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The first lecture of this trilogy introduces the theorems and formulae from
several areas of mathematical analysis, both for bandlimited functions belong-
ing to a Bernstein space B2

σ, and for functions from larger spaces of non-
bandlimited functions, to be treated in detail. The second lecture presents
a new, unified approach to theory and errors occurring when the results for
B2
σ are extended to a function f from a larger space, in terms of the distance

of f from B2
σ. They also cover the difficult situation of derivative-free error

estimates. The third lecture applies this new approach to the theorems of the
first lecture but also treats Hilbert transforms as a further new application of
the distance approach. The third lecture applies not only the new theoretical
approach to the results of the first two lectures but also treats Hilbert trans-
forms, in fact their higher order derivatives, as a further new application of
the distance approach.

As to the first lecture, the four formulae for B2
σ presented in Section 1 are

all equivalent to each other in the sense that each is a corollary of the others.
Likewise the six formulae of Section 2 for the space F 2, the largest space in
which the Fourier transform, our basic tool, can be applied effectively, are also
equivalent to each other. What is surprising is that all nine formulae are even
equivalent.

1 Basic theorems for bandlimited functions

Let Bp
σ for σ > 0, 1 ≤ p ≤ ∞, be the Bernstein space of all entire functions

f : C→ C that belong to Lp(R) when restricted to the real axis as well as are of
exponential type σ, so that they satisfy the inequality f(z) = Of

(
exp(σ| Im z|

)
for |z| → ∞. According to the Paley-Wiener theorem, the (distributional)
Fourier transform of those functions has compact support contained in [−σ, σ].

The classical sampling theorem of signal analysis, connected with the names
of C. Shannon (1948/49), V.A. Kotelnikov (1933), E.T. Whittaker (1915), and
many others, states that a function f ∈ B2

σ has the following representation:



Classical Sampling theorem (CST) For f ∈ B2
σ with some σ > 0 we have

f(z) =
∑
k∈Z

f
(kπ
σ

)
sincw

(
z − kπ

σ

)
(z ∈ C), (1)

convergence being absolute and uniform on compact subsets of C.
The sinc-function is given by sinc z := sin(πz)/(πz) for z 6= 0, and := 1 for

z = 0.
The first aim of this lecture is to show that this formula is equivalent to

several other striking formulae of mathematical analysis such as:

Poisson’s summation formula (PSF particular case) For f ∈ B1
σ:∫

R
f(t) dt =

2π

σ

∑
k∈Z

f
(2kπ
σ

)
. (2)

General Parseval formula (GPF) For f, g ∈ B2
σ with σ > 0:∫

R
f(t) g(t) dt =

π

σ

∑
k∈Z

f
(kπ
σ

)
g
(kπ
σ

)
. (3)

Reproducing kernel formula (RKF) For f ∈ B2
σ with σ > 0:

f(z) =
σ

π

∫
R
f(t) sinc

(σ
π
(z − t)

)
dt (z ∈ C). (4)

This means that B2
σ is a reproducing kernel Hilbert space, i. e., there exists a

kernel function k(·, z) which belongs to B2
σ for each z ∈ C, such that

f(z) =
〈
f(·), k(·, z)

〉
(z ∈ C).

Valiron’s or Tschakaloff’s sampling/interpolation formula (VSF) For
f ∈ B∞σ with σ > 0 we have for all z ∈ C:

f(z) =
(
f ′(0)z + f(0)

)
sinc

(σz
π

)
+

∑
k∈Z\{0}

f
(kπ
σ

)σz
kπ

sinc
(σz
π
− k
)
, (5)

the convergence being absolute and uniform on compact subsets of C.

2 Their extensions to non-bandlimited functions

We now weaken the assumption of f ∈ B2
σ, i. e., the Fourier transform f̂ has

support contained in [−σ, σ], to f̂ ∈ L1(R). In this respect we introduce the
Fourier inversion class

F p :=
{
f : R→ C : f ∈ Lp(R) ∩ C(R), f̂ ∈ L1(R)

}
,
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as well as the `p summability class for step size h > 0

Sph :=
{
f : R→ C :

(
f(hk)

)
k∈Z ∈ `

p(Z)
}
.

