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ON ELO BASED PREDICTION MODELS
FOR THE FIFA WORLDCUP 2018

LORENZ A. GILCH AND SEBASTIAN MÜLLER

Abstract. We propose an approach for the analysis and prediction of a football cham-
pionship. It is based on Poisson regression models that include the Elo points of the
teams as covariates and incorporates differences of team-specific effects. These models
for the prediction of the FIFA World Cup 2018 are fitted on all football games on neu-
tral ground of the participating teams since 2010. Based on the model estimates for
single matches Monte-Carlo simulations are used to estimate probabilities for reaching
the different stages in the FIFA World Cup 2018 for all teams.

We propose two score functions for ordinal random variables that serve together with
the rank probability score for the validation of our models with the results of the FIFA
World Cups 2010 and 2014. All models favor Germany as the new FIFAWorld Champion.

All possible courses of the tournament and their probabilities are visualized using a
single Sankey diagram.

1. Introduction

Football is a typical low-scoring game and games are frequently decided through single
events in the game. These events may be extraordinary individual performances, individual
errors, injuries, refereeing errors or just lucky coincidences. Moreover, during a tournament
there are most of the time teams and players that are in exceptional shape and have a strong
influence on the outcome of the tournament. One consequence is that every now and then
alleged underdogs win tournaments and reputed favorites drop out already in the group
phase.

The above effects are notoriously difficult to forecast. Despite this fact, every team has
its strengths and weaknesses (e.g. defense and attack) and most of the results reflect the
qualities of the teams. In order to model the random effects and the “deterministic” drift
forecasts should be given in terms of probabilities.

Among football experts and fans alike there is mostly a consensus on the top favorites, e.g.
Brazil, Germany, Spain, and more debate on possible underdogs. However, most of these
predictions rely on subjective opinions and are not quantifiable. An additional difficulty
is the complexity of the tournament, with billions of different outcomes, making it very
difficult to obtain accurate guesses of the probabilities of certain events.

Date: June 8, 2018.
Key words and phrases. FIFA World Cup 2018; football; Poisson regression; score functions,

visualization.
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A series of statistical models have therefore been proposed in the literature for the predic-
tion of football outcomes. They can be divided into two broad categories. The first one, the
result-based model, models directly the probability of a game outcome (win/loss/draw),
while the second one, the score-based model, focusses on the match score. We use the sec-
ond approach since the match score is important in the group phase of the championship
and it also implies a model for the first one.

There are several models for this purpose and most of them involve a Poisson model. The
easiest model, (Lee, 1997), assumes independence of the goals scored by each team and
that each score can be modeled by a Poisson regression model. Bivariate Poisson models
were proposed earlier by (Maher, 1982) and extended by (Dixon and Coles, 1997) and
(Karlis and Ntzoufras, 2003). A short overview on different Poisson models and related
models like generalised Poisson models or zero-inflated models are given in (Zeileis et al.,
2008) and (Chou and Steenhard, 2011). Possible covariates for the above models may be
divided into two major categories: those containing “prospective” informations and those
containing “retrospective” informations. The first category contains other forecasts, espe-
cially bookmakers’ odds, see e.g. (Leitner et al., 2010), (Zeileis et al., 2012) and references
therein. This approach relies on the fact that bookmakers have a strong economic incen-
tive to rate the result correctly and that they can be seen as experts in the matter of
the forecast of sport events. However, their forecast models remain undisclosed and rely
on information that is not publicly available. The second category contains only historical
data and no other forecasts. Since models based on the second category allow to explicitly
model the influence of the covariates, we pursue this approach using regression models
for the outcome of single matches. Since the FIFA World Cup 2018 is a more complex
tournament, involving for instance effects such as group draws, e.g. see (Deutsch, 2011),
and dependences of the different matches, we use Monte-Carlo simulations to forecast the
whole course of the tournament. For a more detailed summary on statistical modeling of
major international football events we refer to (Groll et al., 2015) and references therein.

