Error Estimates and Convergence Rates for

Filtered Back Projection

Matthias Beckmann and Armin Iske

Department of Mathematics, University of Hamburg

IM-Workshop on
Signals, Images, and Approximation
March 2, 2016

UH
i
L2V Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG



@ Filtered Back Projection
@ Basic Reconstruction Problem
@ Reconstruction Formula

@ Analysis of the Reconstruction Error in the L2-Norm
@ L2-Error Estimate
o Refined L2-Error Estimate

© Error Analysis for C2-Window Functions
@ Numerical Observations
o L2-Error Estimate for C2-Windows

@ Error Analysis for CX~-Window Functions
o L2-Error Estimate for CX-Windows
@ Numerical Results

e Asymptotic L2-Error Estimate

Matthias Beckmann (Uni HH) Error Estimates and Convergence Rates for Filtered Back Projection



Basic Reconstruction Problem

Problem formulation:
Let Q C R? be bounded. Reconstruct a bivariate function f = f(x, y) with support
supp(f) C Q from given Radon data

{Rf(t,0) |t R, 0€[0,m)},

where the Radon transform Rf of f € L}(R?) is defined as

Rf(t,0) = / f(x,y)dxdy for (t,0) € R x [0, ).
{x cos(0)+y sin(0)=t}
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Basic Reconstruction Problem

Problem formulation:
Let Q C R? be bounded. Reconstruct a bivariate function f = f(x, y) with support
supp(f) C Q from given Radon data

{Rf(t,0) | teR, 00,7},
where the Radon transform Rf of f € L}(R?) is defined as
Rf(t,0) = / f(x,y)dxdy for (t,0) € R x [0, ).
{x cos(0)+y sin(0)=t}

Analytical solution:
The inversion of R involves the back projection Bh of h € LY(R x [0, 7)),

Bh(x,y) = % / h(x cos(8) + ysin(6),6) 6 for (x,y) € R,
0
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Basic Reconstruction Problem

Problem formulation:
Let Q C R? be bounded. Reconstruct a bivariate function f = f(x, y) with support
supp(f) C Q from given Radon data

{Rf(t,0) |t R, 0€[0,m)},

where the Radon transform Rf of f € L}(R?) is defined as

Rf(t,0) = / f(x,y)dxdy for (t,0) € R x [0, ).
{x cos(0)+y sin(0)=t}

Analytical solution:
The inversion of R involves the back projection Bh of h € LY(R x [0, 7)),

1 s
Bh(x,y) = / h(x cos(8) + ysin(6),6) 6 for (x,y) € R,
T Jo
and is given, for f € L1(R?) N C(R?), by the filtered back projection formula

(x,y) = 5 B(FISIFRAS.O]) (xy) V(x.y) € B
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A, : R — R,
AL(S) = [SIW(S/t) = [SIWL(S)

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A, : R — R,
AL(S) = [SIW(S/t) = [SIWL(S)

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].

Approximate reconstruction formula:
We can express the resulting approximate FBP reconstruction f; as

1
fi=5B(F TALxRf)
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A, : R — R,
AL(S) = [SIW(S/t) = [SIWL(S)

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].

Approximate reconstruction formula:
We can express the resulting approximate FBP reconstruction f; as

1
fi=SB(F AL RF) =f KL,
where we rely, for f € L}(R?) and g € L}(R x [0, 7)), on the standard relation
Bg « f = B(g « Rf)

and define the convolution kernel K; : R> — R as

Kiloy) = 3 B(F'A) (o) for (x,y) € B
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
e = f— f[_

depending on the window function W and the bandwidth L > 0.
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
e = f— f[_

depending on the window function W and the bandwidth L > 0.

Previous results:
o Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
e = f— f[_

depending on the window function W and the bandwidth L > 0.

Previous results:

o Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
@ LP-error estimates in terms of LP-moduli of continuity by [Madych, 1990]
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
e = f— f[_

depending on the window function W and the bandwidth L > 0.

