary (L²-Convergence of the reconstruction error)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and $W \in \mathcal{C}([-1,1])$ with W(0) = 1. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ satisfies $\|e_L\|_{L^2(\mathbb{R}^2)} = o(1)$ for $L \longrightarrow \infty$.

Let $S_{\alpha,W,L}^* \in [0,1]$ denote the *smallest* maximizer of $\Phi_{\alpha,W,L}$ on [0,1], i.e.,

$$\Phi_{\alpha,W}(L) = \sup_{S \in [-1,1]} \Phi_{\alpha,W,L}(S) = \Phi_{\alpha,W,L}(S_{\alpha,W,L}^*).$$

Corollary (L²-Convergence of the reconstruction error)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and $W \in \mathcal{C}([-1,1])$ with W(0) = 1. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ satisfies $\|e_L\|_{L^2(\mathbb{R}^2)} = o(1)$ for $L \longrightarrow \infty$.

Let $S_{\alpha,W,L}^* \in [0,1]$ denote the *smallest* maximizer of $\Phi_{\alpha,W,L}$ on [0,1], i.e.,

$$\Phi_{\alpha,W}(L) = \sup_{S \in [-1,1]} \Phi_{\alpha,W,L}(S) = \Phi_{\alpha,W,L}(S_{\alpha,W,L}^*).$$

Assumption

 $S_{\alpha,W,L}^*$ is uniformly bounded away from 0, i.e., there exists a constant $c_{\alpha,W}>0$ such that

$$S_{\alpha,W,L}^* \geq c_{\alpha,W} \quad \forall L > 0.$$

Corollary (L^2 -Convergence of the reconstruction error)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and $W \in \mathcal{C}([-1,1])$ with W(0) = 1. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ satisfies $\|e_L\|_{L^2(\mathbb{R}^2)} = o(1)$ for $L \longrightarrow \infty$.

Let $S_{\alpha,W,L}^* \in [0,1]$ denote the *smallest* maximizer of $\Phi_{\alpha,W,L}$ on [0,1], i.e.,

$$\Phi_{\alpha,W}(L) = \sup_{S \in [-1,1]} \Phi_{\alpha,W,L}(S) = \Phi_{\alpha,W,L}(S_{\alpha,W,L}^*).$$

Assumption

 $S_{\alpha,W,L}^*$ is uniformly bounded away from 0, i.e., there exists a constant $c_{\alpha,W}>0$ such that

$$S_{\alpha,W,L}^* \geq c_{\alpha,W} \quad \forall L > 0.$$

Under the above assumption follows that

$$\Phi_{\alpha,W}(L) \le c_{\alpha,W}^{-2\alpha} \|1 - W\|_{\infty,[-1,1]}^2 L^{-2\alpha} = \mathcal{O}(L^{-2\alpha}) \quad \text{for} \quad L \longrightarrow \infty.$$

Order of Convergence

Corollary (Rate of convergence)

Let $f \in L^1(\mathbb{R}^2) \cap H^\alpha(\mathbb{R}^2)$ for some $\alpha > 0$, let $K_L \in L^1(\mathbb{R}^2)$ and $W \in \mathcal{C}([-1,1])$ with W(0) = 1. Further, let the above assumption be satisfied. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ is bounded above by

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} \le \left(c_{\alpha,W}^{-\alpha} \|1 - W\|_{\infty,[-1,1]} + 1\right) L^{-\alpha} \|f\|_{\alpha}.$$

Therefore,

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} = \mathcal{O}(L^{-\alpha}) \quad \text{ for } \quad L \longrightarrow \infty,$$

i.e., the decay rate is determined by the smoothness lpha of the target function f .