These days a lot of data on possible covariates for the forecast models is available. (Groll
et al., 2015) performed a variable selection on various covariates and found that the three
most significant retrospective covariates are the FIFA ranking followed by the number of
Champions league and Euro league players of a team. We prefer to consider the Elo ranking
instead of the FIFA ranking, since the calculation of the FIFA ranking changed over time
and the Elo ranking is more widely used in football forecast models. See also (Gásques and
Royuela, 2016) for a recent discussion on this topic and a justification of the Elo ranking.
At the time of our analysis the composition and the line ups of the teams have not been
announced and hence the two other covariates are not available. This is one of the reasons
that our models are solely based on the Elo points and matches of the participating teams
on neutral ground since 2010. Our results show that, despite the simplicity of the models,
the forecasts are conclusive and give together with the visualization, see Figure 4, a concise
idea of the possible courses of the tournament.

We propose four models of Poisson regressions with increasing complexity. The validation
of the models involve goodness of fit tests and analysis of residuals and AIC. Moreover,
we validate the models on the FIFA Worldcups 2010 and 2014. This turned out to be a
challenging task and the approach we propose here can only be considered as a first step. A



PREDICTION MODELS FOR THE FIFA WORLD CUP 2018 3

first difficulty is that every outcome of each single match is modeled as GA:GB, where GA

(resp. GB) is the number of goals of team A (resp. of team B). To our knowledge there is
no established score function for such kind of pairs of random variables. Even for the easier
game outcome (win/loss/draw) there seems not to be a well established candidate for a
good score function. However, the ranked probability skill score (RPS) is a natural and
promising candidate; we refer to (Constantinou and Fenton, 2012) for a discussion on this
topic. So much the worse we forecast not only a single match but the course of the whole
tournament. Even the most probable tournament outcome has a probability, very close to
zero to be actually realized. Hence, deviations of the true tournament outcome from the
model’s most probable one are not only possible, but most likely. However, simulations of
the tournament yield estimates of the probabilities for each team for reaching the different
stages of the tournament. In this way we obtain for each team an ordinal random variable.
For this variable we propose two new score functions and compare them to the RPS and
the Brier score.

The models show a good fit and the score function on the validation on the FIFA World-
cups 2010 and 2014 are very close to each other. This may be surprising since the actual
probabilities that a given team wins the cup may be significantly different. However, all
models favor Germany (followed by Brazil) to win the FIFA Worldcup 2018.

2. The models

Our models are based on the World Football Elo ratings of the teams. It is based on the Elo
rating system, see (Elo, 1978), but includes modifications to take various football-specific
variables into account. The Elo ranking is published by the website eloratings.net. The
Elo ratings as they were on 28 march 2018 for the top 5 nations (in this rating) are as
follows:

Brazil Germany Spain Argentina France
2131 2092 2048 1985 1984

In the next sections we present several models in increasing complexity. They forecast the
outcome of a match between teams A and B as GA : GB, where GA (resp. GB) is the
number of goals scored by team A (resp. B). The models are based on Poisson regression
models. In these models we assume (GA, GB) to be a bivariate Poisson distributed random
variable; see Section 8 for a discussion on other underlying distributions for GA and GB.
The distribution of (GA, GB) will depend on A and B, and the Elo rankings EloA and
EloB of the two teams. The models are fitted using all matches of FIFA World Cup 2018
participating teams on neutral playground between 1.1.2010 and 31.12.2017; see Section 8
for a discussion why we dropped other games.

All models are key ingredients in order to simulate the whole tournament and to determine
the likelihood of the success for each participant.

