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N
Frames

If a sequencefy}2, in a Hilbert space${ is a frame, there exists another
frame {9k}, such that

oo

f =) (f,g0fc, f €™
k1

Similar to the decomposition in terms of an orthonormal s&siit MUCH
MORE flexible.
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N
Plan for the talk

o Frames and dual pairs of framé&}°;, {0k}, in general Hilbert
spacegH, and the associated expansion

oo

f= Z<f>gk>fk7 feH.
k=1

o Wavelet frames in.?(R)
e The unitary extension principle by Ron & Shen;
e Applications and generalizations;
e Complex pseudosplines and construction of wavelet frajoeg (vork
with Brigitte Forster and Peter Massopust).
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N
Frames

Definition: A sequencegfy }; ; in H is aframeif there exist constants
A, B > 0 such that

AlIf[[2 < Y I(F.fi 1> < BIII?, vF € H.
k=1

A andB are calledrame bounds. The frame is tight if we can choose B.
Note:

e Any orthonormal basis is a frame;
e Example of a frame which is not a basis:

{elaelae27637"'}7

where{g}z°, is an ONB.A frame can be redundant!
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The frame decomposition
If {fx}z>, is a frame, the frame operator
S:H — H, St=) (f fif

is well-defined, bounded, invertible, and selfadjoint.
Theorem - the frame decompositibet {fi};°, be a frame with frame
operatorS. Then

f=) (f,s Mo, Ve
k=1

It might be difficult to compute&s—1 !

(DTU) Bernried 2016 Februar 29, 2016 © 2



-
The frame decomposition

If {fx}z>, is a frame, the frame operator

S:H — H, St=) (f fif

is well-defined, bounded, invertible, and selfadjoint.
Theorem - the frame decompositibet {fi};°, be a frame with frame
operatorS. Then

oo

f=) (f,s Mo, Ve
k=1

It might be difficult to compute&s—1 !
Important special caséf the frame{fi }2, is tight, A= B, thenS= Al and
1 [e.e]
f= Kk;a,fkﬁk, v e H.
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N
General dual frames

A frame which is not a basis is said to beercomplete

Theorem:Assume thaffi } 2, is an overcomplete frame. Then there exist
frames

{oches # {S_lfk}ﬁil

for which
f= Z<f>gk>fk = Z<f,91fk>fk, Vi e H.
k=1 k=1

{Ok}1e is called adual frameof {fi}22,. The special choice

{9 = {S Milis
is called thecanonical dual frame.
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-
Key tracks in frame theory:

Frames in finite-dimensional spaces;
Frames in general separable Hilbert spaces
Concrete frames in concrete Hilbert spaces:
o Gabor frames in2(R), L2(RY);
e Wavelet frames;
e Shift-invariant systems, generalized shift-invarians(issystems;
e Shearlets, etc.
Frames in Banach spaces;
(GSI) Frames on LCA groups
Frames via integrable group representations, coorbiryheo

(DTU) Bernried 2016 Februar 29, 2016 7125



-
Key tracks in frame theory:

Frames in finite-dimensional spaces;

Frames in general separable Hilbert spaces
Concrete frames in concrete Hilbert spaces:
o Gabor frames in2(R), L2(RY);
e Wavelet frames;
e Shift-invariant systems, generalized shift-invarians(issystems;
e Shearlets, etc.

e Frames in Banach spaces;
e (GSI) Frames on LCA groups
e Frames via integrable group representations, coorbitryheo

Research Group HATA DTU (Harmonic Analysis - Theory and Aggtions ,
Technical University of Denmark),

https://hata.compute.dtu.dk/

(DTU) Bernried 2016 Februar 29, 2016 7125



-
Key tracks in frame theory:

Frames in finite-dimensional spaces;

Frames in general separable Hilbert spaces
Concrete frames in concrete Hilbert spaces:
o Gabor frames in2(R), L2(RY);
e Wavelet frames;
e Shift-invariant systems, generalized shift-invarians(issystems;
e Shearlets, etc.

e Frames in Banach spaces;
e (GSI) Frames on LCA groups
e Frames via integrable group representations, coorbitryheo
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An Introduction to frames and Riesz bases, 2.edition, Bidder 2016
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-
Classical wavelet theory

e Consider the translation operatdisand scaling operatoi3, acting on
functionsf € L2(R) by

Tif(x) = f(x —k),k € Z, DFf(x) = 2%2f(2x).
e Given a functiony € L?(R) andj, k € Z, consider
DITkp(x) = 2/24(2x — k), x € R.

