
Sorting Heuristics for the Feedback Arc
Set Problem

Franz J. Brandenburg and Kathrin Hanauer

Department of Informatics and Mathematics, University of Passau
{brandenb;hanauer}@fim.uni-passau.de

Technical Report, Number MIP-1104
Department of Informatics and Mathematics

University of Passau, Germany
February 2011

Sorting Heuristics for the Feedback Arc Set
Problem?

Franz J. Brandenburg and Kathrin Hanauer

University of Passau, Germany
{brandenb,hanauer}@fim.uni-passau.de

Abstract. The feedback arc set problem plays a prominent role in
the four-phase framework to draw directed graphs, also known as the
Sugiyama algorithm. It is equivalent to the linear arrangement problem
where the vertices of a graph are ordered from left to right and the
backward arcs form the feedback arc set.
In this paper we extend classical sorting algorithms to heuristics for the
feedback arc set problem. Established algorithms are considered from this
point of view, where the directed arcs between vertices serve as binary
comparators. We analyze these algorithms and afterwards design hybrid
algorithms by their composition in order to gain further improvements.
These algorithms primarily differ in the use of insertion sort and sifting
and they are very similar in their performance, which varies by about
0.1%. The differences mainly lie in their run time and their convergence
to a local minimum. Our studies extend related work by new algorithms
and our experiments are conducted on much larger graphs. Overall we
can conclude that sifting performs better than insertion sort.

1 Introduction

The feedback arc set problem (FAS) asks for a minimum sized subset of arcs of a
directed graph whose removal or reversal makes the graph acyclic. The decision of
whether a set of k arcs suffices or not is one of Karp’s [15] original NP-complete
problems. Its complementary problem is the maximum acyclic subgraph prob-
lem. Furthermore, FAS is equivalent to the linear arrangement problem where
the vertices of a directed graph are ordered from left to right and the feedback
arc set consists of the backward arcs pointing from right to left. As such it is
used for ranking problems, where a directed arc (u, v) expresses that u should
be ranked before v. This binary relation is incomplete and inconsistent, and ad-
ditionally it may have weights. Incompleteness means that there is no decision
taken between two items or no arc between two vertices, whereas inconsistency
is equivalent to the existence of a cyclic dependency. The feedback arc set and
the linear arrangement problem ask for the smallest number of violations against
the ranking imposed by the arcs.

The linear arrangement provides an adaequate drawing for FAS and makes
the feedback arc set clearly visible if the vertices are placed on a horizontal line

? Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/15-1

Sorting Heuristics for the Feedback Arc Set Problem 3

with forward arcs being drawn on and above this line whereas the backward arcs
appear below it.

Recent research on the feedback arc set problem has resulted in major ad-
vancements, particularly for tournaments. In 2005, Ailon et al. proposed a 3-
approximation algorithm in the conference version of [1]. It was named KwikSort
due to its resemblance with the famous Quicksort algorithm. We extend their
algorithm to arbitrary directed graphs. Moreover, there is a polynomial time
approximation scheme by Kenyon-Mathieu and Schudy [16], which allows the
computation of a feedback arc set with a size of at most 1+ε times the optimum
for any ε > 0. This result is achieved by applying KwikSort once and improving
the arrangement by repeatedly removing vertices from the ranking and reinsert-
ing them at another position. This procedure equals our sifting algorithm.

FAS is an aggravating problem and seems to be harder than other NP-
complete problems, as there are only a few other NP-complete problems which
reduce from FAS and FAS is hard to approximate. The best known approxi-
mation ratio is O(log n log log n) [12] and it cannot be approximated any better
than 1.36 unless P is equal to NP [8]. For planar graphs, however, FAS can
be solved in polynomial time, and the duality of linear programming holds, i.e.,
the size of the minimal feedback arc set equals the maximum number of arc
disjoint cycles, see [3]. FAS is also solvable in polynomial time for reducible flow
graphs [18], which are used in modeling the control flow of programs and in code
optimization.

