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Abstract. State-of-the-art private redactable schemes (RSS) allow the
signer to un-detectably add new elements to signed data after signature
generation. We introduce a RSS with a signer commitment: it prohibits
any party – including a malicious signer – from adding new elements
after signature generation. This protects against a malicious signer and
allows using RSS for applications like timestamping. Moreover, we intro-
duce another practically useful property: private mergeability. It allows
merging two redacted versions of the same signed document into a sin-
gle document with one signature. We show that neither mergeability
nor signer commitment negatively impact the existing security proper-
ties. We present a provably secure redactable signature scheme that is
committing, mergeable, unforgeable, private and transparent. The per-
formance analysis of our implementation shows its practicality.

Keywords: Redactable Signatures, Privacy, Transparency, Signer Commitment,
Time-Stamping, Non-Repudiation, Transparent and Private Mergeability

1 Overview

Assume Alice signs a set S = {v1, . . . , v`} of elements using a secure redactable
signature scheme (RSS). We use this notation of sets without loss of generality.
With sets the decomposition of a message becomes easy to understand and
we can facilitate mathematical notions from sets, like intersection and union
to increase readability. The fundamental difference to classic signatures is that
a RSS allows anyone to redact a subset of elements R ⊆ S, leaving a subset
S ′ = S \ R along with a derived signature σS′ . This action is called redaction
and can be performed by anyone. Thus, the secret signing key is not required to
compute σS′ . A secure RSS is unforgeable comparable to classic digital signature
? Is funded by BMBF (FKZ:13N10966) and ANR as part of the ReSCUeIT project
?? The research leading to these results was supported by “Regionale Wettbewerb-
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schemes; this ensures that each element vi ∈ S is protected against undetected
subsequent modifications other than the complete removal. Hence, a positive
consecutive verification of S ′ means that all elements vi ∈ S ′ are authentic, i.e.,
the elements that remained in S ′ have not been altered and the signer remains
identifiable via its public key. One application example for an RSS is the removal
of personal information from signed medical records. In this application it is
crucial that the redacted medical records can be used for research without an
impact on the patients privacy. Next, we will describe additional existing security
properties of RSS, among the above mentioned privacy.

1.1 Motivation

Overview of existing security notions. Brzuska et al. [5] formalized three
fundamental security goals: unforgeability, privacy and transparency. Unforge-
ability requires that an outsider cannot forge signatures on new sets. Hence,
unforgeability is comparable to the unforgeability requirements of classic digital
signature schemes. Note, a valid redaction of an element from an already signed
set is not considered a forgery. Furthermore, every meaningful RSS must be pri-
vate [5]. Private means, that a third party is not be able to gain any knowledge
about redacted elements from the set/signature pair without having access to
them. A related notion is transparency ; the verifier is not able to decide for a
given set/signature pair if the signed set was created by signing the set or by
redacting an already signed bigger set. We give formal definitions in Sect. 4.

There are also schemes that are unlinkable [7], or offer strong context-hiding [1].
In an unlinkable scheme third-parties (excluding signers) are not able to de-
cide whether two set/signature pairs originated from the same superset; in a
scheme that offers strong context hiding even the signer is not able make this
decision [1,7]. However, both notions still allow signers to generate new signa-
tures on equal or totally different sets with no proof or detection by a verifier
that these correspond to a previously given signed redacted set. Hence, we moti-
vate why we additionally need a committing behavior in many digital signature
applications.

Existing unforgeable and private schemes are not committing. Our
analysis reveals that some unforgeable RSSs do not protect against “forgeries” by
signers. To be more precise: all current security models for provably secure RSSs
allow the signer to add new elements to the signed set after the signature has
been generated. We call schemes allowing this behavior non-committing RSSs.
For example, Alice has a set S and signs it, generating σS . Alice sends this to
Bob. In a non-committing scheme, Alice is able to convince Bob at a later time
that vnew was also an element of the larger signed set Snew with the signature
σSnew from which one can derive by redaction the S, σS that was given to Bob.
However, vnew was not an element of S at the time the signature σS on S
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was generated. This gives signers the ability to update signed sets later. This
an unwanted behavior for signature applications, e.g., timestamping or signing
contracts.

Existing committing schemes are not private or not transparent. Some
existing schemes, e.g., [24], do not allow a signer to add new elements after
signature generation, but do neither fulfill the state-of-the-art privacy notion
formalized by Brzuska et al., nor their stronger notion of transparency [5]. In
applications where privacy is crucial non-private schemes cannot be used, i.e.,
redaction of personal identifying information from signed medical records to
allow them to be used for research. Hence, they are also unsuited to protect the
confidentiality of any removed state- or trade-secret.

Existing private and transparent schemes do not allow merging An-
other property we formally introduce in this work is mergeability. Compared to
committing it is not related to existing security properties. We want to achieve
that two signatures derived from the same superset can be merged into one
signed set with one signature, as recently also introduced by Lim et al. [20].
Intuitively, merging allows a third-party to recombine two signed sets by provid-
ing a union of the not redacted elements from both sets. Only if both sets were
generated by redaction from one signed superset, a third-party shall be able to
compute a valid signature.

1.2 Proposed Solution: Committing and Mergeable Secure RSS

This paper shows how to construct committing, private and transparent schemes,
which can be used for applications with high privacy requirements. Additionally,
we show that the scheme can be mergeable.

Committing RSS. Our goal is a RSS which forces the signer to commit to a
set S, while it is still unforgeable, private, and transparent. Intuitively, we say:

A RSS is committing, if a malicious signer is not able to generate a proof
that a new element, which was not originally signed, was part of a given
signed set. This requires that re-signing, i.e., generating a fresh signature,
leads to two distinguishable signatures.

In other words, a committing scheme prohibits the signer to add new elements
to an already signed set. Hence, such a RSS becomes closer to classic signature
schemes and would also aid non-repudiation [14].

