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Frames

If a sequence{fk}∞k=1 in a Hilbert spacesH is a frame, there exists another
frame{gk}∞k=1 such that

f =

∞∑

k=1

〈f ,gk〉fk, f ∈ H.

Similar to the decomposition in terms of an orthonormal basis, but MUCH
MORE flexible.
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Plan for the talk

• Frames and dual pairs of frames{fk}∞k=1, {gk}∞k=1 in general Hilbert
spacesH, and the associated expansion

f =
∞∑

k=1

〈f ,gk〉fk, f ∈ H.

• Wavelet frames inL2(R)
• The unitary extension principle by Ron & Shen;
• Applications and generalizations;
• Complex pseudosplines and construction of wavelet frames (joint work

with Brigitte Forster and Peter Massopust).
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Frames

Definition: A sequence{fk}∞k=1 in H is aframeif there exist constants
A,B> 0 such that

A ||f ||2 ≤
∞∑

k=1

|〈f , fk〉|2 ≤ B ||f ||2, ∀f ∈ H.

A andB are calledframe bounds. The frame is tight if we can choose A= B.
Note:

• Any orthonormal basis is a frame;

• Example of a frame which is not a basis:

{e1,e1,e2,e3, . . . },

where{ek}∞k=1 is an ONB.A frame can be redundant!
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The frame decomposition

If {fk}∞k=1 is a frame, the frame operator

S : H → H, Sf =
∑

〈f , fk〉fk
is well-defined, bounded, invertible, and selfadjoint.
Theorem - the frame decompositionLet {fk}∞k=1 be a frame with frame
operatorS. Then

f =
∞∑

k=1

〈f ,S−1fk〉fk, ∀f ∈ H.

It might be difficult to computeS−1 !
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The frame decomposition

If {fk}∞k=1 is a frame, the frame operator

S : H → H, Sf =
∑

〈f , fk〉fk
is well-defined, bounded, invertible, and selfadjoint.
Theorem - the frame decompositionLet {fk}∞k=1 be a frame with frame
operatorS. Then

f =
∞∑

k=1

〈f ,S−1fk〉fk, ∀f ∈ H.

It might be difficult to computeS−1 !

Important special case:If the frame{fk}∞k=1 is tight,A = B, thenS= A I and

f =
1
A

∞∑

k=1

〈f , fk〉fk, ∀f ∈ H.
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General dual frames

A frame which is not a basis is said to beovercomplete.

Theorem:Assume that{fk}∞k=1 is an overcomplete frame. Then there exist
frames

{gk}∞k=1 6= {S−1fk}∞k=1

for which

f =

∞∑

k=1

〈f ,gk〉fk =
∞∑

k=1

〈f ,S−1fk〉fk, ∀f ∈ H.

{gk}∞k=1 is called adual frameof {fk}∞k=1. The special choice

{gk}∞k=1 = {S−1fk}∞k=1

is called thecanonical dual frame.
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Key tracks in frame theory:

• Frames in finite-dimensional spaces;
• Frames in general separable Hilbert spaces
• Concrete frames in concrete Hilbert spaces:

• Gabor frames inL2(R), L2(Rd);
• Wavelet frames;
• Shift-invariant systems, generalized shift-invariant (GSI) systems;
• Shearlets, etc.

• Frames in Banach spaces;
• (GSI) Frames on LCA groups
• Frames via integrable group representations, coorbit theory.
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Classical wavelet theory

• Consider the translation operatorsTk and scaling operatorsD, acting on
functionsf ∈ L2(R) by

Tkf (x) = f (x− k), k ∈ Z, Df (x) = 21/2f (2x).

• Given a functionψ ∈ L2(R) andj, k ∈ Z, consider

DjTkψ(x) = 2j/2ψ(2jx− k), x ∈ R.

• If {DjTkψ}j,k∈Z is an orthonormal basis forL2(R), the functionψ is
called awavelet.In this case everyf ∈ L2(R) has the representation

f =
∑

j,k∈Z

〈f ,DjTkψ〉DjTkψ.
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Multiresolution analysis - a tool to construct a wavelet

Definition: A multiresolution analysis for L2(R) consists of a sequence of
closed subspaces{Vj}j∈Z of L2(R) and a functionφ ∈ V0, such that the
following conditions hold:

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · · .
(ii) ∪jVj = L2(R) and ∩jVj = {0}.

(iii) f ∈ Vj ⇔ [x → f (2x)] ∈ Vj+1.

(iv) f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z.

(v) {Tkφ}k∈Z is an orthonormal basis for V0.
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Construction of wavelet ONB

Theorem:Let φ ∈ L2(R), and letVj := span{DjTkφ}k∈Z. Assume that the
following conditions hold:
(i) infγ∈]−ǫ,ǫ[ |φ̂(γ)| > 0 for someǫ > 0;
(ii) The scaling equation

φ̂(2γ) = H0(γ)φ̂(γ),

is satisfied for a bounded 1-periodic functionH0;
(iii) {Tkφ}k∈Z is an orthonormal system.
Thenφ generates a multiresolution analysis, and there exists a waveletψ such
that

ψ̂(2γ) = H1(γ)φ̂(γ)

with H1(γ) = H0(γ + 1/2)e−2πiγ . Explicitly, with H1(γ) =
∑

k∈Z dke2πiγ ,

ψ(x) = 2
∑

k∈Z

dkφ(2x+ k).
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Spline waveletsBN

• The B-splinesBN, N ∈ N, are given by

B1 = χ[−1/2,1/2], BN+1 = BN ∗ B1.