2.1. Independent Poisson regression model. In this model we assume both GA and
GB to be independent Poisson distributed variables with rates λA|B and λB|A. We estimate
the Poisson rates λA|B and λB|A via Poisson regression with the Elo scores of A and B as
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covariates. Poisson regression models are performed for every team in order to incorporate
team specific strengths (attack and defense). The rates are calculated as follows:

(1) The first step models the number of goals G̃A scored by team A playing against a
team with a given Elo score Elo = EloB. The random variable G̃A is modeled as
a Poisson distribution with parameter µA. The parameter µA as a function of the
Elo rating EloO of the opponent O is given as

logµA(EloO) = α0 + α1 · EloO, (2.1)

where α0 and α1 are obtained via Poisson regression.
(2) Teams of similar Elo scores may have different strengths in attack and defense. To

take this effect into account we model the number of goals team B receives against
a team of Elo score Elo = EloA using a Poisson distribution with parameter νB.
The parameter νB as a function of the Elo rating EloO is given as

log νB(EloO) = β0 + β1 · EloO, (2.2)

where the parameters β0 and β1 are obtained via Poisson regression.
(3) Team A shall in average score µA

(
EloB

)
goals against team B, but team B shall

have νB
(
EloA

)
goals against. As these two values rarely coincides we model the

numbers of goals GA as a Poisson distribution with parameter

λ = λA|B =
µA
(
EloB

)
+ νB

(
EloA

)
2

.

Analogously, we obtain

λB|A =
µB
(
EloA

)
+ νA

(
EloB

)
2

.

For each team, the regression parameters α0, α1, β0 and β1 are estimated. The match A
versus B is then simulated using two independent Poisson random variables GA and GB

with rates λA|B and λB|A.

2.1.1. Regression plots. As two examples of interest, we sketch in Figure 1 the results of the
regression in (2.1) for Germany and Brazil. The dots show the observed data (i.e, number
of scored goals on the y-axis in dependence of the opponent’s strength on the x-axis) and
the line is the estimated mean depending on the opponent’s Elo strength.

Analogously, Figure 2 sketches the regression in (2.2) for Germany and Brazil. The dots
show the observed data (i.e., the number of goals against) and the line is the estimated
mean for the number of goals against.

2.1.2. Goodness of fit test. We check goodness of fit of the Poisson regressions in (2.1) and
(2.2) for all participating teams. For each team T we calculate the following χ2-statistic
from the list of matches:

χT =

nT∑
i=1

(xi − µ̂i)2

µ̂i
,

where nT is the number of matches of team T, xi is the number of scored goals of team T
in match i and µ̂i is the estimated Poisson regression mean.
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Figure 1. Plots for the number of goals scored by Brazil and Germany in
regression (2.1).

Figure 2. Plots for the number of goals against for Brazil and Germany
in regression (2.2).

We observe that most teams have a good fit, except some teams of less impact and France.
We have found out that the bad fit of France is also a consequence of the bad and chaotic
performance during the World Cup 2010. Therefore, we considered only French matches
after 01.01.2012 but have also taken the matches of the EURO 2016 (held in France) into
account when fitting the parameters of France. As an consequence the regression plots in
Figure 3 promise an acceptable fit. The p-values for the top 5 teams are given in Table 1.
We remark that without the specific adaption for France we would get a p-value of 0.0011
for France.

Team Brazil Germany Spain Argentina France
p-value 0.56 0.39 0.40 0.14 0.03

Table 1. Goodness of fit test for the independent Poisson regression model
defined in Section 2.1 for the top five teams.

2.1.3. Deviance analysis. First, we calculate the null and residual deviances for each team
for the regression in (2.1). Table 2 shows the deviance values and the p-values for the
residual deviance for the top five teams in the current Elo ranking. Although several of the
p-values are low, they are still acceptable. The deviances and the p-values for the regression
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Figure 3. Regression plots of France for the number of goals scored and
goals against in regressions (2.1) and (2.2).

Team Null deviance Residual deviance p-value
Brazil 65.03 50.04 0.21
Germany 41.83 34.99 0.20
Spain 54.83 38.89 0.26
Argentina 59.65 47.19 0.10
France 30.08 25.66 0.019

Table 2. Deviance analysis for the top five teams in regressions (2.1)

in (2.2) are given in Table 3.