Note, one may argue, that this behavior does not make sense in transparent RSSs
with public redaction, since the signer is always able to sign a set containing more
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elements and then redact a subset before giving the set to the verifier. However,
a committing RSS forces the signer to know all elements to be signed at the time
of signature generation. This can, e.g., be used for timestamping. We give more
and detailed applications in Sect. 6.

Fully Private Mergeable RSS. We want to achieve that two signatures de-
rived from the same superset can be merged into one signed set with one signa-
ture, as recently introduced by Lim et al. [20].

Note, the party that recombines the redacted sets by merging already knows all
un-redacted elements from both subsets, and already knows that they are from
the same superset.

A RSS is mergeable, if third parties can merge two set/signature pairs,
which have been derived from the same source, such that the resulting
signature is valid over the merged set.

If mergeable, the input sets are considered linkable:

A RSS is linkable, if a third party can decide for two set/signature pairs,
if the two signed sets originate from the same signed superset. Moreover,
if they have not been derived from the same source, nobody is able to
claim so.

Trivially, mergeability together with unforgeability implies linkability, because
a mergeable and unlinkable scheme must either be forgeable or linkable, a con-
tradiction. We want to emphasize, that all security requirements, as usual, only
consider the knowledge an attacker can gain from the signatures. In practical
applications, the knowledge if two sets originate from the same superset could
be derived from the information contained in the redacted sets.

However, being able to derive linking information from the signatures might not
be wanted in applications with very strong privacy requirements. If such strict
requirements are necessary, the scheme by Ahn et al. [1] fulfills the strictest
privacy notion of “strong context hiding”. On the other hand, the scheme by
Ahn et al. [1] cannot achieve committing behaviour due to this strict privacy,
and does not offer the full flexibility to redact any v ∈ S, but is limited to
“quoting substrings”3.

1.3 Our Contribution and Outline.

In this paper, we give two new concepts not yet found in secure state-of-the-art
RSSs: Signer commitment and mergeability. All existing private and transparent
3 Ahn et al. [1] define this as follows: “A substring of x1...xn is some xi...xj where
i, j ∈ [1, n] and i ≤ j. We emphasize that we are not considering subsequences.
Thus, it is not possible, in this setting, to extract a signature on "I like fish" from
one on "I do not like fish".” [1]
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schemes are not committing, as our survey of existing RSSs in Sect. 2 shows.
However, meaningful RSSs must at least be private and unforgeable [5]. Some
committing schemes cannot be considered private in Brzuska et al.’s model [5].
The scheme introduced by Ahn et al. [1] does not achieve adaptive unforgeabil-
ity. This paper’s contribution is a secure, transparent and mergeable RSS that is
committing. We prove it to be unforgeable, private, and transparent. The secu-
rity properties of unforgeability, transparency and privacy are as strong as [5].
We give the first formal definition of linkability and show that it does not invade
transparency, privacy or unforgeability. With transparent mergeability, we give
the first formal definition of an inverse operation of redaction, which is fully
privacy-preserving. Moreover we show that transparent mergeability also has no
negative impact on transparency, privacy or unforgeability.

The preliminaries are given in Sect. 3, while the extended adversarial model is
formally defined in a game-based manner in Sect. 4. The committing property
makes our RSS closer to classic digital signature schemes. We sketch the con-
struction in Sect. 5. Together with mergeability, the committing scheme allows
for new applications. This includes time-stamping and databases, as we show
in Sect. 6. The appendix contains the detailed construction (App. A), which is
based on a trapdoor-free accumulator (App. A.1) [21,30] along with all formal
proofs (App. B).

2 State of the Art

The general concept of RSSs has been introduced as “content extraction sig-
natures” by Steinfeld et al. [31] and in the same year by Johnson et al. as
“homomorphic signatures” [15]. Their ideas have been extended to work on tree-
structured data [5,16,28] and on arbitrary graphs [17]. A related concept are
sanitizable signature schemes (SSS) [2,6], where the sanitizer does not redact
elements. Instead, it can change elements to arbitrary strings ∈ {0, 1}∗. SSSs
require sanitizers to know a secret and do not allow public alterations. Their
aim is different, so they are not discussed in this paper.

In the following, the related work is structured by security properties, see Tab. 1
for an overview of the offered security properties and the analytical runtime
overhead for each scheme.

Privacy and Transparency. Many proposed schemes are not private in Brzuska
et al.’s security model [5], i.e., a third party can see that at least one element has
been redacted. Exemplarily, see [12,15,24,31]. Also many non-transparent RSSs
can be attacked using the missing transparency as a “side-channel” for informa-
tion to break privacy, i.e., if the position of a redacted element is visible, one
is able to gain information about the original document that one should not be
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Type Unforge- Trans- Priv- Context- Link- Merge- Commit- Runtime
Scheme able parent ate Hiding able able ting.

[1] Quoting ◦a X X X % % ◦b O(n · log(n))
[5] Trees X X X % X X % O(n2)

[9] Lists X X X % X % ◦c O(n2)

[16] Trees % % % % X X % O(n)
[18] Trees X X X % X X % O(n2)

[23] Sets X X X % X X % O(n)
[24] Lists X % % % X X X O(n)
[29] Lists X X X % X X % O(n2)

This Sets X X X % X X X O(n)
Table 1. Comparison of some RSSs; n is the number of redactable elements

a They achieve selective unforgeability.
b The strong context-hiding property renders a discussion obsolete.
c Depending on the underlying primitives.

able to gain from a private scheme. As privacy preserving applications require
an RSS to be private, these schemes cannot be used.

Committing. Brzuska et al. name the possibility that the signer is allowed to
add new elements after the initial signature generation “dynamic updates” [5].
This has been derived from Kundu and Bertino, who also allow the same concept
under this name [16]. Examples for updateable RSSs can be found in [5,16,23,29].
We named the schemes following this behavior “non-committing RSS”. The
strong context-hiding property of the scheme introduced by Ahn et al. [1] dis-
courages any discussions about dynamic updates, since even the signer is only
able to generate unlinkable signatures. In a non-committing RSSs, a third party
is not able to distinguish between elements which were contained in the set from
the beginning or ones which have been added by the signer after the signing
procedure.