• One can consider even order splinesBN and define associated
multiresolution analyses, which leads to wavelets of the type

ψ(x) =
∑

k∈Z

ckBN(2x+ k).

• These wavelets are calledBattle–Lemaríe wavelets.

• Only shortcoming:all coefficientsck are non-zero, which implies that
the waveletψ has support equal toR.
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Spline wavelets - can we do better forN > 1?
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Spline wavelets - can we do better forN > 1?

Can show:

• There does not exists an ONB{DjTkψ}j,k∈Z for L2(R) generated by a
finite linear combination

ψ(x) =
∑

ckBN(2x+ k).
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ψ(x) =
∑

ckBN(2x+ k).

(DTU ) Bernried 2016 Februar 29, 2016 12 / 25



Spline wavelets - can we do better forN > 1?

Can show:

• There does not exists an ONB{DjTkψ}j,k∈Z for L2(R) generated by a
finite linear combination

ψ(x) =
∑

ckBN(2x+ k).

• There does not exists a tight frame{DjTkψ}j,k∈Z for L2(R) generated by
a finite linear combination

ψ(x) =
∑

ckBN(2x+ k).

• There does not exists a pairs of dual wavelet frames{DjTkψ}j,k∈Z and
{DjTkψ̃}j,k∈Z for whichψ andψ̃ are finite linear combinations of
functionsDTkBN, j, k ∈ Z.
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The unitary extension principle

Solution:consider systems of the wavelet-type, but generated by morethan
one function.

Setup for construction of tight wavelet frames by Ron & Shen:
Letψ0 ∈ L2(R) and assume that

(i) There exists a functionH0 ∈ L∞(T) such that

ψ̂0(2γ) = H0(γ)ψ̂0(γ).

(ii) limγ→0 ψ̂0(γ) = 1.

Further, letH1, . . . ,Hn ∈ L∞(T), and defineψ1, . . . , ψn ∈ L2(R) by

ψ̂ℓ(2γ) = Hℓ(γ)ψ̂0(γ), ℓ = 1, . . . ,n.
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The unitary extension principle

• ψ̂0(2γ) = H0(γ)ψ̂0(γ).

• ψ̂ℓ(2γ) = Hℓ(γ)ψ̂0(γ), ℓ = 1, . . . ,n.
• We want to find conditions on the functionsH1, . . . ,Hn such that
ψ1, . . . , ψn generate a tight multiwavelet frame forL2(R).

• Then

f =

n∑

ℓ=1

∑

j,k∈Z

〈f ,DjTkψℓ〉DjTkψℓ, ∀f ∈ L2(R).

• Let H denote the(n+ 1)× 2 matrix-valued function defined by

H(γ) =




H0(γ) T1/2H0(γ)

H1(γ) T1/2H1(γ)

· ·
· ·

Hn(γ) T1/2Hn(γ)



, γ ∈ R.
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The unitary extension principle

Theorem (Ron and Shen, 1997):Let{ψℓ,Hℓ}n
ℓ=0 be as in the general setup,

and assume that H(γ)∗H(γ) = I for a.e.γ ∈ T. Then the multiwavelet system
{DjTkψℓ}j,k∈Z,ℓ=1,...,n constitutes a tight frame for L2(R) with frame bound
equal to1.
The matrixH(γ)∗H(γ) has four entries, but it is enough to verify two sets of
equations:
Corollary: Let {ψℓ,Hℓ}n

ℓ=0 be as in the general setup and assume that
n∑

ℓ=0

|Hℓ(γ)|2 = 1,

and
n∑

ℓ=0

Hℓ(γ)T1/2Hℓ(γ) = 0,

for a.e.γ ∈ T. Then{DjTkψℓ}j,k∈Z,ℓ=1,...,n constitutes a tight frame forL2(R)
with frame bound equal to 1.
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The unitary extension principle and B-splines

Exmple:For anym= 1,2, . . . , we consider the (centered)B-spline

ψ0 := B2m

of order 2m. Then

ψ̂0(γ) =

(
sin(πγ)
πγ

)2m

.

It is clear that limγ→0 ψ̂0(γ) = 1, and by direct calculation,

ψ̂0(2γ) =

(
sin(2πγ)

2πγ

)2m

=

(
2 sin(πγ) cos(πγ)

2πγ

)2m

= cos2m(πγ)ψ̂0(γ).

Thusψ0 satisfies a refinement equation with mask

H0(γ) = cos2m(πγ).
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The unitary extension principle and B-splines

Now, consider the binomial coefficient(
2m
ℓ

)
:=

(2m)!