Order of Convergence

Corollary (Rate of convergence)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, let $K_L \in L^1(\mathbb{R}^2)$ and $W \in \mathcal{C}([-1,1])$ with W(0) = 1. Further, let the above assumption be satisfied. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ is bounded above by

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} \leq \left(c_{\alpha,W}^{-\alpha} \|1 - W\|_{\infty,[-1,1]} + 1\right) L^{-\alpha} \|f\|_{\alpha}.$$

Therefore,

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} = \mathcal{O}(L^{-\alpha}) \quad \text{ for } \quad L \longrightarrow \infty,$$

i.e., the decay rate is determined by the smoothness lpha of the target function f .

Example:

Let the window function $\chi_{[-1,1]}
eq W \in \mathcal{C}([-1,1])$ satisfy

$$W(S) = 1 \quad \forall S \in (-\varepsilon, \varepsilon)$$

with a constant $\varepsilon > 0$. Then, the above assumption is fulfilled with $c_{\alpha,W} = \varepsilon$.

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Ramp filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = egin{cases} 1 & ext{, } 0 \leq |S| \leq eta \ rac{1}{1-eta} \left(1-eta\gamma - \left(1-\gamma
ight)|S|
ight) & ext{, } eta < |S| \leq 1 \end{cases} ext{ for } S \in [-1,1]$$

with width $\beta \in (0,1)$ and jump height $\gamma \in [0,1]$.

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Ramp filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = egin{cases} 1 & ext{, } 0 \leq |S| \leq eta \ rac{1}{1-eta} \left(1-eta\gamma - \left(1-\gamma
ight)|S|
ight) & ext{, } eta < |S| \leq 1 \end{cases} ext{ for } S \in [-1,1]$$

with width $\beta \in (0,1)$ and jump height $\gamma \in [0,1]$.

Then, the above assumption

$$\exists c_{\alpha,W} > 0 \ \forall L > 0 : \ S^*_{\alpha,W,L} \ge c_{\alpha,W}$$

is fulfilled with the constant

$$c_{\alpha,W}=\beta.$$

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Ramp filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = egin{cases} 1 & ext{, } 0 \leq |S| \leq eta \ rac{1}{1-eta} \left(1-eta\gamma - \left(1-\gamma
ight)|S|
ight) & ext{, } eta < |S| \leq 1 \end{cases} ext{ for } S \in [-1,1]$$

with width $\beta \in (0,1)$ and jump height $\gamma \in [0,1]$.

Then, the above assumption

$$\exists c_{\alpha,W} > 0 \ \forall L > 0 : \ S^*_{\alpha,W,L} \ge c_{\alpha,W}$$

is fulfilled with the constant

$$c_{\alpha,W} = \beta$$
.

Further, for all $\alpha > 0$, we observe that the convergence rate of $\Phi_{\alpha,W}$ is given by

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2\alpha})$$
 for $L \longrightarrow \infty$.

Fig.: Decay rate of $\Phi_{\alpha,W}$ for the Ramp filter with width $\beta=0.5$ and jump height $\gamma=0$

We investigate the behaviour of $S_{\alpha,W,L}^*$ and $\Phi_{\alpha,W}$ numerically for the following low-pass filters:

$$W(S) = \operatorname{sinc}\left(\frac{\pi S}{2}\right) \cdot \chi_{[-1,1]}(S),$$

$$W(S) = \cos\left(\frac{\pi S}{2}\right) \cdot \chi_{[-1,1]}(S),$$

• Hamming filter (for
$$\beta \in \left[\frac{1}{2},1\right]$$
): $W(S) = (\beta + (1-\beta)\cos(\pi S)) \cdot \chi_{[-1,1]}(S)$,

• Gaussian filter (for
$$\beta > 1$$
):

• Gaussian filter (for
$$\beta > 1$$
): $W(S) = \exp\left(-(\pi S/\beta)^2\right) \cdot \chi_{[-1,1]}(S)$.