Linkability and Mergeability. In the field of RSSs, all existing provably se-
cure and transparent constructions consider only how to redact elements. The
opposite –reinstate previously redacted elements– in a controlled way has neither
been formalized nor considered yet for transparent schemes [20]. The closest
works are [26] and [20]. UsingMerkle-hash-trees the construction from [26] allows
a secret-controlled reconstructability, but it is not private. Notions of mergeabil-
ity are also given originally byMerkle for hash-trees [22], but they are not private
as well. Similarly, the construction offered in [20] is not private.

Pöhls et al. [27] than left it as an open question if it possible to construct a
scheme which is private and mergeable. This paper gives a positive answer to
all of these questions. The ability to sign a set, redact all elements, distribute
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the signed empty set and then later release elements that can be reconstructed
resembles some requirements of blind signatures [10]. However, we do not require
the unlinkability or untraceability offered by blind signatures in our use case.
Let us emphasize, that Ahn et al.’s “strong context hiding” [1] explicitly forbids
reconstruction of data.

3 Preliminaries

We extend the framework given in [5] with definitions for Merge and Link.

Definition 1 (Transparent, Mergeable and Committing RSSC). A merge-
able and committing RSSC consists of six efficient algorithms. In particular,
RSSC := (KeyGen,Sign,Verify,Redact, Link,Merge) such that:

KeyGen. The algorithm KeyGen outputs the public and private key of the signer,
i.e., (pk, sk)← KeyGen(1λ), where λ is the security parameter

Sign. The algorithm Sign gets as input the secret key sk and the set S. It outputs
(S, σS)← Sign(sk,S)

Verify. The algorithm Verify outputs a bit d ∈ {0, 1} indicating the correctness
of the signature σS , w.r.t. pk, protecting S. 1 stands for a valid signature.
In particular: d← Verify(pk,S, σS)

Redact. The deterministic4 algorithm Redact takes as input the set S, the public
key pk of the signer, a valid signature σS and a set R of elements to be
redacted. The algorithm outputs (S ′, σ′S)← Redact(pk,S, σS ,R), where S ′ =
S\R. R is allowed to be the empty set or contain more than one element. We
denote the transitive closure of S, w.r.t. to Redact and σS , as span�(S, σS),
following [9]. span�(S, σS) contains all set/signature pairs derivable from
(S, σS): span�(S, σS) = {(U , σU ) ← Redact(pk,S, σS ,Ri) | Ri ∈ P(S)},
where P(S) denotes the power set of S. We want to emphasize that ∅ ∈ P(S).
On error, the algorithm outputs ⊥

Link. The algorithm Link takes as input a set/signature pair (S, σS), a public
key pk and a second set/signature pair (T , σT ). It outputs a bit d ∈ {0, 1},
indicating, if (S, σS) and (T , σT ) have both been derived from the same valid
set/signature pair (U , σU ) by Redact or Merge. It outputs 1, if (S, σS) ∈
span�(U , σU ) ∧ (T , σT ) ∈ span�(U , σU ) and 0 otherwise. Note, for Link nei-
ther U , σU nor span�(U , σU ) are required.

Merge. The algorithm Merge takes as input the public key pk of the signer, two
sets S and V, and the corresponding signatures σS and σV . Note, we require
σS and σV to be valid on S and V. It outputs (U , σU )← Merge(pk,S, σS ,V, σV),
where U = S ∪ V and σU is valid on U . On error, the algorithm outputs ⊥

4 This algorithm may be probabilistic, but a deterministic definition allows for a more
intuitive description.
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We require that one can efficiently identify all the elements vi ∈ S from a
given S. Redact is a public operation, as common in RSSs. Thus, all parties
can redact the set, which includes the signer, as well as any intermediate recip-
ient. We require the correctness properties to hold, i.e., every genuinely signed
set must verify with overwhelming probability. The same must hold for any
set/signature pair generated using Redact or Merge, i.e., using Redact or Merge
on valid set/signature pairs must result in a new set that again verifies with
overwhelming probability. Last, we require Link outputs the correct bit with
overwhelming probability as well. We give formal definitions of the correctness
requirements in an extended version of this paper.

4 Security Model

This section introduces the security model. We use the security model introduced
by Brzuska et al. in [5] as our starting point. In particular, we also require
unforgeability, privacy and transparency. We extend and adapt the model to
cover committing, linkability, as well as mergeability. Additionally, we introduce
the properties of merge transparency and merge privacy, not considered in [20].
As usual, the following definitions only address the information a third party can
derive from the signature σS alone; e.g., if in a real application the redactions
that took place are obvious, it may be trivial for attackers to detect them.

Unforgeability. No one should be able to produce a valid signature on a set
S∗ verifying under pk with elements outside the transitive closure of any set S
received, without having access to the corresponding secret key sk. That is, even if
an attacker can adaptively request signatures on different documents, it remains
impossible to forge a signature for a new set not queried. This is analogous to the
standard unforgeability requirement for other signature schemes. We say that a
RSS is unforgeable, if for every probabilistic polynomial time (PPT) adversary
A the probability that the game depicted in Fig. 1 returns 1, is negligible (as a
function of λ).

Privacy. The verifier should not be able to gain any knowledge about redacted
elements without having access to them. The adversary can choose two tuples
(S0,R0) and (S1,R1). A redaction of R0 from S0 is required to result in the
same set as redacting R1 from S1. The two sets are input to a “Left-or-Right”
oracle which signs and redacts (Sb,Rb). The adversary wins, if it can decide
which pair was used to as input to create the oracle’s output. This is similar to
the standard indistinguishability notion for encryption schemes. We say that a
RSS for documents is private, if for PPT adversary A the probability that the
game depicted in Fig. 2 returns 1, is negligibly close to 1

2 (as a function of λ).