(2m− ℓ)!ℓ!
,

and define the functionsH1, . . . ,H2m ∈ L∞(T) by

Hℓ(γ) =

√(
2m
ℓ

)
sinℓ(πγ) cos2m−ℓ(πγ).

Direct calculation shows thatH(γ)∗H(γ) = I .
Thus the 2m functionsψ1, . . . , ψ2m defined by

ψ̂ℓ(γ) = Hℓ(γ/2)ψ̂0(γ/2)

=

√(
2m
ℓ

)
sin2m+ℓ(πγ/2) cos2m−ℓ(πγ/2)

(πγ/2)2m

generate a tight frame{DjTkψℓ}j,k∈Z,ℓ=1,...,2m for L2(R). �
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The unitary extension principle and B-splines

K2 K1 0 1 2

K1

1

K2 K1 0 1 2

K1

1

Figure:The two wavelet frame generatorsψ1 andψ2 associated withψ0 = B2.
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Shortcomings of the UEP

• The computational effort increases with the order of the B-spline B2m:
For higher orders, we need more generators, and more non-zero
coefficients appear inψℓ.

• There is a limitation on the possible number of vanishing momentsψℓ

can have: in the B-spline case, at least one of the functionsψℓ can only
have one vanishing moment. This leads to sub-optimal approximation
properties.
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More recent extension principles, applications

• Mixed extension principle: construction of dual wavelet frames

• Oblique extension principle: equivalent to the UEP, but provides more
natural constructions of frames with high approximation orders and
optimal number of vanishing moments. Developed by

Daubechies & Han & Ron & Shen, and Chui & He & Stöckler

• Pseudosplines by Daubechies & Han & Ron & Shen : based on the filter

H0(γ) := cos2mπγ
ℓ∑

k=0

(
m+ ℓ

k

)
sin2k πγ cos2(ℓ−k) πγ, γ ∈ R,

whereℓ < m are nonnegative integers and the associated refinable
functionψ0 such that

ψ̂0(2γ) = H0(γ)ψ̂0(γ).
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More recent extension principles, applications

• Mixed oblique extension principle: dual frame variant of the OEP, but
computationally much simpler (avoids spectral factorization). Yield
decompositions

f =

n∑

ℓ=1

∑

j,k∈Z

〈f ,DjTkψ̃ℓ〉DjTkψℓ,∀f ∈ L2(R).

• The UEP is a special case of a much more general result in harmonic
analysis that is not related to the wavelet structure (C. & Say Song Goh,
forthcoming paper).
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Wavelets and B-splines

Applications to image analysis (restoring, deblurring, inpainting) by Cai,
Osher & Shen (2009-2015).

Cai, J. F., Osher, S., and Shen, Z.:Split Bregman methods and frame
based image restoration.Multiscale Model. Simul.,8 (2009), 337–369.

Cai, J. F., Dong, B., Osher, S., and Shen, Z.:Image restoration: Total
variation, wavelet frames, and beyond.J. Amer. Math. Soc.25 (2012),
1033–1089.
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Complex pseudosplines (C. & Forster & Massopust, 2015)

Consider the filter

H0(γ) := (cos2 πγ)z
ℓ∑

k=0

(
z+ ℓ

k

)
(sin2πγ)k (cos2 πγ)ℓ−k, γ ∈ R,

wherez∈ C with α := Re(z) ≥ 1 and 0≤ ℓ ≤ ⌊α⌋ − 1, and
(

z+ ℓ

k

)
:=

Γ(z+ ℓ+ 1)
Γ(k+ 1)Γ(z+ ℓ− k+ 1)

,

The filterH0 generates a refinable functionφ via the cascade algorithm, i.e.,

ϕ̂(γ) =

∞∏

m=1

H0(2
−mγ)ϕ̂(0), γ ∈ R.
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Pseudosplines

PropositionConsider the filterH0 and the associated refinable functionϕ.
Furthermore, let

η(γ) := 1−
(
|H0(γ)|2 + |H0(γ + 1

2)|
2) ≥ 0. (1)

Let σ be a 1-periodic function such that|σ(γ)|2 = η(γ), and define the filters
{Hn}3

n=1 by

H1(γ) = e2πiγH0(γ + 1
2), H2(γ) =

1√
2
σ(γ), H3(γ) =

1√
2

e2πiγσ(γ).

Then the functions{ψn}3
n=1 given by

ψ̂n(2γ) = Hn(γ)ϕ̂(γ) (2)

generate a tight frame{DjTkψn}j,k∈Z,n=1,2,3 with frame boundA = 1.
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Advantages of complex pseudosplines

• Increased flexibility in regard to smoothness: instead of working with a
discrete family of functions fromCm, m∈ N0, we have acontinuous
family of functions belonging to the Hölder spacesCα−1.

• More reasons: B. Forster, Five Good Reasons for Complex-Valued
Transforms in Image Processing.

• Real-valued transforms can only provide a symmetric spectrum and are
therefore unable to separate positive and negative frequency bands.
Moreover, real-valued transforms are unusuable for all applications of
phase retrieval, such as e.g. holography. Here, complex-valued transforms,
bases and frames are indispensably needed.
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