We investigate the behaviour of $S_{\alpha,W,L}^*$ and $\Phi_{\alpha,W}$ numerically for the following low-pass filters:

- Shepp-Logan filter: $W(S) = \mathrm{sinc}\left(\frac{\pi S}{2}\right) \cdot \chi_{[-1,1]}(S),$
- Cosine filter: $W(S) = \cos\left(\frac{\pi S}{2}\right) \cdot \chi_{[-1,1]}(S),$
- Hamming filter (for $\beta \in \left[\frac{1}{2},1\right]$): $W(S) = (\beta + (1-\beta)\cos(\pi S)) \cdot \chi_{[-1,1]}(S)$,
- Gaussian filter (for $\beta > 1$): $W(S) = \exp\left(-(\pi S/\beta)^2\right) \cdot \chi_{[-1,1]}(S)$.

For α < 2, we observe that the above assumption

$$\exists c_{\alpha,W} > 0 \ \forall L > 0: \ S^*_{\alpha,W,L} \ge c_{\alpha,W}$$

is fulfilled and

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2\alpha})$$
 for $L \longrightarrow \infty$.

We investigate the behaviour of $S_{\alpha,W,L}^*$ and $\Phi_{\alpha,W}$ numerically for the following low-pass filters:

$$W(S) = \operatorname{sinc}\left(\frac{\pi S}{2}\right) \cdot \chi_{[-1,1]}(S),$$

$$W(S) = \cos\left(\frac{\pi S}{2}\right) \cdot \chi_{[-1,1]}(S),$$

• Hamming filter (for
$$\beta \in \left[\frac{1}{2},1\right]$$
): $W(S) = (\beta + (1-\beta)\cos(\pi S)) \cdot \chi_{[-1,1]}(S)$,

• Gaussian filter (for
$$\beta > 1$$
): $W(S) = \exp(-(\pi S/\beta)^2) \cdot \chi_{[-1,1]}(S)$.

For α < 2, we observe that the above assumption

$$\exists c_{\alpha,W} > 0 \ \forall L > 0 : \ S^*_{\alpha,W,L} \ge c_{\alpha,W}$$

is fulfilled and

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2\alpha})$$
 for $L \longrightarrow \infty$.

For $\alpha \geq 2$, we have

$$S_{\alpha,W,L}^* \longrightarrow 0$$
 for $L \longrightarrow \infty$

and the convergence rate of $\Phi_{\alpha,W}$ stagnates at

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-4})$$
 for $L \longrightarrow \infty$.

Fig.: Decay rate of $\Phi_{\alpha,W}$ for the Shepp-Logan filter

Theorem (Convergence rate of $\Phi_{\alpha,W}$ for \mathcal{C}^2 -windows)

Let the window function W be twice continuously differentiable on [-1,1] with W(0)=1 and let $\alpha>0$ be given. Then, we have

$$\Phi_{\alpha,W}(L) \leq \begin{cases} \frac{(\alpha-2)^{\alpha-2}}{\alpha^{\alpha}} \|W''\|_{\infty,[-1,1]}^{2} L^{-4} &, \alpha > 2 \land L \geq \frac{\sqrt{2}}{\sqrt{\alpha-2}} \\ \frac{1}{4} \|W''\|_{\infty,[-1,1]}^{2} L^{-2\alpha} &, \alpha \leq 2 \lor \left(\alpha > 2 \land L < \frac{\sqrt{2}}{\sqrt{\alpha-2}}\right) \end{cases}$$

for all L > 0 and, especially,

$$\Phi_{\alpha,W}(L) = \mathcal{O}\Big(L^{-\min\{4,2\alpha\}}\Big) \quad \textit{ for } \quad L \longrightarrow \infty.$$

Theorem (Convergence rate of $\Phi_{\alpha,W}$ for \mathcal{C}^2 -windows)