The feedback arc set problem also plays a prominent role in graph draw-
ing. In their seminal paper Sugiyama, Tagawa, and Toda [23] introduced the
four-phase framework for drawing directed graphs. The phases are: decycling,
layering, crossing reduction, and coordinate assignment. The feedback arc set
problem appears twice in the framework, namely, in decycling and in the penalty
graph approach for crossing reduction.

The idea of applying sorting techniques for sets without a total linear order
has been used elsewhere. It appears under different names and with different
implementations. The deletion of an element from a sequence and its reinsertion
corresponds to a mutation in genetic algorithms, and is also known as 1-OPT
and sifting. As the latter it is successfully used, e.g., for crossing minimization
in hierarchical drawings of graphs [17,13,2].

In this paper we examine several existing heuristics for the feedback arc set
or the linear arrangement problem, and we regard them as extended sorting
algorithms. We analyze and compare them, establish formal properties and dis-
cover some weak points. The comparison includes the convergence towards a
local minimum, which shows the widest differences. Consequently, we combine
the most promising approaches to hybrid algorithms for the ’best from all’. The
thereby obtained algorithms are quite similar in their performance, but some
differences can be established. The heuristics are tested on several data sets,
including the ones where the basic algorithms perform badly. Ultimately, we
contrast insertion sort and sifting as integral parts of hybrid algorithms. In our
studies sifting performs better than insertion sort.

4 Franz J. Brandenburg and Kathrin Hanauer

The presented algorithms are a selection and advancement of a study by
Hanauer [14], which also includes variants of the algorithms by Berger and Shor
[4], Saab [19], and Demetrescu and Finocchi [7]. These algorithms do not fit
into this study since they are not affiliated with sorting. Moreover, they are
not competitive if quality and time are taken into account. There are related
studies by Coleman and Wirth [6] and by Schalekamp and van Zuylen [20],
which, however, focus on tournaments and on rankings and thus operate with
complete orders.

2 Algorithms

In this section we provide a description of our algorithms. We consider directed
graphs G = (V,E) with n vertices and m arcs. For the linear arrangement
problem the vertices are ordered to π = (v1, . . . , vn). In this case each vertex
has incoming and outgoing arcs to the left and to the right. The cost c(π) is
the size of the feedback arc set under π. The objective clearly is to find a linear
arrangement with minimum cost.

2.1 Preprocessing

The algorithms are usually designed to operate on simple directed graphs. For
other graphs some preprocessing steps need to be taken. Obviously, each self-
loop in the feedback arc set is unavoidable, but it has no further impact on other
cycles. Thus self-loops are removed from the graph and are later added to the
feedback arc set. Two-cycles consisting of opposite arcs (u, v) and (v, u) can be
processed by first erasing both arcs and finally adding exactly one of them to the
feedback arc set — the arc which conforms to the linear arrangement. Parallel
arcs are transformed into a bundle of paths of length two by splitting each of
them by an auxiliary vertex.

Finally, a directed graph can be decomposed into its strongly connected com-
ponents, which again can be sorted topologically. In particular, the minimum
feedback arc set is empty if and only if the graph is acyclic. Clearly, a minimal
linear arrangement or feedback arc set must respect the order of arcs (u, v) if u
and v belong to different strongly connected components and u must be listed
before v in the topological order. If this holds, we say that the linear arrangement
is SCC-conform.

We shall see that the pure algorithms do not respect the thereby obtained or-
der. It has been observed in [14], however, that the loss is rather small in general.
Moreover, it is too time consuming to compute strongly connected components
and their topological order repeatedly, as in the approaches by Eades and Lin
[9] and by Saab [19].

2.2 Postprocessing

In a postprocessing phase one may clean up the obtained feedback arc set or a
linear arrangement π.

Sorting Heuristics for the Feedback Arc Set Problem 5

A set of arcs F is a minimal feedback arc set for G = (V,E) if the reinsertion
of any arc f ∈ F induces a cycle, i.e., G′ = (V,E \ F ∪ {f}) is not acyclic. This
check can be done in O(|F |)×O(n+m), which is quite costly. This particularly
holds for dense graphs with large feedback arc sets where it comes to O(n4).