Previous results:

@ Pointwise and L°-error estimates by [Munshi et al., 1991, Munshi, 1992]
@ LP-error estimates in terms of LP-moduli of continuity by [Madych, 1990]

Definition (Sobolev space of fractional order)

The Sobolev space H*(R?) of fractional order a € R is defined as

HO‘(]RZ) = {f S S’(Rz) [ lle < oo},
where )
1712 = 5= [ (142 +y)" IFfx ) dxay.
27T R2
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L2-Error Analysis

Theorem (L2-error estimate; see [Beckmann & Iske, 2015])

Let f € LY(R?) N H*(R?) for some o > 0, W € L*°(R) and K, € L}(R?). Then,
the L2-norm of the FBP reconstruction error e, = f — f; is bounded above by

lecllz@) < 1T = Wiloo (—1,11 [ FllLeez) + L [[fla- =
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L2-Error Analysis

Theorem (L2-error estimate; see [Beckmann & Iske, 2015])

Let f € L}(R?) N H*(R?) for some o > 0, W € L>°(R) and K, € L}(R?). Then,
the L2-norm of the FBP reconstruction error e, = f — f; is bounded above by

lecllz®ey < 11— Wlloo,i—1,1 IfllLemey + L™ [|fla- O

Theorem (Convergence in the LP-norm, see [Madych, 1990])

Let the convolution kernel K : R> — R satisfy K, € L}(R?) with

//KL(x,y)dxdyzl.
R JR

Then, for f € LP(R?), 1 < p < oo,

||eL||Lp(]R2) — 0 for L— 0. L]
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Refined Error Estimate

Let f € L}Y(R?) N H*(R?) with a > 0, W € L*(R) and K, € L}(R?). By defining
WL(Xa.y) = WL(r(X7y))

for r(x,y) = /x2 +y2 and (x,y) € R?, we have
WL(Xay):]:KL(va) V(X7y)€R2‘
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Refined Error Estimate

Let f € L}Y(R?) N H*(R?) with a > 0, W € L*(R) and K, € L}(R?). By defining
Wilx,y) = Wi(r(x,y))
for r(x,y) = v/x2 + y2 and (x,y) € R?, we have
Wi(x.y) = FKi(x.y) V(x.y) €R.

Thus, the L2-norm of the FBP reconstruction error e, = f — f; can be written as

1
leclfe = If = £ Kelltz = o (1FF = FF - FKiE: = o [IFF = We - FF .

=
21
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Refined Error Estimate

Let f € L}Y(R?) N H*(R?) with a > 0, W € L*(R) and K, € L}(R?). By defining
Wilx,y) = Wi(r(x,y))
for r(x,y) = v/x2 + y2 and (x,y) € R?, we have
Wi(x.y) = FKi(x.y) V(x.y) €R.

Thus, the L2-norm of the FBP reconstruction error e, = f — f; can be written as

1 1
lecle = IF = £ » Kullfs = 5 IFF — Ff - FuR = o | FF — W AR,
1 1
o [N W FOP A+ 5 [ 1R decy).
™ Jr<i ™ Jr>1L

=:h =:h
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Refined Error Estimate

Let f € L}Y(R?) N H*(R?) with a > 0, W € L*(R) and K, € L}(R?). By defining
Wilx,y) = Wi(r(x,y))
for r(x,y) = v/x2 + y2 and (x,y) € R?, we have
Wi(x.y) = FKi(x.y) V(x.y) €R.