Let the window function W be twice continuously differentiable on [-1,1] with W(0)=1 and let $\alpha>0$ be given. Then, we have

$$\Phi_{\alpha,W}(L) \leq \begin{cases} \frac{(\alpha-2)^{\alpha-2}}{\alpha^{\alpha}} \|W''\|_{\infty,[-1,1]}^{2} L^{-4} &, \alpha > 2 \land L \geq \frac{\sqrt{2}}{\sqrt{\alpha-2}} \\ \frac{1}{4} \|W''\|_{\infty,[-1,1]}^{2} L^{-2\alpha} &, \alpha \leq 2 \lor \left(\alpha > 2 \land L < \frac{\sqrt{2}}{\sqrt{\alpha-2}}\right) \end{cases}$$

for all L > 0 and, especially,

$$\Phi_{\alpha,W}(L) = \mathcal{O}\Big(L^{-\min\{4,2\alpha\}}\Big) \quad \textit{ for } \quad L \longrightarrow \infty.$$

Proof:

Let $S \in [-1,1]$ be fixed. Because W satisfies $W \in \mathcal{C}^2([-1,1])$ with W(0)=1, we can apply Taylor's theorem and obtain

$$W(S) = 1 + \frac{1}{2} W''(\xi) S^2$$

for some ξ between 0 and S, where we use W'(0) = 0, since W is even.

This leads to

$$\Phi_{\alpha,W,L}(S) = \frac{(1-W(S))^2}{(1+L^2S^2)^{\alpha}} \leq \frac{\|W''\|_{\infty,[-1,1]}^2}{4} \frac{S^4}{(1+L^2S^2)^{\alpha}}.$$

This leads to

$$\Phi_{\alpha,W,L}(S) = \frac{(1-W(S))^2}{(1+L^2S^2)^{\alpha}} \leq \frac{\|W''\|_{\infty,[-1,1]}^2}{4} \frac{S^4}{(1+L^2S^2)^{\alpha}}.$$

Hence,

$$\Phi_{\alpha,W}(L) = \max_{S \in [-1,1]} \Phi_{\alpha,W,L}(S) \le \frac{\|W''\|_{\infty,[-1,1]}^2}{4} \max_{S \in [-1,1]} \phi_{\alpha,L}(S)$$

and we now need to investigate

$$\phi_{lpha,\mathit{L}}(\mathit{S}) = rac{\mathit{S}^4}{\left(1 + \mathit{L}^2\,\mathit{S}^2
ight)^lpha} \quad ext{ for } \mathit{S} \in [-1,1].$$

This leads to

$$\Phi_{\alpha,W,L}(S) = \frac{(1-W(S))^2}{(1+L^2S^2)^{\alpha}} \leq \frac{\|W''\|_{\infty,[-1,1]}^2}{4} \frac{S^4}{(1+L^2S^2)^{\alpha}}.$$

Hence,

$$\Phi_{\alpha,W}(L) = \max_{S \in [-1,1]} \Phi_{\alpha,W,L}(S) \le \frac{\|W''\|_{\infty,[-1,1]}^2}{4} \max_{S \in [-1,1]} \phi_{\alpha,L}(S)$$

and we now need to investigate

$$\phi_{lpha,\mathit{L}}(\mathit{S}) = rac{\mathit{S}^4}{\left(1 + \mathit{L}^2\,\mathit{S}^2
ight)^lpha} \quad ext{ for } \mathit{S} \in [-1,1].$$

We can show that

$$\begin{split} \max_{S \in [-1,1]} \phi_{\alpha,L}(S) &= \begin{cases} \phi_{\alpha,L}(1) &, \ \alpha \leq 2 \lor \left(\alpha > 2 \land L < \frac{\sqrt{2}}{\sqrt{\alpha - 2}}\right) \\ \phi_{\alpha,L}\left(\frac{\sqrt{2}}{L\sqrt{\alpha - 2}}\right) &, \ \alpha > 2 \land L \geq \frac{\sqrt{2}}{\sqrt{\alpha - 2}} \end{cases} \\ &\leq \begin{cases} L^{-2\alpha} &, \ \alpha \leq 2 \lor \left(\alpha > 2 \land L < \frac{\sqrt{2}}{\sqrt{\alpha - 2}}\right) \\ 4\frac{(\alpha - 2)^{\alpha - 2}}{\alpha^{\alpha}} \ L^{-4} &, \ \alpha > 2 \land L \geq \frac{\sqrt{2}}{\sqrt{\alpha - 2}}. \end{cases} \end{split}$$