Also, if vertices u and v are adjacent in a linear arrangement π, then u must
appear before v if there is an arc (u, v); otherwise they are swapped. This can
be cleared in O(n2) time.

2.3 Properties

Next, we establish some formal properties.

Definition 1. An algorithm is monotone if the output is never worse than the
input.

Here the size of the set of feedback or backward arcs is never increased. Hence,
it is promising to run the algorithm repeatedly.

Definition 2. For a monotone algorithm A the convergence number is the num-
ber of runs of A that strictly improve the result. The resulting algorithm is de-
noted by A∗ and described more formally in 1.

Algorithm 1 A∗ Algorithm

function Iterate(Algorithm A, Cost c, Arrangement π)
repeat

π′ ← π
π ← A(π)

until c(π) ≥ c(π′)
end function

The outcome of algorithm A∗ is a first local optimum for an algorithm A. If A
is not monotone, then the result of the next to last run should be taken. The
enforcement of a strict improvement generally leads to a faster termination of
A∗ and a lower convergence number. Alternatively, one may repeat A until it
worsens the result for the first time or repeats a configuration π. However, it is
too time consuming to check this termination criterion.

The local median order in [3] coincides with the commonly used 1-OPT prop-
erty. An algorithm is said to be 1-OPT if the removal of an item and its rein-
sertion does not lead to an improvement.

It should be noted that our repeated runs of algorithms do not guarantee
1-OPT, although sifting performs these operations. For 1-OPT one needs the
aforementioned termination criterion.

Bang-Jensen and Gutin [3] report that the exchange of vertices is sifting
for the feedback arcs set problem. The exchange is also called 2-OPT. Their
statement has been confirmed by Hanauer’s experimental studies [14]. The ex-
planation is that it is harder to find a partner for an exchange than looking for
a good place.

6 Franz J. Brandenburg and Kathrin Hanauer

2.4 Basic Algorithms

Our algorithms are based on sorting and in particular on selection sort, insertion
sort and Quicksort. However, care must be taken with implementation details.

ELS and ELS-abs. The algorithm by Eades et al. [10] can be regarded as a two-
sided selection sort, which looks for the smallest and largest elements and moves
them left and right, respectively. It keeps a left and a right list of vertices, which
are organized as stacks. At any stage, first sources are removed from the graph
and appended to the left list, whereas sinks are removed and added to the right
list. Then in [10] a vertex with maximum degree difference maxv{out(v)− in(v)}
is chosen among the remaining ones and treated as a source. In a variation that
has also been used in [6] the decision depends on the absolute value of the degree
difference, maxv{|out(v) − in(v)|}, and the vertex is treated either as a sink or
a source, depending on whether in(v) exceeds out(v) or vice versa. Here out(v)
(in(v)) is the number of outgoing (incoming) arcs of v in the actual graph. The
computation continues with the diminished graph. Finally, the left and right lists
are concatenated. These two algorithms are called ELS and ELS-abs.

Both algorithms are fast with a running time of O(n+m) and they show a
similar behavior, as can be seen in Section 3. A particular property is an upper
bound of m/2 − n/6 for the size of the feedback arc set. At first glance this
bound looks bad, since it takes almost half the number of arcs. However, the
bound is tight for 3-cycles and it is almost the best one can achieve in the worst
case, since the size of the feedback arc set is as large as m/2−Θ(n3/2) [21,22].

It is readily seen that the ELS algorithms are neither SCC-conform nor
minimal. If ties are broken in the same way, a second run does not change the
computed result. On distinguished graphs, the ELS algorithms may perform
poorly and are trapped in a local optimum which is O(n) from the the global
optimum, as Coleman and Wirth [6] have discovered.

Quicksort. Our Quicksort variation KS3 is based on the KwikSort algorithm
for tournaments by Ailon et al. [1]. On any initial linear arrangement, it moves
the items to the left or to the right relatively to a random pivot element, based
on whether there is an arc to or from the pivot. The algorithm then proceeds
recursively. For tournaments this relation is complete for every pivot, so that
there is a clear decision for each vertex. For arbitrary graphs we put the pivot
vertex and the undecided vertices with no arc from or to the pivot in the middle
and recurse on the left, middle, and right subsets. When ties must be broken,
e.g., if the remaining vertices are disconnected, their order is kept.