Thus, the L2-norm of the FBP reconstruction error e, = f — f; can be written as

1 1
lecle = IIf = £ Kulfe = oo IFF = FF - R = 5 |1FF = We - FrIRs
1 1
=5 | =W PGP eyt 5 [ IFFE d).
™ Jr<i ™ Jr>1L

=:h =:h
The integral I, is bounded above by

1 «
h < — (14 X2+ %) L2 | Ff(x,y)) d(x, y) < L2 |F]3.
2 r(x,y)>L
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Refined Error Estimate

The integral /; can be written as

1 11— Wi(x,y))? 2, e 2
h = 5 1+ x"+y Ff(x,y)|cd(x,y
21 Jiepy<r (L4+x2 +y2) ( ) FFO0 )17 Al y)
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Refined Error Estimate

The integral /; can be written as

1 11— Wi(x,y))? 2, e 2
h = 5 1+ x"+y Ff(x,y)|cd(x,y
21 Jiepy<r (L4+x2 +y2) ( ) FFO0 )17 Al y)

and estimated by

(1- WL(S))z) 1 / , e .
h < SUp e | 5 1+x“+4y Ff(x,y)|cd(x,y
' (Se[—L,L] (1+52) 27 r(x,y)gL( ) |FE(x, )17 d(x, y)
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Refined Error Estimate

The integral /; can be written as

1 |1 - WL(X’y)|2 2 2\ & >
h=5; L LY (1452 + ) |FF(x, y)|? d(x,
1S 3 fye @ 42T LX) IF )Pl y)
and estimated by
(1- WL(S))z) 1 / , e .
h < sup —F——~ o | 5= 1+x“+y Ff(x,y)|cd(x,y
' (SE[—L,L] (1+5?) 27 r(x,y)<L( ) IFF O, y) P d(x, y)

(1 — W(S))z) 1 // 5 o\ @ 5
< sup ———— 0 | — 1+ x°+ Frf(x, dxdy.
(SE[—?,I] (1+L252)" )27 Jp Jr ( v IFE Gy Y
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Refined Error Estimate

The integral /; can be written as

1 11— Wi(x,y))? 2, e 2
h = 5 1+ x"+y Ff(x,y)|cd(x,y
21 Jiepy<r (L4+x2 +y2) ( ) FFO0 )17 Al y)

and estimated by

(1- WL(S))z) 1 / , e .
h < SUp e | 5 1+x“+4y Ff(x,y)|cd(x,y
' (SE[—L,L] (1+5?) 27 r(x,y)<L( ) IFF O, y) P d(x, y)

(1—W(5))2) 1 // 2, e 2

< sup ~— 0 | — 1+x“+y Ff(x,y)|* dxdy.
(Se[—l,l] (14 L28%)% )27 Jg R( ) FFOy)

For the sake of brevity, we define the function ®, w  : [-1,1] — R via

(1-w(s))?

Pa.w.i(3) = (1+ [252)°

for S € [-1,1]
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Refined Error Estimate

The integral /; can be written as
1 11— WL(X,}’)|2 2 ) ¢ 2
I1: a 14 x +y fXay dX,y
27 r(x,y)<L (1+X2 +y2) ( ) | ( )| ( )

and estimated by

(1- WL(S))z) 1 / , e .
h < SUp e | 5 1+x“+4y Ff(x,y)|cd(x,y
' (SE[—L,L] (1+5?) 27 r(x,y)<L( ) IFF O, y) P d(x, y)

u—WGW)l// 2, e 2

< sup ~— 0 | — 1+x“+y Ff(x,y)|* dxdy.
(Se[—l,l] (14 L28%)% )27 Jg R( ) FFOy)

For the sake of brevity, we define the function ®, w  : [-1,1] — R via

(1-w(s))?

Pa.w.i(3) = (1+ [252)°

for S € [-1,1]
and obtain

hé(sw %WAQ)mi—%wuwmz
Se[-1,1]
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Refined Error Estimate

Theorem (Refined L2-error estimate)

Let f € LY(R?) N H*(R?) for some o > 0, let W € L°(R) and K. € L'(R?).
Then, the L2-norm of the FBP reconstruction error e, = f — f; is bounded above
by

leclliagez) < (@2 (L) + L) 1 Fllas
where

(Da,W(L) = sup (1 B W(S))

LW s 0
sel-1,1] (1+L252)
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Refined Error Estimate

Theorem (Refined L2-error estimate)

Let f € LY(R?) N HY(R?) for some a > 0, let W € L*°(R) and K, € L}(R?).
Then, the L2-norm of the FBP reconstruction error e, = f — f; is bounded above

L —«
lecllagee) < (@2 (L) + L) I fllas

(1= W(S5))?