Corollary (L²-error estimate for C^2 -windows)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, let $K_L \in L^1(\mathbb{R}^2)$ and $W \in \mathcal{C}^2([-1,1])$ with W(0) = 1. Then, the L^2 -norm of the FBP reconstruction error $e_L = f - f_L$ satisfies

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)}^2 \leq \begin{cases} \left(\frac{c_{\alpha,2}^2}{4} \|W''\|_{\infty,[-1,1]}^2 \, L^{-4} + L^{-2\alpha}\right) \|f\|_{\alpha}^2 & \text{, } \alpha > 2 \land L \geq L^* \\ \left(\frac{1}{4} \|W''\|_{\infty,[-1,1]}^2 \, L^{-2\alpha} + L^{-2\alpha}\right) \|f\|_{\alpha}^2 & \text{, } \alpha \leq 2 \lor (\alpha > 2 \land L < L^*) \end{cases}$$

with the critical bandwidth $L^*=rac{\sqrt{2}}{\sqrt{lpha-2}}$ for lpha>2 and the constant

$$c_{\alpha,2} = \frac{2}{\alpha - 2} \left(\frac{\alpha - 2}{\alpha}\right)^{\alpha/2},$$

which is strictly monotonically decreasing in $\alpha > 2$. Especially, we have

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} \leq \Big(c \, \|W''\|_{\infty,[-1,1]} \, L^{-\min\{2,\alpha\}} + L^{-\alpha}\Big) \|f\|_{\alpha} = \mathcal{O}\Big(L^{-\min\{2,\alpha\}}\Big). \qquad \Box$$

Theorem (Convergence rate of $\Phi_{\alpha,W}$ for \mathcal{C}^k -windows)

Let the window function W be k-times continuously differentiable on [-1,1], $k \geq 2$, with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k-1$

and let $\alpha > 0$ be given. Then, we have

$$\Phi_{\alpha,W}(L) \leq \begin{cases} \frac{c_{\alpha,k}^2}{(k!)^2} \|W^{(k)}\|_{\infty,[-1,1]}^2 L^{-2k} & \text{, } \alpha > k \land L \geq L^* \\ \frac{1}{(k!)^2} \|W^{(k)}\|_{\infty,[-1,1]}^2 L^{-2\alpha} & \text{, } \alpha \leq k \lor (\alpha > k \land L < L^*) \end{cases}$$

with the critical bandwidth $L^* = \frac{\sqrt{k}}{\sqrt{\alpha - k}}$ for $\alpha > k$ and the constant

$$c_{\alpha,k} = \left(\frac{k}{\alpha - k}\right)^{k/2} \left(\frac{\alpha - k}{\alpha}\right)^{\alpha/2}.$$

Especially,

$$\Phi_{lpha,W}(L)=\mathcal{O}\Big(L^{-2\min\{k,lpha\}}\Big) \quad ext{ for } \quad L\longrightarrow\infty.$$

Corollary (L²-error estimate for C^k -windows)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, let $K_L \in L^1(\mathbb{R}^2)$ and $W \in C^k([-1,1])$, $k \geq 2$, with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k - 1.$

Then, the L²-norm of the FBP reconstruction error $e_L = f - f_L$ satisfies

$$\|e_{L}\|_{L^{2}}^{2} \leq \begin{cases} \left(\frac{c_{\alpha,k}^{2}}{(k!)^{2}} \|W^{(k)}\|_{\infty,[-1,1]}^{2} L^{-2k} + L^{-2\alpha}\right) \|f\|_{\alpha}^{2} &, \alpha > k \wedge L \geq L^{*} \\ \left(\frac{1}{(k!)^{2}} \|W^{(k)}\|_{\infty,[-1,1]}^{2} L^{-2\alpha} + L^{-2\alpha}\right) \|f\|_{\alpha}^{2} &, \alpha \leq k \vee (\alpha > k \wedge L < L^{*}) \end{cases}$$