o If {DITy¢)}jkez is an orthonormal basis far?(R), the functiony is
called awavelet.In this case ever§ € L?(R) has the representation

f=> (f,DIT)) DI T

J,KEZ
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-
Multiresolution analysis - a tool to construct a wavelet

Definition: A multiresolution analysis ford(R) consists of a sequence of

closed subspace®/; }jez of L2(R) and a functionp € Vo, such that the
following conditions hold:

@ ---V_i1cVoCVy---.
(i) GV = LAR) and n;V; = {0}.
(i) feV, e x—f(2)] e Vi1
(iV) feVog= T € Vg, Vk e Z.
(v) {Tk¢}kez is an orthonormal basis for /
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N
Construction of wavelet ONB

Theorem:Let ¢ € L%(R), and letV,; := Spar{ D/ Typ }kez. Assume that the
following conditions hold:

(i) inf,g)_c|6(~)| > O for somee > 0;
(i) The scaling equation

A~ A~

?(2y) = Ho(7)9(v),
is satisfied for a bounded 1-periodic functidg;
(i) {Tkod}kez is an orthonormal system.

Then¢ generates a multiresolution analysis, and there existyaleta) such
that

o~ o~

¥(2y) = Hi(v)é(v)
with Hy () = Ho(vy + 1/2)e27. Explicitly, with Hy(y) = Y7, d€®7,
P(X) =2 ded(2x+K).
keZ
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-
Spline wavelet8y

The B-splinedBy, N € N, are given by

B1 = X[-1/21/2» Bn+1=Bn*B1.

One can consider even order splifggand define associated
multiresolution analyses, which leads to wavelets of tipety

() = aBn(2x+K).

keZ

These wavelets are call@&httle—Lema® wavelets.

Only shortcomingall coefficientsc, are non-zero, which implies that
the wavelet) has support equal t&.
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-
Spline wavelets - can we do better fdr> 1?
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Can show:

e There does not exists an ONBI Tyt }j kez for L%(R) generated by a
finite linear combination

B(X) = Bn(2x+K).
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-
Spline wavelets - can we do better fdr> 1?

Can show:

e There does not exists an ONBI Tyt }j kez for L%(R) generated by a
finite linear combination

B(X) = Bn(2x+K).

e There does not exists a tight frar{]Bkaw}j,kGZ for L(R) generated by
a finite linear combination

$(X) =) aBn(2x+K).

° There~does not exists a pairs~of dual wavelet fral{rIEQ' k¥ }jkez and
{DITk) } kez for whichy) andv are finite linear combinations of
functionsDTyBy;, j,k € Z.
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-
The unitary extension principle

Solution: consider systems of the wavelet-type, but generated by thare
one function.

Setup for construction of tight wavelet frames by Ron & Shen:
Letyo € L2(R) and assume that

() There exists a functioklp € L>°(T) such that

bo(27) = Ho()o ().

(i) lim,—oto(y) = 1.
Further, letHs, ..., Hp € L>(T), and defina)y, ...,y € L3(R) by

$e(27) = He(do(7), £=1,...,n.
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-
The unitary extension principle

* ¥0(2y) = Ho(7)¢o(7)-

o Pp(2y) =He(V)bo(v), £=1,...,n.

e We want to find conditions on the functiohf, . . ., H, such that
Y1,...,%n generate a tight multiwavelet frame fof(R).

e Then

n
f=>") (f,DITip) DTy, ¥F € L*(R).
=1 jkez

e LetH denote then + 1) x 2 matrix-valued function defined by

Ho(y) Ti/2Ho(7)
Hi(v) T1/2H1(’Y)
H(v) = . . , v ER.

Hn(y) Ti/2Hn(7)
Bernried 2016 Februar 29,2016 14/ 25



-
The unitary extension principle

Theorem (Ron and Shen, 1997kt {vy, H,})_, be as in the general setup,
and assume that H)*H(v) = | for a.e.y € T. Then the multiwavelet systen
{Dka¢g}j’k€Z7g:1’...’n constitutes a tight frame ford(R) with frame bound
equal tol.
The matrixH()*H () has four entries, but it is enough to verify two sets of
eqguations:
Corollary: Let {4y, H/})_, be as in the general setup and assume that
n
d HMP =1,
(=0

and
n

> He(y)T12He(y) =0,
=0
for a.e.y € T. Then{D Tkt }j kez,¢~1...n CONStitutes a tight frame fdr?(R)

with frame bound equal to 1.
Bernried 2016 Februar 29,2016 15/ 25




-
The unitary extension principle and B-splines

Exmple:Foranym= 12, ..., we consider the (centereB}spline
Yo := Bom

of order 2n. Then

Yo(v) = <¥:Aﬁ>2m-

It is clear that lim_,o 120(7) =1, and by direct calculation,

. 2m . 2m
oz = (S} — (2SI T cogmen) ()

Thustg satisfies a refinement equation with mask
Ho() = cos™(77).
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-
The unitary extension principle and B-splines

Now, consider the binomial coefficient

am\ _ (2m)!
14 T(2m— o)l
and define the functiondy, . .., Hom € L*°(T) by

2m

He(y) = < ’ >Sin€(7rfy)coszm_e(m).