——5 forL>0. O
SE[ 1 1] (1 + L252)

Let the window function W be continuous on [—1,1] and satisfy W(0) = 1. Then,
for all o > 0,

_ (1-w(s))
Caw(l) = max, 11 252)%
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Convergence of the Reconstruction Error

Corollary (L2-Convergence of the reconstruction error)
Let f € LY(R?) N HY(R?) for some a > 0, K, € LY(R?) and W € C([-1,1]) with
W(0) = 1. Then, the L2-norm of the FBP reconstruction error e, = f — f, satisfies

lecllzme) = o(1) for L — oo. O
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Convergence of the Reconstruction Error

Corollary (L2-Convergence of the reconstruction error)
Let f € LY(R?) N HY(R?) for some a > 0, K, € LY(R?) and W € C([-1,1]) with
W(0) = 1. Then, the L2-norm of the FBP reconstruction error e, = f — f, satisfies

lecllzme) = o(1) for L — oo. O

Let S; v € [0,1] denote the smallest maximizer of ®4 w,. on [0,1], i.e.,

Pow(l)= sup Pow i(S)=Pow.(Ssw.)
Se[-1,1]
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Convergence of the Reconstruction Error

Corollary (L2-Convergence of the reconstruction error)
Let f € LY(R?) N HY(R?) for some a > 0, K, € LY(R?) and W € C([-1,1]) with
W(0) = 1. Then, the L2-norm of the FBP reconstruction error e, = f — f, satisfies

lecllzme) = o(1) for L — oo. O

Let S; v € [0,1] denote the smallest maximizer of ®4 w,. on [0,1], i.e.,

Pow(l)= sup Pow i(S)=Pow.(Ssw.)
Se[-1,1]

5*

[0}

such that

w.. 1s uniformly bounded away from 0, i.e., there exists a constant c,w > 0

SS,W,LE Ca,W VL>0
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Convergence of the Reconstruction Error

Corollary (L2-Convergence of the reconstruction error)
Let f € LY(R?) N HY(R?) for some a > 0, K, € LY(R?) and W € C([-1,1]) with
W(0) = 1. Then, the L2-norm of the FBP reconstruction error e, = f — f, satisfies

lecllzme) = o(1) for L — oo. O

Let S; v € [0,1] denote the smallest maximizer of ®4 w,. on [0,1], i.e.,

Pow(l)= sup Pow i(S)=Pow.(Ssw.)
Se[-1,1]

5*

[0}

such that

w.. 1s uniformly bounded away from 0, i.e., there exists a constant c,w > 0

5;,W,L2 Ca,W VL>0

Under the above assumption follows that
Saw(Ll) <ciwll— W2 1L =072 for L — oo
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Order of Convergence

Corollary (Rate of convergence)

Let f € L}(R?) N H*(R?) for some o > 0, let K, € L}(R?) and W € C([-1,1])
with W(0) = 1. Further, let the above assumption be satisfied. Then, the L?-norm
of the FBP reconstruction error e, = f — f| is bounded above by

lecliagee) < (i 11 = Wilsogon + 1)L 1l

Therefore,
lecllreey = O(L™)  for L — oo,

i.e., the decay rate is determined by the smoothness « of the target function f. [

v
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Order of Convergence

Corollary (Rate of convergence)

Let f € L}(R?) N H*(R?) for some o > 0, let K, € L}(R?) and W € C([-1,1])
with W(0) = 1. Further, let the above assumption be satisfied. Then, the L?-norm
of the FBP reconstruction error e, = f — f| is bounded above by

lecliagee) < (i 11 = Wilsogon + 1)L 1l

Therefore,
lecllreey = O(L™)  for L — oo,

i.e., the decay rate is determined by the smoothness « of the target function f. [

v

Example:
Let the window function x_1 4] # W € C([-1, 1]) satisfy

W(S)=1 VS e (—¢,¢)

with a constant € > 0. Then, the above assumption is fulfilled with c, w = €.
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Numerical Observations