and the constant

$$c_{\alpha,k} = \left(\frac{k}{\alpha - k}\right)^{k/2} \left(\frac{\alpha - k}{\alpha}\right)^{\alpha/2}$$

is strictly monotonically decreasing in $\alpha > k$. Especially, we have

$$\|e_L\|_{\mathrm{L}^2(\mathbb{R}^2)} \leq \Big(c\,\|\mathcal{W}^{(k)}\|_{\infty,[-1,1]}\,L^{-\min\{k,\alpha\}} + L^{-\alpha}\Big)\|f\|_\alpha = \mathcal{O}\Big(L^{-\min\{k,\alpha\}}\Big). \qquad \Box$$

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Gaussian filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = \exp\left(-\left(rac{\pi S}{eta}
ight)^k
ight) \quad ext{ for } S \in [-1,1]$$

for $k \in \mathbb{N}_{\geq 2}$ and $\beta > 1$.

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Gaussian filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = \exp\left(-\left(rac{\pi S}{eta}
ight)^k
ight) \quad ext{ for } S \in [-1,1]$$

for $k\in\mathbb{N}_{\geq 2}$ and $\beta>1.$ Then, W satisfies $W\in\mathcal{C}^k([-1,1])$ with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \leq j \leq k-1,$ $W^{(k)}(0) = -k! \left(\frac{\pi}{\beta}\right)^k \neq 0.$

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Gaussian filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = \exp\left(-\left(rac{\pi S}{eta}
ight)^k
ight) \quad ext{ for } S \in [-1,1]$$

for $k\in\mathbb{N}_{\geq 2}$ and $\beta>1.$ Then, W satisfies $W\in\mathcal{C}^k([-1,1])$ with

$$W(0) = 1, \qquad W^{(j)}(0) = 0 \quad \forall \, 1 \leq j \leq k-1, \qquad W^{(k)}(0) = -k! \Big(\frac{\pi}{\beta}\Big)^k \neq 0.$$

For $\alpha < k$, we observe

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2\alpha})$$
 for $L \longrightarrow \infty$.

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Gaussian filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = \exp\left(-\left(rac{\pi S}{eta}
ight)^k
ight) \quad ext{ for } S \in [-1,1]$$

for $k\in\mathbb{N}_{\geq 2}$ and $\beta>1.$ Then, W satisfies $W\in\mathcal{C}^k([-1,1])$ with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k-1,$ $W^{(k)}(0) = -k! \left(\frac{\pi}{\beta}\right)^k \ne 0.$

For $\alpha < k$, we observe

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2\alpha})$$
 for $L \longrightarrow \infty$.

For $\alpha \geq k$, the convergence rate of $\Phi_{\alpha,W}$ stagnates at

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2k})$$
 for $L \longrightarrow \infty$.

We investigate the behaviour of $\Phi_{\alpha,W}$ numerically for the generalized Gaussian filter $A_L(S) = |S| \ W(S/L)$ with the window function

$$W(S) = \exp\left(-\left(\frac{\pi S}{\beta}\right)^k\right) \quad \text{ for } S \in [-1,1]$$

for $k \in \mathbb{N}_{\geq 2}$ and $\beta > 1$. Then, W satisfies $W \in \mathcal{C}^k([-1,1])$ with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k-1,$ $W^{(k)}(0) = -k! \left(\frac{\pi}{\beta}\right)^k \ne 0.$

For $\alpha < k$, we observe

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2\alpha})$$
 for $L \longrightarrow \infty$.

For $\alpha \geq k$, the convergence rate of $\Phi_{\alpha,W}$ stagnates at

$$\Phi_{\alpha,W}(L) = \mathcal{O}(L^{-2k})$$
 for $L \longrightarrow \infty$.