KS3 is fast with an average running time of O(n log n). As Quicksort is a
randomized algorithm, it achieves different results in independent runs. This is
used for a comparison with the hybrid heuristics. Formal properties cannot be
established.

Sorting Heuristics for the Feedback Arc Set Problem 7

Insertion Sort. The Sort operation used by Chanas and Kobylanski [5] for the
linear arrangement problem equals sorting by insertion. Given an order of the
items, say, (v1, . . . , vn), the items are processed in this order. In the i-th round
vi is inserted at the best possible position among the already sorted set of the
first i − 1 items. In case of a tie the leftmost position is taken. In order to find
the optimal position the number of backarcs induced by vi is taken into account.
Thus only the arcs between vi and the first i−1 vertices v1, . . . , vi−1 are relevant.
This is a conceptional weakness, since some relevant information is omitted.

Sort runs in O(n2) time and is monotone. However, it is neither SCC-conform
nor minimal, as the example in Fig. 1 shows. The graph depicted obviously has

b1 a3ba2 a5b3 b2 aa1 a4

(a) Initial Arrangement and Second
Run

a4 b1 b2 a1 a a5b3 a2ba3

(b) First Run

Fig. 1. Counterexample for SCC-Conformity for Sort(∗), Sift(∗), and Move(∗)

two strongly connected components, consisting of the nodes a(i) and b(i), respec-
tively. The left-hand figure shows the initial arrangement and thus the order the
vertices are processed in. On the right-hand side, the vertices were sorted once.
Running the algorithm another time results in the initial arrangement again, so
SCC-conformity can never be reached.

Sifting. Sifting can be regarded as a two-sided insertion sort. It has frequently
been used in graph drawing for crossing minimization problems [17,2]. Itera-
tively, each vertex v is removed from the current linear arrangement and is then
reinserted at its best possible position, which is determined by the least num-
ber of backward arcs induced by v. The 1-OPT method from [3] is the generic
version, which describes the move of v in terms of a neighborhood.

There are several versions and implementations of sifting. Our Sift method
iterates over the vertices from left to right as they are given by the linear arrange-
ment before the start. In case of a tie for a best position it takes the leftmost one.
Additionally, we introduce the Siftr method, which does exactly the same but
iterates over the vertices from right to left. In one sifting round both methods
consider each vertex exactly once.

In contrast, the Move method iterates over the positions from left to right. In
the i-th round it picks the vertex which currently is in the i-th place and moves
it to its best possible position, again taking the leftmost to break ties. However,
Move may consider a vertex v more than once if v is reinserted to the right
and as a compensation it skips other vertices which are shifted while another
vertex is moved. Move has first been used in the Chanas-Both algorithm of [6].
However, their MOVES heuristic is different. For any stage it can remove and

8 Franz J. Brandenburg and Kathrin Hanauer

reinsert any vertex at any position and it chooses the best such move. This takes
O(n2) time per step and slows down the algorithm.

All these sifting methods run in O(n2) time, and their run time is quite
close in practice. They are monotone. However, they are neither SCC-conform
nor minimal, as example 1 shows. In addition, Coleman and Wirth [6] have
discovered bad examples both for insertion sort and sifting with a gap of O(n)
to an optimal solution.

2.5 Hybrid Algorithms

The goal of hybrid algorithms is to overcome some weak points of monolithic
algorithms and to merge the “good properties” of them. The drawback is a
higher run time. So there is a trade-off between quality and time.

The ELS algorithms are stable in the sense that a second run does not change
the result. So repetitions are worthless.

Quicksort is a randomized algorithm and each run may yield a different
result. KS3-200 runs KS3 200 times on random input orders and keeps the best
result. The value of 200 was chosen after test runs showed that the convergence
numbers of the other algorithms are up to 200 for the largest graphs with 1000
vertices and 249750 arcs.