We investigate the behaviour of ®, w numerically for the generalized Ramp filter
AL(S) = |S| W(5/L) with the window function

1 0<|S|<p
W(s) = for S € [-1,1
) {l_lﬂ(l—ﬂv—(l—msn s<isi<1 Proebny

with width 8 € (0,1) and jump height v € [0, 1].
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Numerical Observations

We investigate the behaviour of ®, w numerically for the generalized Ramp filter
AL(S) = |S| W(5/L) with the window function

1 0<|S|<p
W(s) = for S € [-1,1
) {l_lﬂ(l—ﬂv—(l—msn s<isi<1 Proebny

with width 8 € (0,1) and jump height v € [0, 1].
Then, the above assumption
ElC(LW > OVvL >0: SZ,W,L Z Ca,W

is fulfilled with the constant
Ca,Ww = 5
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Numerical Observations

We investigate the behaviour of ®, w numerically for the generalized Ramp filter
AL(S) = |S| W(5/L) with the window function

1 0<|S|<p
W(s) = for S € [-1,1
) {l_lﬂ(l—ﬂv—(l—msn s<isi<1 Proebny

with width 8 € (0,1) and jump height v € [0, 1].
Then, the above assumption
ElC(LW > OVvL >0: SZ,W,L Z Ca,W

is fulfilled with the constant
Ca,Ww = 5

Further, for all & > 0, we observe that the convergence rate of ®, v is given by

Sow(Ll) =0O(L72) for L — oo.
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Numerical Observations

10°
10°
107} 10
107}
- =10 3
10 & i
2
w0 w0
10"
w0 w _
e e e e " e
L L L
(a) «a=05 (b)a=1 (c)a=2
10 107
107
10 10°
107 .
10 10
"0 107 10
10 107
10}
107 10|
10° 10° 10° 10° 10° 10°

L L L

(d)a%4 (e) a=6 (f)a%S

Fig.: Decay rate of &, w for the Ramp filter with width 5 = 0.5 and jump height v =0
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Numerical Observations

We investigate the behaviour of S}, ; and ®, w numerically for the following
low-pass filters:

@ Shepp-Logan filter: W(S) = sinc (”7) X[-1.1(S),

o Cosine filter: W(S) = cos (%) - x[-1,15(S),

e Hamming filter (for 3 € [1,1]): W(S) = (B8+ (1 — B) cos(rS)) - x(-1,11(5).
e Gaussian filter (for 8 > 1): W(S) = exp (—(75/8)?) - x[-1,11(5).
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Numerical Observations

We investigate the behaviour of S? |, , and ®, \w numerically for the following
low-pass filters:

o Shepp-Logan filter: W(S)
o Cosine filter: W(S) = cos (%) - x(-1,11(S).
e Hamming filter (for 3 € [1,1]): W(S) = (B8+ (1 — B) cos(rS)) - x(-1,11(5).
o Gaussian filter (for 8 > 1): W(S) = exp (—(75/8)?) - x[-1,11(5).
For av < 2, we observe that the above assumption

Elca’W > oOvL >0: S;,W,L Z Ca,W

is fulfilled and
S w(l)=0(L™2*) for L— .
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Numerical Observations

We investigate the behaviour of S? |, , and ®, \w numerically for the following
low-pass filters:

o Shepp-Logan filter: W(S)
o Cosine filter: W(S) = cos (%) - x(-1,11(S).
e Hamming filter (for 3 € [1,1]): W(S) = (B8+ (1 — B) cos(rS)) - x(-1,11(5).
o Gaussian filter (for 8 > 1): W(S) = exp (—(75/8)?) - x[-1,11(5).
For av < 2, we observe that the above assumption

Elca’W > oOvL >0: S;,W,L Z Ca,W

is fulfilled and
S w(l)=0(L™2*) for L— .