This shows that our proven convergence order of $\Phi_{\alpha,W}$ is optimal for \mathcal{C}^k -windows.

Fig.: Decay rate of $\Phi_{\alpha,W}$ for the generalized Gaussian filter with k=4 and $\beta=4$

Asymptotic L²-Error Estimate

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and let $W \in L^{\infty}(\mathbb{R})$ be k-times differentiable at the origin, $k \geq 2$, with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0 \quad \forall \ 1 \le j \le k-1.$

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and let $W \in L^{\infty}(\mathbb{R})$ be k-times differentiable at the origin, $k \geq 2$, with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k - 1.$

We again start with

$$\|e_L\|_{\mathrm{L}^2}^2 = \underbrace{\frac{1}{2\pi} \int_{r \leq L} |(\mathcal{F}f - W_L \cdot \mathcal{F}f)(x,y)|^2 \, \mathrm{d}(x,y)}_{=:I_1} + \underbrace{\frac{1}{2\pi} \int_{r > L} |\mathcal{F}f(x,y)|^2 \, \mathrm{d}(x,y)}_{=:I_2}.$$

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and let $W \in L^{\infty}(\mathbb{R})$ be k-times differentiable at the origin, $k \geq 2$, with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k - 1.$

We again start with

$$\|e_L\|_{\mathrm{L}^2}^2 = \underbrace{\frac{1}{2\pi} \int_{r \leq L} |(\mathcal{F}f - W_L \cdot \mathcal{F}f)(x,y)|^2 \, \mathrm{d}(x,y)}_{=:I_1} + \underbrace{\frac{1}{2\pi} \int_{r > L} |\mathcal{F}f(x,y)|^2 \, \mathrm{d}(x,y)}_{=:I_2}.$$

As before, the integral I_2 can be bounded above by

$$I_2 = \frac{1}{2\pi} \int_{r(x,y)>L} |\mathcal{F}f(x,y)|^2 d(x,y) \le L^{-2\alpha} ||f||_{\alpha}^2.$$

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and let $W \in L^{\infty}(\mathbb{R})$ be k-times differentiable at the origin, $k \geq 2$, with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k - 1.$

We again start with

$$\|e_L\|_{L^2}^2 = \underbrace{\frac{1}{2\pi} \int_{r \leq L} |(\mathcal{F}f - W_L \cdot \mathcal{F}f)(x, y)|^2 d(x, y)}_{=:I_1} + \underbrace{\frac{1}{2\pi} \int_{r > L} |\mathcal{F}f(x, y)|^2 d(x, y)}_{=:I_2}.$$

As before, the integral I_2 can be bounded above by

$$I_2 = \frac{1}{2\pi} \int_{r(x,y)>L} |\mathcal{F}f(x,y)|^2 d(x,y) \le L^{-2\alpha} ||f||_{\alpha}^2.$$

For the integral I_1 , we have

$$I_1 = \frac{1}{2\pi} \int_{r(x,y) < L} \left| 1 - W\left(\frac{r(x,y)}{L}\right) \right|^2 |\mathcal{F}f(x,y)|^2 d(x,y).$$

Using Taylor's theorem and Lebesgue's theorem on dominated convergence, we get

$$I_1 \leq 2 \, \phi_{\alpha,L,k}^* \bigg(rac{\mathcal{W}^{(k)}(0)}{k!} \bigg)^2 \|f\|_{lpha}^2 + \phi_{\alpha,L,k}^* \, o(1) \quad ext{ for } \quad L \longrightarrow \infty,$$

where

$$\phi_{\alpha,L,k}^* = \max_{S \in [0,1]} \frac{S^{2k}}{(1 + L^2 S^2)^{\alpha}} = \max_{S \in [0,1]} \phi_{\alpha,L,k}(S).$$