In the frame of these spaces all the formulae mentioned above hold only approx-
imately in the sense that they have to be equipped with remainder (additional)
terms. More precisely, the classical sampling theorem (1) is replaced by the

Approximate/extended sampling theorem (AST) For f ∈ F 2 ∩ S1
π/σ:

f(t) =
∑
k∈Z

f
(kπ
σ

)
sinc

σ

π

(
t− kπ

σ

)
+ (Rσf)(t) (t ∈ R), (6)

(Rσf)(t) :=
1√
2π

∑
k∈Z

(
1− e−i2kσt

)∫ (2k+1)σ

(2k−1)σ
f̂(v)eivt dv. (7)

the series converging absolutely and uniformly on R. Moreover, the remainder
Rσf can be estimated by∣∣(Rσf)(t)

∣∣ ≤√ 2

π

∫
|v|≥σ
|f̂(u)| du = o(1) (σ →∞), (8)

which yields

lim
σ→∞

∑
k∈Z

f
(kπ
σ

)
sinc

σ

π

(
t− kπ

σ

)
= f(t) (uniformly for t ∈ R).

The particular case of Poisson’s summation formula for f ∈ B1
σ, thus (2),

is generalized to the classical form:

Poisson’s summation formula (PSF) for f ∈ F 1 with f̂ ∈ S1
π/σ:

√
2π
σ

π

∑
k∈Z

f
(
x+

2kσ

π

)
=
∑
k∈Z

f̂
(kπ
σ

)
eikπx/σ (a. e.). (9)

In case of the general Parseval formula (3) one has even to add two remain-
der terms, leading to

Generalized Parseval decomposition formula (GPDF) For f ∈ F 2 ∩
S1
π/σ, σ > 0,and g ∈ F 2, there holds Rσf ∈ L2(R) and∫

R
f(u)g(u) du =

π

σ

∑
k∈Z

f
(kπ
σ

)
g
(kπ
σ

)

− π

σ

1

w

∑
k∈Z

f
(kπ
σ

) 1√
2π

∫
|v|≥σ

ĝ(v)eikπv/σ dv

+

∫
R
(Rσf)(u)g(u) du, (10)
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where Rσf is given by (7). Observe that in view of (8), limσ→∞(Rσf)(t) = 0
uniformly for t ∈ R.

Similarly, the reproducing kernel formula (4) has to be equipped with an
additional term:

Approximate reproducing kernel formula (ARKF) For f ∈ F 2:

f(t) =
σ

π

∫
R
f(u) sinc

(σ
π
(t− u)

)
du+ (R∗σf)(t) (11)

with

|(R∗σf)(t)| :=
∣∣∣∣ 1√

2π

∫
|v|>σ

f̂(v)eitvdv

∣∣∣∣ ≤ 1√
2π

∫
|v|>σ
|f̂(v)|dv = o(1) (σ →∞).

Clearly, if the functions involved belong to the (particular) Bernstein spaces
B2
σ, then, according to the Paley-Wiener theorem, the remainder terms in (8),

(10) and (11) vanish, and one obtains the particular versions (1), (3) and (4).
Similarly, for f ∈ B1

σ and x = 0, Poisson’s summation formula (9) reduces to
the particular case (2).

3 Boas-type formulae for higher derivatives

The basis to well known Bernstein inequality for functions f ∈ B2
σ, namely,

‖f (s)‖L2(R) ≤ σs‖f‖L2(R), is the following formula of Boas:

Let f ∈ B∞σ , where σ > 0. Then, for h = π/σ, we have

f ′(t) =
1

h

∑
k∈Z

(−1)k+1

π(k − 1
2
)2
f
(
t+ h

(
k − 1

2

))
.