Next we use the basic algorithms from above and run them repeatedly up to
their convergence number.

As an auxiliary function, we use the reversal function from [5] for inverting
a sequence by Reversal((x1, . . . , xn)) = (xn, . . . , x1). The reversal function puts
everything upside down and switches forward and backward arcs. However, in
combination with insertion sort it is monotone, as Chanas and Kobylanski [5]
have shown.

Lemma 1. Let π = (v1, . . . , vn) be a linear arrangement with cost c(π). Let
π′ = Sort(Reversal(π)). Then c(π) ≥ c(π′).

In contrast, sifting and reversal do not cooperate. The subsequent example and
also our experiments (see Fig. 2) show that there are instances of linear ar-
rangements π with c(π) < c(Sift(Reversal(π)). But after a (long) while it finally
reaches a stable state.

For a concise description we use the notation A∗ to denote the repeated
application of an algorithm up to its convergence number. This number is also
employed to compare the algorithms.

In the worst case, the repetitions of algorithm A to A∗ increase the run time
by a factor of O(m), which results from the bound on the size of the feedback
arc set. In practice, the algorithms converge much faster, as Fig. 5 clearly shows.

Sorting Heuristics for the Feedback Arc Set Problem 9

d ea cb f

(a) Initial Arrangement

e bac f d

(b) First Run of Sift

f ad ebc

(c) Second Run of Sift

ba dec f

(d) Reversal and Third Run of
Sift

Fig. 2. Counterexample for Non-monotonicity of Sift and Reversal

We tested the following hybrid heuristics:

It-Sort = Sort∗

It-Sift = Sift∗

It-Move = Move∗, which is called Chanas-Both in [6]

CK-Sort = Sort∗ ◦ (Reversal ◦ Sort∗)∗

CK-Sift = Sift∗ ◦ (Reversal ◦ Sift∗)∗

It-2-Sift = (Sift∗ ◦ (Siftr ◦ Sift
∗)∗

X-Sift = Sift∗ ◦ ((Reversal ◦ Sort) ◦ Sift∗)∗.

Thus X-Sift first applies sifting until the convergence number is reached.
Then it reverses the arrangement and runs sort once followed by sifting, until
sifting reaches it convergence number. The latter is repeated up to the conver-
gence number of the combined methods.

As formal properties we obtain from the aforesaid:

Theorem 1. It-Sort, It-Sift, It-2-Sift, It-Move, CK-Sort, CK-Sift and X-Sift
are monotone.

However, we have observed that these algorithms are not 1-OPT, although they
use sifting repeatedly.

3 Test Suites and Measurements/Data/Diagrams

We have tested our algorithms on several test suites, but only report on two
of them here. The first consists of random graphs according to the Erdős and
Rényi model [11] G(n, p). The size n ranges from 100 to 1000 in steps of 100 and
an edge between any two vertices is chosen with probability p. Here p = 0.5, so
the graphs have about 249750 directed edges. Sparser graphs with p = 0.1 and
other sets of graphs were tested in [14] with a similar outcome.

Figures 3 and 4 show the average values for performance and run time which
were computed from 1000 random graphs for each configuration. The average

10 Franz J. Brandenburg and Kathrin Hanauer

size of the feedback arc sets of the graphs with 1000 vertices is additionally listed
in Table 1. Furthermore, we accomplished an in-depth analysis of the algorithms’
progress until they converge. Figure 5 graphs the development again taking
the mean over 1000 repetitions. The curves stop at the algorithms’ maximum
convergence number. Table 2 provides information on the average value.