Team Null deviance Residual deviance p-value
Brazil 48.06 45.98 0.35
Germany 31.69 31.48 0.34
Spain 49.65 46.93 0.07
Argentina 52.49 51.68 0.04
France 14.81 13.50 0.41

Table 3. Deviance analysis for the top five teams in regressions (2.2)

2.2. Bivariate Poisson regression model. The possible weakness of the previous model
is that the number of goals GA and GB are realized independently and the fits in Tables
2 and 3 are not overwhelming. In this section we make a bivariate Poisson regression
approach. First, recall the definition of a bivariate Poisson distribution: let X1, X2, X0

be independent Poisson distributed random variables with rates λ1, λ2, λ0. Define Y1 =
X1+X0 and Y2 = X2+X0. Then (Y1, Y2) is bivariate Poisson distributed with parameters
(λ1, λ2, λ0). In particular, Yi is Poisson distributed with rate λi+λ0 and Cov(Y1, Y2) = λ0.

The plan is to model (GA, GB) as a bivariate Poisson distributed random vector for every
couple A,B separately (in order to keep each participants individual strengths). The main
idea is two perform one regression over all matches of team A and to estimate the average
number of goals of team A and its opponent in terms of his Elo strength EloB. Then we
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perform another regression over all matches of team B and estimate the expected number
of goals of B and the average goals against of B when playing against a team of Elo rank
EloA. Hereby, we use the same notation as in Section 2.1 with µT being the Poisson rate
for the average of scored goals of any team T, while νT is the average number of goals
against of team T. The model uses the following regression approach.

(1) For each World Cup participating team T, we estimate the parameters

(λ1, λ2, λ0) = (µT, νT, τT)

from the viewpoint of team T, where we only take matches of team T on neutral
playground into account. The parameters shall depend on the Elo strength EloO of
an opponent team O. To this end, we use the following Poisson regression model:

logµT
(
EloO

)
= α1,0 + α1,1EloO,

log νT
(
EloO

)
= α2,0 + α2,1EloO, (2.3)

log τT
(
EloO

)
= α3,0

That is, the estimated expected number of scored goals of team T against a team of
Elo strength EloO is given by µT

(
EloO

)
+τT, while the estimated expected number

of scored goals of a team with Elo score EloO against T is given by νT
(
EloO

)
+τT.

(2) In order to estimate the Poisson rates (λ1, λ2, λ0) for the match result (GA, GB) we
can use the regression coefficients both of A and B in the following way: λ1 may be
estimated either by considering all matches of team A and calculating µA

(
EloB

)
or

by considering all matches of team B and calculating νB
(
EloA

)
, which corresponds

to the goals against of team B (that is, the number of scored goals of team A
against B). Therefore, we estimate λ1 as the mean of µA

(
EloB

)
and νB

(
EloA

)
.

Analogously, we estimate λ2 as the mean of µB
(
EloA

)
and νA

(
EloB

)
and λ0 also

as the mean of the covariances τA and τB. That is,

λ1 =
µA
(
EloB

)
+ νB

(
EloA

)
2

,

λ2 =
µB
(
EloA

)
+ νA

(
EloB

)
2

,

λ0 =
τA
(
EloB

)
+ τB

(
EloA

)
2

,

(3) Finally, we assume that (GA, GB) is bivariate Poisson distributed with parameters
(λ1, λ2, λ0).

Remark: In (2.3) we estimate τT to be a constant for each team. Of course, one can also
τT let depend on the opponent’s Elo score EloO, that is,

log τT
(
EloO

)
= α3,0 + α3,1EloO.

Calculations, however show that the AIC increases by adding the covariate EloO for most
of the teams. The same observation is made if we add EloT as an additional covariate.