Its extension to higher order derivatives is given by (see [8]):

Theorem 3.1. Let f ∈ B∞σ for some σ > 0. Then for s ∈ N, and h := π/σ,

f (2s−1)(t) =
1

h2s−1

∞∑
k=−∞

(−1)k+1As,k f
(
t+ h

(
k − 1

2

))
(t ∈ R), (12)

where

As,k :=
(2s− 1)!

π(k − 1
2
)2s

s−1∑
j=0

(−1)j

(2j)!

[
π
(
k − 1

2

)]2j
(k ∈ Z)
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The new extension to non-bandlimited functions reads:

Theorem 3.2. Let s ∈ N, f ∈ F 2 and let v2s−1f(v) be absolutely integrable.
Then f (2s−1) exists and for h > 0, σ := π/h formula (12) extends to

f (2s−1)(t) =
1

h2s−1

∑
k∈Z

(−1)k+1As,kf
(
t+ h

(
k − 1

2

))
+ (R2s−1,σf)(t) ,

where

(R2s−1,σf)(t) =
i(−1)s−1√
2π h2s−1

∫
|v|≥σ

[
(hv)2s−1 − φ2s−1(hv)

]
f̂(v)eivt dv

with φ2s−1 being the 4π-periodic function defined by

φ(v) =

{
v2s−1, −π ≤ v ≤ π ,

(2π − v)2s−1, π < v ≤ 3π .

In particular,

∣∣(R2s−1,σf)(t)
∣∣ ≤√ 2

π

∫
|v|≥σ
|v|2s−1

∣∣f̂(v)∣∣ dv = o(1) (σ →∞).

Furthermore, there holds the extended Bernstein-type inequality,

‖f (2s−1)‖L2(R) ≤ σ2s−1 ‖f‖L2(R) + ‖R2s−1,σf‖L2(R)

with

∥∥R2s−1,σf
∥∥
L2(R) ≤ 2

{∫
|v|≥σ

∣∣v2s−1f̂(v)∣∣2 dv}1/2

= o(1) (σ →∞).

Similar results hold for even order derivatives.

4 Foundations for a unified approach to extensions: A
hierarchy of wider spaces and estimates for the dis-
tance of f from B2

σ

We have seen that there exist formulae for functions in Bp
σ that hold for f ∈ F p

(or a subspace of it) with a remainder Rσf tending to zero as σ → ∞. Now
we aim at a unified approach to such extensions with error estimates in terms
of the distance of f from Bp

σ.
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Motivation. There exist numerous relations (equations or inequalities) of the
form

U(f) = Vσ(f) or U(f) ≤ Vσ(f) (f ∈ B2
σ),

where U and Vσ are functionals; see [1].
An example of an equation is CFT where U(f) = f(z) and Vσ(f) is the

sampling series; see (1). An example of an inequality is Bernstein’s inequality
in L2(R), where U(f) = ‖f ′‖L2(R) and Vσ(f) = σ‖f‖L2(R). These relations are
no longer valid outside B2

σ. But if f is in some sense close to B2
σ, then these

relations will not fail drastically. They will hold with a remainder Rσf so that

U(f) = Vσ(f) +Rσf or U(f) ≤ Vσ(f) +Rσf (f ∈ B2
σ)

with Rσf depending on the distance of f from B2
σ.

A hierarchy of spaces. In our approach, the Fourier inversion class F p

for p ∈ [1, 2] is the largest superior space of Bp
σ in which a representation of

the remainder Rσf can be guaranteed. However, if we want Rσf to converge
rapidly to zero as σ → ∞, we should rather consider a subspace of F p. It is
therefore desirable to know a hierarchy of spaces lying between Bp

σ and F p.
Our considerations include:

• the modulation space M2,1;

• a subspace M2,1
∗ of M2,1 created by a uniform dilation process;

• the Lipschitz space Lipr(α,L2(R));

• the Sobolev space W r,p(R);

• the Hardy space Hp(Sd) of functions f analytic in the strip Sd := {z ∈
C : |=z| < d}.

For these spaces, we show the following inclusions

Bp
σ|R $ Hp(Sd)|R $ W r,p(R) ∩ C(R) $ F p ∩ Sph $ F p $ Lp(R).