200 400 600 800 1000

0
20

00
0

60
00

0
10

00
00

Nodes

F
ee

db
ac

k
A

rc
s

KS3
KS3−200
ELS
ELS−abs
It−Sort
CK−Sort
It−Move
It−Sift
It−2−Sift
X−Sift
CK−Sift

Fig. 3. Average Algorithm Performances

200 400 600 800 1000

0
10

20
30

40
50

Nodes

S
ec

on
ds

CK−Sort
CK−Sift
It−Sort
X−Sift
It−2−Sift
It−Move
It−Sift
KS3−200
ELS−abs
ELS
KS3

Fig. 4. Average Running Times

Our second test suite consists of the counterexamples by Coleman and Wirth
[6]. These counterexamples are designed such that insertion sort and sifting are
trapped in a local optimum which is O(n) from the global optimum provided
that the graphs start with an unfavorable linear arrangement. The graphs consist

Sorting Heuristics for the Feedback Arc Set Problem 11

Table 1. Average Algorithm Performances on Graphs with 1000 Nodes

Algorithm It-Sort It-Sift It-Move CK-Sort CK-Sift It-2-Sift X-Sift

Feedback Arcs 111472.2 110736.9 110749.0 110814.2 110661.1 110730.1 110729.8

0 50 100 150 200

11
10

00
11

30
00

11
50

00

Iterations

F
ee

db
ac

k
A

rc
s

It−Sort
CK−Sort
It−Move
It−Sift
X−Sift
It−2−Sift
CK−Sift

Fig. 5. Average Convergence

of two sets of n/2 vertices (black and white), each of which is internally tran-
sitive. There is a one-to-one correspondence between white and black vertices
represented by an arc (u, v), where u is white and v is black. For all other pairs of
white and black vertices there is an arc from black to white. Hence, these graphs
are tournaments. The global optimum is achieved with all black vertices to the
left of all white ones, resulting in a feedback arc set of size n/2. If the vertices
are arranged as a sequence of pairs of alternating white and black vertices, then
neither insertion sort nor sifting shall move a vertex, since there is no proper
improvement by any move. However, this particular order is very unlikely and,
starting from a random arrangement, the hybrid algorithms most of the time
found the optimal solution for these graphs over 1000 runs per configuration.

Table 3 shows the optimal number of feedback arcs as well as the average
amount found by each algorithm.

4 Evaluation of the Results and Conclusion

All experiments were conducted on a AMD Phenom II X6 1090T machine with
8GB of memory. The algorithms were developed and executed in a Java

TM
SE

Runtime Environment in version 1.6 using the Java
TM

HotSpot
TM

Server VM.

Table 2. Average Convergence Numbers

Algorithm It-Sort It-Sift It-Move CK-Sort CK-Sift It-2-Sift X-Sift

Iterations 31.00 24.34 26.89 99.51 74.47 27.83 27.87

12 Franz J. Brandenburg and Kathrin Hanauer

Table 3. Average Performance on Counterexample Graphs

Sizes 10 50 100

OPT 5 25 50

ELS 6.08 27.79 53.52
ELS-abs 6.08 27.79 53.52
KS3 9.40 69.10 143.67
KS3-200 8.00 48.00 98.00
It-Sort 5.42 25.04 50.03
It-Sift 5.12 25.00 50.00
It-Move 5.11 25.00 50.00
CK-Sort 5.42 25.04 50.03
CK-Sift 5.00 25.00 50.00
It-2-Sift 5.12 25.00 50.00
X-Sift 5.12 25.00 50.00

The algorithms have been tested on several data sets, however, only two are
reported here.

The main experience is the similarity of the performance of the hybrid algo-
rithms. The size of the computed feedback arc sets differ by about 0.1%. This
may be an indication that it is close to the optimum, which, however, remains
unknown. Nevertheless, sifting clearly outperforms sorting.

Concerning their convergence number the hybrid algorithms behave quite
differently, as Fig. 5 illustrates. This has a direct impact on the run time, see
Fig. 4. Here, sifting is faster than insertion sort and pure sorting and sifting
heuristics are in turn faster than the CK algorithms.

Overall, our results compare with those in [6,20]. All studies show competi-
tiveness of the designed heuristics, but some details and conclusions differ. We
took a much closer examination, particularly on the convergence. The signifi-
cance of our study is based on much larger graphs, which are not tournaments.

In detail we conclude a slight superiority of sifting over sorting.