11

Experiment UnforgeabilityRSSC
A (λ)

(pk, sk)← KeyGen(1λ)
(S∗, σ∗S)← ASign(sk,·)(pk)

let i = 1, 2, . . . , q index adaptive queries
so (Si, σiS) are answers of the oracle

return 1, if
Verify(pk,S∗, σ∗S) = 1 and
∀i, 1 ≤ i ≤ q : S∗ 6⊆ Si

Fig. 1. Game for Unforgeability

Experiment PrivacyRSSC
A (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),LoRRedact(...,sk,b)(pk)
where oracle LoRRedact
for input S0,S1,R0,R1:
if S0 \ R0 6= S1 \ R1, return ⊥
(S, σS)← Sign(sk,Sb)
return (S ′, σ′S)← Redact(pk,S, σS ,Rb).

return 1, if b = d

Fig. 2. Game for Privacy

Experiment TransparencyRSSC
A (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),Sign/Redact(...,sk,b)(pk)
where oracle Sign/Redact
for input S,R:

if R 6⊆ S, return ⊥
if b = 0: (S, σS)← Sign(sk,S),

(S ′, σ′S)← Redact(pk,S, σS ,R)
if b = 1: S ′ ← S \R

(S ′, σ′S)← Sign(sk,S ′),
finally return (S ′, σ′S).

return 1, if b = d

Fig. 3. Game for Transparency

Experiment CommittingRSSC
A (λ)

(pk∗, sk∗)← A(1λ)
V∗ = {v∗1 , . . . , v∗k | v∗i ← A(pk∗, sk∗)}
(V∗, σ∗V)← Sign(sk∗,V∗)
(S∗, σ∗S)← A((pk∗, sk∗), (V∗, σ∗V))
return 1, if

Verify(pk∗,S∗, σ∗S) = 1 and
Link(pk∗,S∗, σ∗S ,V∗, σ∗V) = 1 and
span�(S∗, σ∗S) ) span�(V∗, σ∗V)

Fig. 4. Game for Signer Commitment

Transparency. The verifier should not be able to decide whether a signa-
ture has been created by the signer directly, or through the redaction algorithm
Redact. The adversary can choose one tuple (S,R). The pair is input for a
“Sign/Redact” oracle which signs and redacts (b = 0) or redacts and then signs
(b = 1). The adversary wins, if it can decide which way was taken. We say that
a RSS is transparent, if for every PPT adversary A, the probability that the
game depicted in Fig. 3 returns 1, is negligibly close to 1

2 (as a function of λ).

Committing. No party should be able to add new elements to a signed set.
Especially, even a malicious signer is not able to generate a proof that a new
element, which was not originally signed, was part of a given signed set. Thus,
the adversary wins, if it can add new elements to a signed set, it can even choose
the key pair and all elements contained. Re-signing is not possible due to Link.
We say that a RSS is committing, if for every PPT adversary A the probability
that the game depicted in Fig. 4 returns 1, is negligible (as a function of λ).

Linkability. Nobody should be able to deny that two set/signatures pairs orig-
inate from the same source, if they do. Vice versa, if two set/signature pairs do
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Experiment LinkabilityRSSC
A (λ)

(pk∗, sk∗)← A(1λ)
(S∗, σ∗S , T ∗, σ∗T )← A(pk∗, sk∗)
return 1, if

Verify(pk∗,S∗, σ∗S) = 1 and
Verify(pk∗, T ∗, σ∗T ) = 1 and
Link(pk∗,S∗, σ∗S , T ∗, σ∗T ) = 0 and
span�(S, σS) ⊆ span�(T , σT )

or
Link(pk,S∗, σ∗S , T ∗, σ∗T ) = 1 and
span�(S, σS) * span�(T , σT )

Fig. 5. Game for Linkability

Experiment MergeabilityRSSC
A (λ)

(pk∗, sk∗)← A(1λ)
(S∗, σ∗S , T ∗, σ∗T )← ASign(sk,·)(pk)
return 1, if

Verify(pk∗,S∗, σ∗S) = 1 and
Verify(pk∗, T ∗, σ∗T ) = 1 and
Link(pk∗,S∗, σ∗S , T ∗, σ∗T ) = 1 and
Merge(pk∗,S∗, σ∗S , T ∗, σ∗T ) =⊥

Fig. 6. Game for Mergeability

not originate from the same source nobody should be able to claim that they do.
Hence, the adversary has two options to win: (1) The attacker outputs two sig-
nature/message pairs which are derived from the same signature/message pair,
but where Link outputs 0 or, (2) the attacker outputs two signature/message
pairs which are not derived from the same signature/message pair, but where
Link outputs 1. Thus, we say that a RSS is linkable, if for a PPT adversary A,
the probability that the game depicted in Fig. 5 returns 1, is negligible (as a
function of λ).

Mergeability. Nobody should be able to prohibit a reconstruction by Merge, if
the sets are linkable. In this game, the adversary wins, if it can output two signa-
ture/message pairs, which are linkable but not mergeable, i.e., Merge returns ⊥.
We say that a RSS is mergeable, if for every PPT adversary A the probability
that the game depicted in Fig. 6 returns 1, is negligible (as a function of λ).

Merge Privacy. If a merged set is given to another third party, the party
should not be able to derive any information besides what is contained in the
merged set, i.e., a verifier should not be able to decide which elements have been
merged from what set. In the game, the adversary wins, if it can decide which
elements were redacted and merged afterwards. This is encapsulated within the
LoRRedact oracle. We say that a scheme RSS is merge private, if for every
PPT adversary A, the probability that the game depicted in Fig. 7 returns 1, is
negligibly close to 1

2 (as a function of λ).