8 LORENZ A. GILCH AND SEBASTIAN MÜLLER

2.3. Bivariate Poisson regression with diagonal inflation. We consider the previous
model with additional diagonal inflation. Such models are quite useful when one expects
diagonal combinations with higher probabilities than the ones fitted under a bivariate
Poisson model. In particular, it has been observed earlier, e.g. see (Karlis and Ntzoufras,
2003), (Karlis and Ntzoufras, 2005), that the number of draws is in some situation larger
than those predicted by a simple bivariate Poisson model. We inflate the diagonal with
probability p. The inflation is given by the vector (θ0, θ1, θ2) that describes the probability
of the match results 0:0, 1:1 and 2:2. We compare the AIC of the diagonal inflated model
with the non-inflated model, see Table 4 for the five top teams. The values of the inflation
probability are close to zero. Despite the fact that the AIC decreases for almost all teams
we do not believe that the inflated model improves the forecast. This observation is also
supported by the results in Tables 7 and 10.

Team p θ0 θ1 θ2 AIC AIC
inflated not inflated

Brazil 0.01 0.00 0.00 1.00 251.56 257.40
Germany 0.01 0.00 0.00 1.00 186.19 192.18
Spain 0.00 0.00 0.00 1.00 215.06 221.06
Argentina 0.02 0.00 0.00 1.00 230.97 236.56
France 0.03 1.00 0.00 0.00 93.53 99.46

Table 4. Diagonal inflated bivariate Poisson regression for the top five teams.

2.4. Nested Poisson regression model. We now present another dependent Poisson
regression approach. The Poisson rates λA|B and λB|A are now determined as follows:

(1) We always assume that A has higher Elo score than B. This assumption can be jus-
tified, since usually the better team dominates the weaker team’s tactics. Moreover
the number of goals the stronger team scores has an impact on the number of goals
of the weaker team. For example, if team A scores 5 goals it is more likely that B
scores also 1 or 2 goals, because the defense of team A lacks in concentration due
to the expected victory. If the stronger team A scores only 1 goal, it is more likely
that B scores no or just one goal, since team A focusses more on the defence and
secures the victory.

(2) The Poisson rate for GA is determined as in Section 2.1 before by

λA|B =
µA
(
EloB

)
+ νB

(
EloA

)
2

,

which is obtained via Poisson regression.
(3) The number of goals GB scored by B is assumed to depend on the Elo score

EA = EloA and additionally on the outcome of GA. More precisely, GB is modeled
as a Poisson distribution with parameter λB(EA, GA) satisfying

log λB(EA, GA) = γ0 + γ1 · EA + γ2 ·GA. (2.4)
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Once again, the parameters γ0, γ1, γ2 are obtained by Poisson regression. Hence,

λB|A = λB(EA, GA).

(4) The result of the match A versus B is simulated by realizing GA first and then
realizing GB in dependence of the realization of GA.

This approach may also be justified through the definition of conditional probabilities:

P[GA = i, GB = j] = P[GA = i] · P[GB = j | GA = i] ∀i, j ∈ N0.

We are not aware of other validation methods for this model than the validation on his-
torical data. Tables 7 and 10 indicate that this model may indeed have the best fit.

3. Score functions

In the following we want to compare the predictions with actual results of the two previous
FIFA World Cups. For this purpose, we introduce the following notation. For a team T we
define:

result(T) =



1, if T was FIFA World Cup winner,
2, if T lost the final,
3, if T dropped out in semifinal,
4, if T dropped out in quarterfinal,
5, if T dropped out in round of last 16,
6, if T dropped out in round robin.