Direct calculation shows th&t(y)*H(y) = I.
Thus the Infunctionsy, . . . , ¥ defined by

De(v) = He(y/2)do(1/2)
B ( 2m > Sit™ (17 /2) co@™ ¢ (7 /2)
B 4 (my/2)2m

generate a tight fram@DkaW}i,kGZ,g:l ..... om for L2(R). i
-~ @ty ]
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-
The unitary extension principle and B-splines

Figure: The two wavelet frame generatapg andi), associated withyg = B,.
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-
Shortcomings of the UEP

e The computational effort increases with the order of theple By,
For higher orders, we need more generators, and more non-zer
coefficients appear it,.

e There is a limitation on the possible number of vanishing reots),
can have: in the B-spline case, at least one of the functigrtan only
have one vanishing moment. This leads to sub-optimal appgation
properties.
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-
More recent extension principles, applications

e Mixed extension principle: construction of dual waveletrfres

e Oblique extension principle: equivalent to the UEP, butvjites more
natural constructions of frames with high approximatioders and
optimal number of vanishing moments. Developed by

Daubechies & Han & Ron & Shen, and Chui & He & Stockler
e Pseudosplines by Daubechies & Han & Ron & Shen : based on the fi

1
Ho(7) := co$™ Z (m:é) si® 7ty co N 1, v € R,
k=0

where/ < mare nonnegative integers and the associated refinable
functiong such that

bo(2y) = Ho(7)do(y).
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-
More recent extension principles, applications

¢ Mixed oblique extension principle: dual frame variant o BEP, but
computationally much simpler (avoids spectral factorat Yield
decompositions

n
f=3" N (f, D Ti) D Ty, ¥ € LA(R).
(=1jkeZ

e The UEP is a special case of a much more general result in imcmo
analysis that is not related to the wavelet structure (C. &.Sang Goh,
forthcoming paper).
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-
Wavelets and B-splines

Applications to image analysis (restoring, deblurringpaimting) by Cai,
Osher & Shen (2009-2015).

[@ Cai, J. F., Osher, S., and Shen, Zplit Bregman methods and frame
based image restoratiodMultiscale Model. Simul.8 (2009), 337—369.

@ Cai, J.F.,, Dong, B., Osher, S., and Shen|@age restoration: Total
variation, wavelet frames, and beyordd Amer. Math. Soc25 (2012),
1033-1089.
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-
Complex pseudosplines (C. & Forster & Massopust, 201

Consider the filter

14

Ho(y) = (cofmy)* 3 (Zt E) (sir? 7)¥ (cod 1), 7 € R,

k=0
wherez € C with o := Rgz) > 1and 0< ¢ < |a] — 1, and

<z+£)_ T(z+(+1)

k ) T(k+1T(z+f—k+1)’

The filterHp generates a refinable functigrvia the cascade algorithm, i.e.,

3(y) = [ Ho(2™)3(0), ~veR.
m=1
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-
Pseudosplines

PropositionConsider the filteHy and the associated refinable functipn
Furthermore, let

() :==1— (Ho()? + [Ho(v + 3)°) > 0. 1)

Let o be a 1-periodic function such thiat(+)|?> = 1(v), and define the filters
{Hn}ﬁzl by

Hi(7) = € Ho(y + 3). Ha(y) = %aw), Ha(y) = % M ().
Then the functiong+n}3_; given by
Un(2y) = Ha(1)3(7) )

generate a tight fram@ka¢n}j’k€Z7n:17273 with frame boundA = 1.
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-
Advantages of complex pseudosplines

¢ Increased flexibility in regard to smoothness: instead aking with a
discrete family of functions fron€™, m € Ny, we have aontinuous
family of functions belonging to the Holder spac@¥ 1.

e More reasons: B. Forster, Five Good Reasons for Complexedal
Transforms in Image Processing.

e Real-valued transforms can only provide a symmetric specand are
therefore unable to separate positive and negative freyuzands.
Moreover, real-valued transforms are unusuable for alliegons of
phase retrieval, such as e.g. holography. Here, complieddransforms,
bases and frames are indispensably needed.
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