Merge Transparency. If a merged set is given to another third party, the
party should not be able to decide whether the set has been created by Sign or
through Merge. The adversary can choose one tuple (S,R). This pair is input
to a “Sign/Redact” oracle which returns the original pair (b = 0) or redacts and
then merges (b = 1). The adversary wins, if it can decide which way was taken.
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Experiment Merge PrivacyRSSC
A (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),LoRRedact(...,sk,b)(pk)
where oracle LoRRedact
for input S,R0,R1:
(S, σS)← Sign(sk,S)
if R0 * S ∨R1 * S: return ⊥
if b = 0: (S ′, σ′S)← Redact(pk,S, σS ,R0)

(R′, σ′R)← Redact(pk,S, σS ,S \ R0)
if b = 1: (S ′, σ′S)← Redact(pk,S, σS ,R1)

(R′, σ′R)← Redact(pk,S, σS ,S \ R1)
return Merge(pk,S ′, σ′S ,R′, σ′R)

return 1, if b = d

Fig. 7. Game for Merge Privacy

Experiment Merge TransparencyRSSC
A (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),Sign/Redact(...,sk,b)(pk)
where oracle Sign/Redact for input S,R:

if R 6⊆ S, return ⊥
(S, σS)← Sign(sk,S)
if b = 0: (S ′, σ′S)← (S, σS),
if b = 1: (T ′, σ′T )← Redact(pk,S, σS ,R)

(R′, σ′R)← Redact(pk,S, σS ,S \ R)
(S ′, σ′S)← Merge(pk, T ′, σ′T ,R′, σ′R)

finally return (S ′, σ′S).
return 1, if b = d

Fig. 8. Game for Merge Transparency

We say that a scheme RSS is merge transparent, if for every PPT adversary
A, the probability that the game depicted in Fig. 8 returns 1, is negligibly close
to 1

2 (as a function of λ). We emphasize that the notions of merge transparency
and merge privacy are very similar to the notions of privacy and transparency, as
they achieve comparable goals. We call a construction secure, if it is unforgeable,
(merge) transparent and (merge) private. Here, we see mergeability as a feature
and not as a security requirement.

5 Construction

In a nutshell, our generic construction is based upon an accumulator ACC, which
must be collision-resistant without trusted setup and indistinguishable. Both
properties are formally defined in the appendix. The signer uses ACC to accu-
mulate all elements vi of S into one accumulator value a. For each element vi
that is accumulated a witness pi is calculated. Finally, the accumulator value a
is signed with a standard signature scheme Π, e.g., RSA. From these underlying
building blocks our construction also inherits the security model.

The four basic ideas are:
(1) the accumulator value a remains unchanged after a redaction has taken place,
hence all derived subset/signature pairs are linkable by a.
(2) Redactions are private, as without knowledge of the corresponding witness
pi (and vi) nobody can verify if vi was “in” the signed a.
(3) Mergeability is achieved, as knowledge of an element/witness pair allows a
third party to add it back into a signed set.
Finally, (4) unforgeability comes from signing a.

The construction is generic, and proved secure if the accumulator and the signa-
ture scheme fulfill the security requirements. We give the complete algorithmic
description in Appendix A and security proofs in Appendix B.
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6 Applications

This new property enables the use of RSS in new domains. In this paper, we
discuss the application of RSSs for privacy preserving timestamping, partial but
authentic disclosure from archives, verifiable transparent database unions of data
in the cloud. State-of-the-art security models did not achieve the required prop-
erties for these applications.

Privacy Preserving Timestamping. Timestamps are issued by a third party
and produce evidence that can be used to show that the timestamped data ex-
isted at that particular time and was not modified since. A secure timestamping
service (TSS) [13] gets a hash of the data and generates a timestamp. The data
remains confidential, as the TSS gets only a hash of the data. Assume that Al-
ice wants to produce evidence to Charly that a set S of documents existed in
that exact form. To do so, Alice first produces a proof of existence (PoE) as
follows: Alice signs the set of documents S, with a committing yet mergeable
RSS. Alice then redacts the set completely, i.e, S ′ = ∅. Then Alice submits the
signature σS and the empty set to the secure timestamping service TSS, which
timestamps the PoE. Later in time, Alice can send the complete S or any subset
and the timestamped signature σS to Charly. Having the signature and TSS’s
timestamp, Charly is convinced that the elements he sees in S existed at the
time of timestamping. This allows Alice to disclose any subset S ′ ⊆ S without
the need to timestamp each subset in advance. Still, Alice’s privacy is protected
towards both entities: TSS does not see the elements in S that it timestamped.
And with our transparent and private RSS, Charly is not able to see if he only
received a subset. Existing solutions, which also only need one timestamp, leak
the latter information to Charly.

Partial, but authentic, disclosure of archived contracts. Electronic doc-
uments like contracts or financial records are stored in archives. Due to legal
compliance the archiving process needs to ensure the integrity, authenticity and
timeliness of the data archived. In particular, the archival of documents must re-
sult in a verifiable proof that the documents have existed at the time of entering
the archive and have not changed since. Hence, businesses have such archives
digitally signed by third parties, such as financial auditors. If legal duties, or
other circumstances, require to share some, but not all, documents from the
archive using redactable signatures allow protecting trade secrets, by removing
them, while it keeps the auditors signature as evidence. Imagine a company is
given a court order to provide all their archived information relating to a certain
business transaction as evidence in court, i.e., during an e-discovery [11]. The
company is only in need to present the documents containing only the infor-
mation relevant for the court case. Companies neither need nor want to release
the full signed archive nor documents with trade-secrets unnecessary to disclose.
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Keeping the signature of the auditor valid helps dissipating doubt about provid-
ing falsified information up front. A naïve solution requires each document-part
being signed individually and creates an overhead in storage and management
of the set of signatures.