Here |R means that the functions of the corresponding space are restricted to
R. For p = 2 these inclusions can be further refined by involing the Lipschitz
and the modulation spaces. We have

W r,2(R) ∩ C(R) $M2,1
∗ $M2,1 $ F 2 ∩ S2

h

and
M2,1
∗ $ Lipr(12 , L

2(R)) ∩ F 2.
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Norms and distances. In order to measure the distance of a function f
belonging to F 2 (or to one of its subspaces) from B2

σ, we need to introduce a
metric in F 2. For q ∈ [1, 2] and f ∈ F 2, we define

fq :=

{∫
R
|f̂(v)|q dv

}1/q

≡ ‖f̂‖Lq(R),

which endowes F 2 with a norm. It induces a metric which allows us to define
the distance of f from B2

σ as

distq(f,B
2
σ) := inf

g∈B2
σ

f − gq ≡ inf
g∈B2

σ

‖f̂ − ĝ‖Lq(R),

For this notion of distance, the following two fundamental results hold:

distq(f,B
2
σ) =

{∫
|v|>σ

∣∣f̂(v)∣∣qdv}1/q

≤ c

{∫ ∞
σ

v−q/2
[
ωr(f, v

−1, L2(R))
]q
dv

}1/q

,

and if in addition vf̂(v) ∈ L1(R) ∩ L2(R), then f ′ exists and

distq(f
′, B2

σ) =

{∫
|v|>σ

∣∣vf̂(v)∣∣qdv}1/q

≤ c

{∫ ∞
σ

v−q/2
[
ωr(f

′, v−1, L2(R))
]q
dv

}1/q

.

Here ωr(·, ·, L2(R)) denotes the modulus of smoothness of order r in L2(R).
For the subspaces of F 2 estimates of the distances and rates of convergence

as σ →∞ will be determined. For example, if f ∈M2,1
∗ , then

distq(f,B
2
σ) = O(σ−1+1/q) (q ∈ (1, 2]),

and if f ∈ Lipr(β, L2(R)) ∩ F 2 and 1/q − 1/2 < β ≤ r, then

distq(f,B
2
σ) = O(σ−β−1/2+1/q).

In Sobolev spaces the distances also converge to zero like a power of 1/σ and
in Hardy spaces they converge to zero exponentially.

5 Applications of the distance approach to the remain-
ders of the formulae of our trilogy

After these preparations we turn to the errors involved under the extensions
to larger spaces. The new results include:

• the sampling formula of Whittaker–Kotel’nikov–Shannon [6, 7] (see be-
low);
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• the sampling formula of Tschakaloff-Valiron [4];

• the general Parseval formula [2, 3];

• the reproducing kernel formula [4];

• the differentiation formula of Boas [4, 5, 8];

• Bernstein’s inequality [4];

• Nikol’skĭı’s inequality [4];

• the counterpart of Boas’s differentiation formula for the Hilbert trans-
form [5].

In these cases, we investigate the error terms in the formulae of Section 2 in
terms of the distance from B2

σ. As one concrete example for the remainder in
the extended sampling theorem (6) we have. In this case we have the derivative
free estimate in terms of the rth order modulus of smoothness,

|(Rσf)(t)| ≤
√

2

π

∫
|v|≥σ

∣∣f̂(v)| dv =

√
2

π
dist1(f,B

2
σ)

≤ c

{∫ ∞
σ

v−1ωr(f, v
−1, L2(R)) dv

}
(σ > 0).

Thus U(f) = f(t), Vσ(f) = (Sσf)(t), with U(f) = Vσ(f) + (Rσf)(t). If
f ∈ Lipr(α,L

2(R)) ∩ C(R) ∩ S2
h, 1/2 < α ≤ r, then (Rσf)(t) = O(σ1/2−α),

σ →∞. If f ∈ W r,2(R), then |(Rσf)(t)| ≤ c σ1/2−r‖f (r)‖L2(R), and f ∈ H2(Sd)
implies |(Rσf)(t)| ≤ c exp (−dσ)‖f‖H2(Sd).
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