For o« > 2, we have
SZ,W,L—>0 for L%OO

and the convergence rate of ®,  stagnates at

P w(l)=0(L% for L— oo
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Numerical Observation

(a)a;O.S (b)a=1 (c)a;2

=

10° 10° 10 10 10° 10°

L L L

(d)a;2.5 (e) a=3 (f)a/:4

Fig.: Decay rate of &, w for the Shepp-Logan filter
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Error Analysis for C?-Windows

Theorem (Convergence rate of &, v for C?-windows)

Let the window function W be twice continuously differentiable on [—1,1] with
W(0) =1 and let o > 0 be given. Then, we have

oo L) < (0‘2—HW//||2 Ligl™ ca>2aL> \/%
a,W S o
Z”W//“oo[ 1yl ,a§2\/(a>2/\L< %)

for all L > 0 and, especially,

Go (L) = O(L— mi"{“vh}) for L —s oo O

Matthias Beckmann (Uni HH) Error Estimates and Convergence Rates for Filtered Back Projection 16 / 26



Error Analysis for C?-Windows

Theorem (Convergence rate of &, v for C?-windows)

Let the window function W be twice continuously differentiable on [—1,1] with
W(0) =1 and let « > 0 be given. Then, we have
CoB W, L L a>2AL> 2
¢o¢7W(L) S o ’ o V2
Z||W//||oo[11]l-7a ,OZS2V(OZ>2/\L< a2_2>
for all L > 0 and, especially,
Go (L) = O(L— mi"{4~2a}) for L —s oo O

Proof:
Let S € [-1,1] be fixed. Because W satisfies W € C?([—1,1]) with W(0) =
we can apply Taylor's theorem and obtain
1
w(s)=1+3 w”(¢) S?

for some £ between 0 and S, where we use W’/(0) = 0, since W is even.
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Error Analysis for C?-Windows

This leads to
(1— W(S))? < W12 1y S4

Paw.i(S) = (1+[252)% = 4 (1+[252)™
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Error Analysis for C?-Windows

This leads to
o w1 (S) = (1— W(S)a2 < W12 1y st _
o (14 L25?) 4 (1+L25?)
Hence,
W% 1

O w(l) = Go i (S) < ——=1 al(S
w(l) = max ®aw.i(S) < 2 sax  Pa(S)

and we now need to investigate
54

ba,L(S) = A+ 25"

for S € [-1,1].
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Error Analysis for C?-Windows

This leads to
o (5) = (1— W(S))? < W12 1y S4
Wit (14 1282)% = 4 (1+1252)
Hence,
. o o Wy .
— < 2 >
a,w(L) s aw,L(5) < 2 12, ba,1(S)
and we now need to investigate
54
Qba,L(S) = m for 5 S [*1, 1]
We can show that
max 6u(S) = {%VL(l)f sl 2t
sel-1,1] a1 (1 a2_2) L a>2AL> \/é

a—2

<{L—2°‘ La<2v(a>2AL< Y2
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Error Analysis for C?-Windows

Corollary (L?-error estimate for C?-windows)

Let f € L}Y(R?) N H*(IR?) for some a > 0, let K, € L}(R?) and W € C?([-1,1])
with W(0) = 1. Then, the L?-norm of the FBP reconstruction error e, = f — f;
satisfies

2
SEIWIR, g L+ L) AR L a>2AL> L

lecl|Zaeey <
(R?) % ”W//Hio,[—l,l] L2 4 L72Ot> Hf”i ,a<2V (a >2AL< L*)

with the critical bandwidth L* = \/‘a/% for « > 2 and the constant
2

(a—2)“/2
a—2\ « ’

which is strictly monotonically decreasing in o > 2. Especially, we have

Ca2 =

”eL”LZ(R?) < (C ||W/I||oo,[—1,1] L~ min{2,a} + Lfa> ||f||a _ O<L7 min{2,a}). ]
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Error Analysis for C*-Windows

Theorem (Convergence rate of ®,, y for Ck-windows)