Verifiable and transparent database unions of data distributed in the
cloud. Distributed storage of data base records is another application area.
Reasons to split database records are manifold; e.g., for efficiency large databases
can be be split and distributed over several database servers. For reasons of data
protection, data must be split into personal parts and parts that contain data,
which on its own is anonymous. For example, data protection is important for
bio data banks, which are collections of samples of human bodily substances
(e.g., blood or DNA) that are or can be associated with persona data. Each
single field of each record in a complete database is signed using a redactable
and mergeable signature scheme, which allows records or databases to be split
by redaction. To clarify, assume a DB with three records {A,B,C} is split in
three parts with just one element each: Part 1 is created by redaction of {B,C}
from the complete set, part 2 by redaction of {A,C}, and part 3 by redacting
{B,C}. All parts retain a valid signature. Clients can request records from a
server and check their integrity by verification of the signature. This allows
separating the records such that highly confidential values are not stored on
servers with an insufficient security clearance. Mergeability allows combining
database records later. If single records are split it allows each single database
server to combine several records in one answer. The recipient can verify their
signature. Moreover, the client can ask several database servers if he has the
needed clearance and merge their answers and gain assurance that they come
from the same source and establish that the records have not been modified.
Due to the privacy of the scheme, parts that have been removed during splitting
cannot be reconstructed without having access to them. Hence, parts without a
need for a high-level of protection can be stored on servers with lower security
requirements. Additionally, a third-party can carry out the merging step. Due
to merge transparency, even the information that an answer has been created
through a merge remains unknown to the recipient.

7 Conclusion

We have introduced the notion of committing redactable signature schemes. This
security property prohibits a signer to add new elements to a signed set after
signature generation. Moreover, we have formalized the notion of mergeability,
the inverse of redactions. Combined, these properties allow using redactable sig-
nature schemes in more application scenarios, e.g., timestamping and distributed
databases. This has not been possible before. We have analyzed state-of-the-art
redactable signature schemes and found that those that offer the same level of
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privacy and transparency, are not committing and those that show committing
or mergeable behavior are neither private nor transparent. Our committing and
mergeable scheme is provably secure, that is, it is unforgeable, (merge) transpar-
ent and (merge) private. We achieve the same security regarding transparency,
which implies privacy, and unforgeability as the more recent state-of-the-art
schemes. In particular our security is comparable to that of Brzuska et al. [5].
Our construction is based on a trapdoor-free accumulator and an unforgeable
signature scheme. Theoretical runtime complexity for the signature generation
is O(n). Verification, redaction and merging are also in O(n). Our implementa-
tion’s performance suggests, that our scheme is reasonable fast.
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A Construction of a Committing, Mergeable and
Transparent and Unforgeable RSS

This section gives a quick outline of the construction before we continue with an
algorithmic explanation. Our construction is based upon an accumulator ACC,
which must be (1) trapdoor-free5 and (2) not leak information about additional
members, i.e., the digests must be indistinguishable. The second building block is
5 Or the trapdoor must not be known to the signer
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an unforgeable signature scheme (UNF-CMA). The construction is generic, and
secure if the two building blocks fulfill the security requirements. From these
underlying building blocks our construction also inherits the security model.
Our prototype uses the ideas given in [30]. Lipmaa’s construction [21] is another
candidate.

A.1 Accumulator: Trapdoor-Freeness and Indistinguishability

Cryptographic accumulators (ACC) have been introduced by Benaloh and de
Mare [4]. They hash a potentially very large set into a short single value a,
called the accumulator. To later prove that a given value vi was actually used to
calculate a, a witness pi ∈ Ppk is calculated. Ypk denotes the input domain, while
the output domain is denoted as Xpk. pk ∈ K expresses the public parameters
required by ACC, whereas K denotes the key space. We require that ACC is
trapdoor-free [30], while an adversary cannot decide how many elements are
contained in a given accumulator without having access to all of them. We
do not require any dynamic updates [8], non-membership witnesses [19], non-
deniability [21], or quasi-commutativity [25] for our scheme to work. This allows
a wider range of accumulators to be used as the underlying building block for
our construction.. The following algorithmic description is derived from [21].

Definition 2 (Cryptographic Accumulators). A cryptographic accumulator
ACC consists of five efficient (PPT) algorithms. In particular, ACC := (Setup,
Gen,Eval,Wit,Ver) such that:

Setup. The algorithm Setup is the parameter generator. On input of the security
parameter λ and the public random tape ω, it outputs the system parameter
parm, i.e., parm← Setup(1λ, ω)

Gen. The algorithm Gen is the instance generator. On input of the security pa-
rameter λ and parm, it outputs pk: pk← Gen(1λ, parm)

Dig. The algorithm Dig takes as input the set S to accumulate, the public pa-
rameters pk and outputs an accumulator value a, i.e, a← Dig(pk,S)

Proof. The algorithm Proof takes as input the public parameters pk, a value y ∈
Ypk and returns a witness p from a witness space Ppk, if y ∈ S was input to
Dig, i.e., Dig(pk,S), and ⊥ otherwise. Hence, it outputs p← Proof(pk, y,S)

Verf. The verification algorithm Verf takes as input the public key pk, an ac-
cumulator a ∈ Xpk, a witness p, and a value y ∈ Ypk and outputs a bit
d ∈ {0, 1} indicating whether p is a valid proof that y has been accumulated
into a. Hence, it outputs d← Verf(parm, pk, a, y, p)

We require the correctness properties to hold. Refer to [3] for a formal definition.
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Experiment Collision− ResistanceACC
A (λ, ω)

parm← Setup(1λ, ω)
pk← Gen(1λ, parm)
(m∗, S∗, p∗)← A(ω, parm, pk)
a← Dig(pk,S∗)
return 1, if