Using Taylor's theorem and Lebesgue's theorem on dominated convergence, we get

$$I_1 \leq 2 \, \phi_{\alpha,L,k}^* \bigg(rac{W^{(k)}(0)}{k!} \bigg)^2 \|f\|_{lpha}^2 + \phi_{\alpha,L,k}^* \, o(1) \quad \text{ for } \quad L \longrightarrow \infty,$$

where

$$\phi_{\alpha,L,k}^* = \max_{S \in [0,1]} \frac{S^{2k}}{(1 + L^2 S^2)^{\alpha}} = \max_{S \in [0,1]} \phi_{\alpha,L,k}(S).$$

The maximum $\phi_{\alpha,L,k}^*$ of the function $\phi_{\alpha,L,k}$ on [0,1] can be bounded by

$$\phi_{\alpha,L,k}^* \leq \begin{cases} c_{\alpha,k}^2 L^{-2k} & \text{, } \alpha > k \land L \geq L^* \\ L^{-2\alpha} & \text{, } \alpha \leq k \lor (\alpha > k \land L < L^*) \end{cases} = \mathcal{O}\Big(L^{-2\min\{k,\alpha\}}\Big)$$

with the critical bandwidth $L^* = \frac{\sqrt{k}}{\sqrt{\alpha - k}}$ for $\alpha > k$ and the constant

$$c_{\alpha,k} = \left(\frac{k}{\alpha - k}\right)^{k/2} \left(\frac{\alpha - k}{\alpha}\right)^{\alpha/2}.$$

Asymptotic L²-Error Estimate

Theorem (Asymptotic L^2 -error estimate)

Let $f \in L^1(\mathbb{R}^2) \cap H^{\alpha}(\mathbb{R}^2)$ for some $\alpha > 0$, $K_L \in L^1(\mathbb{R}^2)$ and $W \in L^{\infty}(\mathbb{R})$ be k-times differentiable at the origin, $k \geq 2$, with

$$W(0) = 1,$$
 $W^{(j)}(0) = 0$ $\forall 1 \le j \le k - 1.$

Then, the ${\rm L}^2$ -norm of the FBP reconstruction error ${\rm e}_L={\rm f}-{\rm f}_L$ is bounded above by

$$\|e_{L}\|_{L^{2}(\mathbb{R}^{2})} \leq \begin{cases} \left(\frac{\sqrt{2}}{k!} c_{\alpha,k} |W^{(k)}(0)| L^{-k} + L^{-\alpha}\right) \|f\|_{\alpha} + o(L^{-k}) &, \alpha > k \land L \geq L^{*} \\ \left(\frac{\sqrt{2}}{k!} |W^{(k)}(0)| L^{-\alpha} + L^{-\alpha}\right) \|f\|_{\alpha} + o(L^{-\alpha}) &, \alpha \leq k \lor (\alpha > k \land L < L^{*}) \end{cases}$$

with the critical bandwidth $L^* = \frac{\sqrt{k}}{\sqrt{\alpha - k}}$ for $\alpha > k$ and the constant

$$c_{\alpha,k} = \left(\frac{k}{\alpha-k}\right)^{k/2} \left(\frac{\alpha-k}{\alpha}\right)^{\alpha/2}.$$

Especially, we have

$$\|e_L\|_{L^2(\mathbb{R}^2)} \le (c |W^{(k)}(0)| L^{-\min\{k,\alpha\}} + L^{-\alpha}) \|f\|_{\alpha} + o(L^{-\min\{k,\alpha\}}).$$

References

- W.R. Madych: Summability and approximate reconstruction from Radon transform data. Contemporary Mathematics, Volume 113, American Mathematical Society, Providence, 1990, 189-219.
- P. Munshi: *Error analysis of tomographic filters. I: theory.* NDT & E International 25(4/5), 1992, 191-194.
- P. Munshi, R.K.S. Rathore, K.S. Ram, M.S. Kalra: *Error estimates for tomographic inversion*. Inverse Problems 7(3), 1991, 399-408.
- F. Natterer: *The Mathematics of Computerized Tomography*. Classics in Applied Mathematics 32, SIAM, Philadelphia, 2001.

Thank you for your attention!