5 Conclusion

Our study has shown several competitive heuristics for the feedback arc set or
the linear arrangement problem. These should be put into a framework with a
pre- and a postprocessing.

Still, a major challenge is the estimation between these heuristics and the op-
timal solution. There are no good lower bounds for the feedback arc set problem,
even on tournaments.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and Clustering. Journal of the ACM 55(5), Article 23 (Oct 2008)

Sorting Heuristics for the Feedback Arc Set Problem 13

2. Bachmaier, C., Brandenburg, F.J., Brunner, W., Hübner, F.: A global k-level cross-
ing reduction algorithm. In: WALCOM. LNCS, vol. 5942, pp. 70–81 (2010)

3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer-Verlag, London, 2. edn. (2006)

4. Berger, B., Shor, P.W.: Approximation algorithms for the maximum acyclic sub-
graph problem. In: Proc. First ACM-SIAM Symposium on Discrete Algorithms.
pp. 236–243 (1990)

5. Chanas, S., Kobylánski, P.: A new heuristic algorithm solving the linear ordering
problem. Computational Optimization and Applications 6(2), 191–205 (1996)

6. Coleman, T., Wirth, A.: Ranking tournaments: Local search and a new algorithm.
Journal of Experimental Algorithmics (JEA) 14, 2.6–2.22 (2009)

7. Demetrescu, C., Finocchi, I.: Combinatorial Algorithms for Feedback Problems in
Directed graphs. Information Processing Letters 86(3), 129–136 (2003)

8. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics 162, 439–485 (2005)

9. Eades, P., Lin, X.: A Heuristic for the Feedback Arc Set Problem. Australasian
Journal of Combinatorics 12, 15–25 (1995)

10. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the Feedback
Arc Set problem. Information Processing Letters 47(6), 319–323 (Oct 1993)

11. Erdős, P., Rényi, A.: On random graphs, i. Publicationes Mathematicae (Debrecen)
6, 290–297 (1959)

12. Even, G., Naor, J.S., Schieber, B., Sudan, M.: Approximating Minimum Feedback
Sets and Multi-Cuts in Directed Graphs. In: Proceedings of the 4th International
IPCO Conference on Integer Programming and Combinatorial Optimization. pp.
14–28. Springer-Verlag, London, UK (1995)

13. Günther, W., Schönfeld, R., Becker, B., Molitor, P.: k-layer straightline crossing
minimization by speeding up sifting. In: Graph Drawing. LNCS, vol. 1984, pp.
253–258. Springer-Verlag, London, UK (2001)

14. Hanauer, K.: Algorithms for the Feedback Arc Set Problem. Master’s thesis, De-
partment of Informatics and Mathematics, University of Passau, Passau, Germany
(2010), http://www.infosun.fim.uni-passau.de/˜hanauer/pub/mastersthesis.pdf

15. Karp, R.M.: Reducibility Among Combinatorial Problems. Complexity of Com-
puter Computations pp. 85–103 (1972)

16. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors: A PTAS for
Weighted Feedback Arc Set on Tournaments. Electronic Colloquium on Computa-
tional Complexity (ECCC) 13(144) (2006)

17. Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k -layer straightline
crossing minimization. In: Graph Drawing. pp. 217–224 (1999)

18. Ramachandran, V.: A minimax arc theorem for reducible flow graphs. SIAM Jour-
nal on Discrete Mathematics 3(4), 554–560 (1990)

19. Saab, Y.: A Fast and Effective Algorithm for the Feedback Arc Set. Journal of
Heuristics 7, 235–250 (2001)

20. Schalekamp, F., van Zuylen, A.: Rank aggregation: Together we’re strong. In:
ALENEX. pp. 38–51 (2009)

21. Spencer, J.: Optimal ranking of tournaments. Networks 1, 135–138 (1971)
22. Spencer, J.: Optimally ranking unrankable tournaments . Periodica Mathematica

Hungarica 11(2), 131–144 (Jun 1980)
23. Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hier-

archical System Structures. IEEE Transactions on Systems, Man and Cybernetics
11(2) (Feb 1981)