Let the window function W be k-times continuously differentiable on [-1,1], k > 2,
with '

wo)=1, WY@0)=0 Vi<j<k-1
and let o > 0 be given. Then, we have

(0] W(L)< kl2||WkHoo[11]I—2k ,(y>k/\L>l*
«, >
k!)2 ||WkH§o,[71,1]L 2 ,(y<k\/(a>k/\l<l*)

with the critical bandwidth L* = w% for a > k and the constant

o= (27) ()"

Go (L) = O(L*m‘"{k’a}) for L —» oc. O

Especially,
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Error Analysis for C*-Windows

Corollary (L?-error estimate for C*-windows)

Let f € LY(R?) N HY(R?) for some a > 0, let K, € L}(R?) and W € CK([-1,1]),
k > 2, with

W(0) =1, wW©0)=0 V1<j<k-—1

Then, the L2-norm of the FBP reconstruction error e, = f — f; satisfies

k.znvvknoo[ Ly L) F2 e > kAL L
e IWOZ, Ly 72+ L*2“)||f\|,2l ,a<kV(a>kAL<L¥)

o= (72) (57)"

is strictly monotonically decreasing in o« > k. Especially, we have

llecllze <

and the constant

letlliagee) < (€ IW® oo o g L™ 4 12 [0 = O(L-mntked) - O

vy
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Numerical Results

We investigate the behaviour of ®, v numerically for the generalized Gaussian filter
AL(S) = |S| W(5/L) with the window function

s

W(S):exp(—(ﬁ

)k> for S € [~1,1]

for k€N22 and 8 > 1.
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Numerical Results

We investigate the behaviour of ®, v numerically for the generalized Gaussian filter
AL(S) = |S| W(5/L) with the window function

s
p

for k € N>p and 8> 1. Then, W satisfies W € C*([-1,1]) with

W(S) = exp ( - ( )k> for S € [~1,1]

Wo)=1, WW0)=0 Vi<j<k-1,  WW(0) = —k!(f)k £0.
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Numerical Results

We investigate the behaviour of ®, v numerically for the generalized Gaussian filter
AL(S) = |S| W(5/L) with the window function

W(S) = exp ( - (”ﬁs)k> for S € [~1,1]

for k € N>p and 8> 1. Then, W satisfies W € C*([-1,1]) with
. k
Wo)=1, WW0)=0 Vi<j<k-1,  WW(0) = —k!(7> £0.

For o« < k, we observe

Sow(Ll) =0O(L™>) for L — oo.
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Numerical Results

We investigate the behaviour of ®, v numerically for the generalized Gaussian filter
AL(S) = |S| W(5/L) with the window function

W(S) = exp ( - (”ﬁs)k> for S € [~1,1]

for k € N>p and 8> 1. Then, W satisfies W € C*([-1,1]) with
wo)=1, w00 =0 vi<j<k-1, wh()= —k!(f)k £0.
For ao < k, we observe
Sow(Ll) =0O(L™>) for L — oo.

For a > k, the convergence rate of ®, v stagnates at

Pow(L)=0(L7%*) for L— cc.
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Numerical Results

We investigate the behaviour of ®, v numerically for the generalized Gaussian filter
AL(S) = |S| W(5/L) with the window function

W(S) = exp ( - (”ﬁs)k> for S € [~1,1]

for k € N>p and 8> 1. Then, W satisfies W € C*([-1,1]) with
. k
Wo)=1, WW0)=0 Vi<j<k-1,  WW(0) = —k!(7> £0.
For o« < k, we observe
Sow(Ll) =0O(L™>) for L — oo.
For a > k, the convergence rate of ®, v stagnates at
Sow(L)=0(L%) for L— c0.