Ver(pk, a,m∗, p∗) = 1 and
m∗ /∈ S∗

Fig. 9. Game for Collision-Resistance Without
Trusted Setup

Experiment IndistinguishableACC
A (λ, ω)

parm← Setup(1λ, ω)
pk← Gen(1λ, parm)

b
$← {0, 1}

d∗ ← ALoRHash(...,b,pk)(ω, parm, pk)
where oracle LoRHash for input S,R:
z

$← Ypk

if b = 1: return (Dig(pk,S ∪R ∪ z),
{(yi, pi) | pi ← Proof(pk, yi ∈ S,S ∪R ∪ z)})
if b = 0: return (Dig(pk,S ∪ z),
{(yi, pi) | pi ← Proof(pk, yi ∈ S,S ∪ z)})

return 1, if d = b

Fig. 10. Game for Indistinguishability

Collision-Resistant Without Trusted Setup. An adversary should not be
able find a valid witness/element pair (p∗, y∗) for a given accumulator a, even
if it is allowed to see the random tape ω used for generation of parm. This is
related to the CRS-model. The honest generation of pk can be verified by using
verifiable use of randomness. Refer to [21] for a detailed explanation. Another
way, not requiring a stronger accumulator, is to let a third party, a.k.a. the
accumulator manager, handle the public parameter generation. It depends on
the concrete use case what method is more appropriate. In our case, we only
require the signer not to know any trapdoor information that allows finding
collisions in a trivial way. We use the trapdoor-free approach. We call a family
of accumulators collision-resistant without trusted setup, if the probability
that the experiment depicted in Fig. 9 returns 1, is negligible (as a function of
λ). In particular, the adversary has to find a witness/element pair which verifies,
while the element has not been accumulated.

Indistinguishable Membership Count. We also require that an adversary
who does not know all elements in S is not able to decide how many additional
elements the accumulator a contains. This behavior is crucial to maintain trans-
parency for our construction. In particular, we add a nonce as a blinding value
to prohibit attackers from re-calculating the accumulator a.

We say that an accumulator is indistinguishable, if the probability that the game
depicted in Fig. 10 returns 1, is negligibly close to 1

2 (as a function of λ). Here,
the adversary can choose the input, and has to guess, if the digest has only one
more member (b = 0) or more (b = 1). The blinding value z is chosen by the
oracle at random. The basic idea is to require that one additionally accumulated
blinding value is enough to hide that an accumulator has additional members.
Please note that the witnesses are also returned.
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A.2 Our Construction

Construction 1 (Committing and Mergeable RSS.) A non-updateable and
reconstructable RSS consists of six efficient algorithms. In particular, RSSC :=
(KeyGen, Sign,Verify,Redact, Link,Merge) such that:

KeyGen. The algorithm KeyGen generates the key pair in the following way:

1. Generate a key pair of standard signature scheme Π = (SKeyGen,SSign,
SVerify) like RSA, i.e., (pks, sks)← Π.SKeyGen(λ)

2. Generate or get the public parameters required for the accumulator, i.e.,
run parm← Setup(1λ, ω) and pkh ← Gen(1λ, parm)

3. Output ((pks, ω, parm, pkh), (sks))

Sign. To sign a set S, perform the following steps:

1. Draw a random value: y $← Ypk

2. Accumulate all elements of S and y: a← Dig(pk, y ∪ S)

3. P = {pi | Proof(pk, yi,S)}

4. Sign a: SSign(sks, a)

5. Output (S, σS), where σS = (pks, σa, {(yi, pi) | yi ∈ S ∧ pi ∈ P})

Verify. To verify a signature σS = (pks, σa, {(yi, pi) | yi ∈ S∧pi ∈ P}), perform:

1. Verify σa, w.r.t. pks and a, using SVerify

2. Check, if pkh and parm have been generated honestly, using ω

3. For each element yi ∈ S using its witness check, if Verf(pk, a, yi, pi) = 1

Redact. To redact a subset R ⊆ S, the algorithm performs the following steps:

1. Check the validity of σS using Verify. If σS is not valid, return ⊥

2. Output (S ′, σ′S), where σ′S = (pks, σa, {(yi, pi) | yi ∈ S \ R})
Note, all unnecessary pj for yj ∈ R are no longer distributed.

Link. The link algorithm performs the following steps:

1. Verify σS and σT . If any signature is not valid, return ⊥

2. Return 1, if the values aS and aT protected by the inner signatures σa,S
and σa,T are equal, 0 otherwise

Merge. To merge two set/signature pairs (S, σS) and (T , σT ), perform:

1. Check, if Link(pk,S, σS , T , σT ) = 1, if not, return ⊥

2. Output (S ∪ T , σU ), where σU = ((pks, σa, {(yi, pi) | yi ∈ S ∪ T })
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B Security Proofs

Theorem 1 (The Construction is Correct and Secure). Our construc-
tion is secure and correct, if the underlying signature scheme is unforgeable
and the underlying accumulator is trapdoor-free and indistinguishable. We call a
redactable signature scheme secure if it is unforgeable, (merge) transparent and
(merge) private.

We give proofs for unforgeability, transparency, which implies privacy. After this,
we prove the new properties of committing and the notions of merge privacy and
merge transparency. We sometimes have to remain sketchy due to limited space.

Theorem 2 (The Construction is Unforgeable). Our construction is un-
forgeable, if the underlying signature scheme is unforgeable and the underlying
accumulator collision-resistant without trusted setup.

Proof. The only case we have to consider to win the game for unforgeability given
in Fig. 1, is that S∗ 6⊆ S. We denote the adversary winning the unforgeability
game as Aunf . We can then derive, that the forgery must fall into at least one
of the following categories:

1. The value protected by the underlying signature σ∗a has never been queried.

2. The value protected by the underlying signature σ∗a has been queried, but
S∗ 6⊆ S, i.e., the documents protected are not in the transitive closure of any
queried signature. This case has to be divided further:

2a. S 6⊆ S∗ 2b. S∗ ⊃ S

S∗ ⊆ S, is not a forgery, but a redaction. We show that each case leads to a
contradiction about the security of the underlying primitives.