This shows that our proven convergence order of ®, v is optimal for Ck-windows.
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Numerical Results

107 107 107
107 107 107
10 107 107
10° 10’ 10° 10° 10° 10°
L L L

" ” - .
10 10 10 e

Do
Do

PR S W
Do

i ) 4

10° 10° 10° 10° 10° 10°

L L L

(d)a¥4.5 (e) a=5 (f)a;6

Fig.: Decay rate of &, w for the generalized Gaussian filter with k =4 and § =4
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Asymptotic L?-Error Estimate

Let f € L'(R?) N HY(R?) for some o > 0, K; € L}(R?) and let W € L°(R) be
k-times differentiable at the origin, k > 2, with

wo)y=1  wW0)=0 V1<j<k-L1
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Asymptotic L?-Error Estimate

Let f € L'(R?) N HY(R?) for some o > 0, K; € L}(R?) and let W € L°(R) be
k-times differentiable at the origin, k > 2, with

wW(0) = 1,

We again start with

WwW(0)=0 V1<j<k-—1

1 1
2 _ _ . 2
leulis = 5 [ IFF =W P b+ 5

r>L

[ FF(x,y)|* d(x,y).

=:h =:h
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Asymptotic L?-Error Estimate

Let f € L'(R?) N HY(R?) for some o > 0, K; € L}(R?) and let W € L°(R) be
k-times differentiable at the origin, k > 2, with

wW(0) = 1,

We again start with

WwW(0)=0 V1<j<k-—1

1 1
2 _ _ . 2
leulis = 5 [ IFF =W P b+ 5

r>L

[ FF(x,y)|* d(x,y).

=:h =:h

As before, the integral I, can be bounded above by
1
h

= [FF(x )P d(x,y) < L72||f|[2.
27 r(x,y)>L
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Asymptotic L?-Error Estimate

Let f € L'(R?) N HY(R?) for some o > 0, K; € L}(R?) and let W € L°(R) be
k-times differentiable at the origin, k > 2, with

wW(0) = 1,

We again start with

WwW(0)=0 V1<j<k-—1

1 1
2 _ _ . 2
leulis = 5 [ IFF =W P b+ 5

r>L

[ FF(x,y)|* d(x,y).

=:h =:h

As before, the integral I, can be bounded above by

1 —2«
b=t [ PG < LR,
T Jr(x,y)>L

For the integral /1, we have
1 1 W(r(xL,y)>

T o

2

h | FF(x,y)> d(x, ).

r(x,y)<L
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Asymptotic L?-Error Estimate

Using Taylor's theorem and Lebesgue's theorem on dominated convergence, we get

W®(0)\>
<2050 ( ) IR+ 6hsolt) for Lo
where
. 52k s
Yo Lk = M G EeryE s Patk(S):
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Asymptotic L?-Error Estimate

Using Taylor's theorem and Lebesgue's theorem on dominated convergence, we get

. (W) .
<2050 ( ) IR+ 6hsolt) for Lo

where

2k
> max_ daix(S).

oL = seloA] (1+1252)° = selo]

The maximum ¢, | , of the function ¢4 1k on [0, 1] can be bounded by

o <{%kL”,a>kALzu
a, L,k =

-0 L—2min{k,a}
L2 ,a<kV(a>kAL< L) ( )

with the critical bandwidth L* = \/‘O{% for @ > k and the constant

o= () (7"
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Asymptotic L?-Error Estimate

Theorem (Asymptotic L-error estimate)

Let f € LY(R?) N H*(R?) for some o > 0, K, € LY(R?) and W € L>(R) be
k-times differentiable at the origin, k > 2, with

wo)=1, WwWY0)=0 V1<j<k-1.

Then, the L?-norm of the FBP reconstruction error e, = f — f; is bounded above
by

- ok WIO)| L* 4+ L) |[flla +o(L7*) , a>kAL> LT
2(R2
lozee) = V2 W ()| L= + L~ a)uf||&+o(L @) L a<kV(a>kAL<L*)

with the critical bandwidth L* = % for a > k and the constant

ok = (afk)k/Z(a; k)a/2.

Especially, we have

letllpage) < (cIWH©) L™ mntket =) fllq 4 oL~ mnlked). O
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Thank you for your attention!
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