Case 1. In this case, we can useAunf as a black-box to break the unforgeability of
the underlying signature algorithm. In particular, we can construct the algorithm
AunfSS in the following way:

1. Forward pk of the SS to forge to Aunf
2. Any queries to the signing oracle from Aunf are forwarded to AunfSS ’s own

signing oracle and genuinely returned

3. Eventually, Aunf outputs a pair (S∗, σ∗S)

4. AunfSS returns (a∗, σ∗a), which can be extracted from σ∗S

5. If the digest a has been digested, abort

As we have required that a∗ has never been signed, the tuple (a∗, σ∗a) breaks the
standard unforgeability requirement of the underlying signature scheme.
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Case 2a. In this case, an element has been added to the set, which has not been
signed by the signing oracle. This can be derived from the requirements that
S∗ 6⊆ S and S 6⊆ S∗ must yield. Hence, we break the collision-resistance of the
underlying accumulator by letting Acol use Aunf as a black-box:

1. Generate a key-pair of a SS. Forward H and pk to Aunf
2. Any queries to the signing oracle from Aunf are genuinely answered by Acol
3. Eventually, Aunf outputs a pair (S∗, σ∗S)

4. Acol returns (a, {(vi, pi) | vi ∈ S∗}), which are contained in σ∗S and S∗

5. If every element has been queried, abort.

As there exists an element v∗i ∈ S∗ which has not been accumulated, Acol breaks
the collision-resistance of the underlying accumulator by outputting (a, v∗i , p

∗
i )

Case 2b. The same as case 2a, since at least one element must have been added.

Theorem 3 (The Construction is Transparent). Our construction is trans-
parent and therefore private, if the output of the accumulator is indistinguishable.

Proof. Let Atra be an adversary winning the transparency game as defined in
Fig. 3. We can then use Atra as a black-box in an algorithm Aindis to show that
the underlying accumulator is not indistinguishable.

1. Receive the public key of the hash function

2. Generate a key pair for a signature scheme to simulate the signing oracle

3. Forward the public keys to Atra
4. Simulate the LoRRedact-Oracle by forwarding R, S and pk to the LoRHash-

Oracle. Sign the digest using the signature scheme’s secret key.

5. Eventually, Atra outputs its guess b∗

Aindis outputs b∗ as its own guess. The success probability of Aindis is exactly
the same as Atra, as the elements are passed through.

Theorem 4 (The Construction is committing). Our construction is com-
mitting, if the accumulator is collision-resistant without trusted setup.

Proof. Let Aupdateable be an adversary winning the committing game as defined
in Fig. 4. We can then use Aupdateable as a black-box in an algorithm Acol which
breaks the collision-resistance without trusted setup of the accumulator.

1. Receive the key-pair (pk∗, sk∗) from Aupdateable
2. Receive the set V∗ from Aupdateable and sign it

3. Forward (V∗, σ∗V , pk
∗, sk∗) to Aupdateable



23

4. Eventually, Aupdateable outputs a pair (S∗, σ∗S)

5. Acol returns (a, {(vi, pi) | vi ∈ S∗}), which are contained in σ∗S and S∗

6. Abort, if the colliding tuples are trivial, i.e., no new element is contained.

As there exists an element v∗i ∈ S∗ which has not been accumulated, Acol breaks
the collision-resistance without trusted setup by outputting (a, v∗i , p

∗
i ).

Theorem 5 (Our Construction is Mergeable and Linkable). Our con-
struction is mergeable and linkable, if the accumulator is collision-resistant with-
out trusted setup and the signature scheme is unforgeable.

Proof. (Sketch) Each signed set has a unique and constant accumulator value
a. Valid redactions do not change this signed value. Witnesses of previously
redacted elements stay valid members of their set’s a. It is linkable unless the
attacker is able to change a outside of a valid redaction. To achieve this the
attacker would need to forge the signature or it implies an adversary against
the collision-resistance of the underlying accumulator. Constructing a simulator
along with an extractor is straight forward.

Theorem 6 (Our Construction is Merge Private and Merge Transpar-
ent). Our construction is merge private and merge transparent.

Proof. The contents and values of merged and freshly signed signatures are equal.
This implies, that our construction is information-theoretically merge private and
information-theoretically merge transparent.

C Complexity Analysis and Performance Evaluation

For signing, our scheme requires O(n) steps, where n is the size of the set. We
chose an accumulator with trusted setup, and we exclude the modulus gener-
ation from the measurements, as they are only done once for the setup. This
requires O(n) steps for each witness generated. Hence, our overall runtime com-
plexity is O(n2). Using a more sophisticated tree-based evaluation algorithm,
the complexity of witness generation can be improved to O(log2(n) · n) [3]. The
accumulator being central means a faster accumulator in O(n) leads to a to-
tal runtime complexity of O(n). Verifying a signature is in O(n). Consequently,
redacting, linking and merging are also in O(n), since the only relevant step
is verifying the given signature(s). The storage complexity is also O(n), as for
each element vi ∈ S, a witness pi exists. We use an Intel Q9550 Quad Core
@2.83 GHz with 3 GiB of RAM and RSA as the signature algorithm. For the
accumulator we implemented [3]. Utilized is Windows XP (32 Bit) with Java
1.7.0_01-b08. We measured with different modulus sizes of 512, 1024 and 2048
Bit. Excluded from timing: (1) RSA key pair generation, since it is reasonable
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Sign Verification Linking Merging
PPPPPPPModulus

`
10 50 100 10 50 100 10 50 100 10 50 100

512 Bit 1.4 15.5 55.8 0.3 1.5 3.9 0.6 3.0 7.8 0.7 3.0 7.8
1024 Bit 14.1 161.5 464.7 3.8 27.1 46.0 6.8 53.5 91.3 6.8 53.5 91.2
2048 Bit 24.8 403.1 1,440.3 4.8 32.3 56.6 8.6 63.4 112.3 8.6 63.4 112.9

Table 2. Median Runtime; in s

to assume that a signer already owns a key pair. The time spent for the key
pair generation becomes negligible for large document counts. (2) generation of
suitable RSA modulus for the accumulator, as it depends on the actual use case
how to generate it. Shown is the median of 10 runs. All intermediate results
are stored in RAM to avoid any impact of disk access. The results can be seen
in Tab. 2. As shown, our construction is useable, but becomes slow for a large
elements count. However, if a faster secure accumulator becomes available, the
runtime will decrease, rendering our scheme useable even for large numbers of
elements. We provide the source code on request.
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