For example, in 2014 we have result(Germany) = 1, result(Argentina) = 2, result(Brazil) =
3 or result(Italy) = 6.We consider the variable result as a ordinal variable, since for instance
predicting Germany to drop out in round robin should be penalized more than predicting
that Germany looses the final. We choose a linear scaling, i.e. the values 1, 2, 3, 4, 5, 6, since
there is always one match between the different rounds. Score functions for ordinal variables
are, to the best of our knowledge, not well studied. We refer to (Constantinou and Fenton,
2012) for a discussion on this topic. We propose two new score functions and compare them
with the Brier score and the Rank-Probability-Score (RPS). For each model, the simulation
leads to a probability distribution given by pj(T) = P[result(T) = j], j ∈ {1, . . . , 6}, for
the result of each team T. The following score functions measure and compare the forecasts
with the real outcome.

(1) Maximum-Likelihood-Score: The error of team T is defined as

error1(T) =
∣∣result(T)− argmax

i=1,...,6
pi(T)]

∣∣.
The total error score is given by summing up the errors of all World Cup partici-
pating teams:

E1 =
∑
T

error1(T).
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(2) Weighted differences: The error of team T is defined as

error2(T) =

6∑
j=1

pj(T)
∣∣j − result(T)

∣∣.
The total error score is given by

E2 =
∑
T

error2(T).

(3) Brier Score: The error of team T is defined as

error(T)3 =
6∑

j=1

(
pj(T)− 1[result(T)=j]

)2
.

The total error score is given by

BS =
∑
T

error3(T).

(4) Rank-Probability-Score (RPS): The error of team T is defined as

error4(T) =
1

5

5∑
i=1

 i∑
j=1

pj(T)− 1[result(T)=j]

2

.

The total error score is given by

RPS =
∑
T

error4(T).

We note that the dependence of the different outcomes of the teams penalizes exceptional
outcomes as underdogs wins and early drop outs of favorites.

4. Validation of Models on FIFA World Cup 2014 results

In this section we test the different models from the previous section on the FIFA World
Cup 2014 data. For this purpose, we take into account all matches between 01.01.2002 and
the beginning of the tournament of all participants on neutral playground. We remark that
it was necessary to take historical match data up to 12 years before the tournament due
to lack of enough matches for reasonable fits (e.g, the regression for Belgium matches was
not satisfying). We simulate the whole tournament according to the FIFA rules, that is, at
the end of the group stage the final group table is evaluated according to the FIFA rules
(except Fair-Play criterion). Additional, after each game the Elo scores of the teams are
updated. Furthermore, the score of a match which goes into extra time is simulated with
the same Poisson rates as for a match of 90 minutes but with rates divided by 3 (extra time
is 30 minutes = 90 minutes /3). For each model 100.000 simulations are performed. We
have implemented the simulation in R version 3.3.1, where we used the bivpois-package
of Karlis and Ntzoufras, which uses the EM algorithm for estimating the parameters.

The simulation results are given in the following form. For each team we estimate the
probability that the team reaches a certain round or wins the tournament. For instance,
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Team World Champion Final Semi Quarter R16 Prelim. Round
Brazil 20.30 30.30 40.30 54.80 86.10 13.90

means that Brazil wins the cup with a probability of 20.30%, reaches the final with proba-
bility 30.30%, the semifinals with probability 40.30% etc. The last column gives the prob-
ability to drop out in the group phase. For each team we mark in bold type the round
where the team actually dropped out. Results for independent Poisson regression and the
nested regression model may be found in Tables 5 and 6. The tables for the other models
can be found in Appendix 10.1.

Team World Champion Final Semi Final R16 Prelim. Round
1 Spain 21.80 32.50 42.20 58.40 88.40 11.60
2 Brazil 20.30 30.30 40.30 54.80 86.10 13.90
3 Germany 11.90 23.80 51.20 69.70 85.20 14.80
4 Netherlands 7.70 14.60 23.10 37.50 71.50 28.50
5 Portugal 5.50 12.90 30.10 48.10 67.90 32.10
6 Argentina 5.10 13.90 36.90 65.60 92.10 7.90
7 England 4.10 9.40 17.20 43.30 69.20 30.80
8 Uruguay 3.80 8.50 15.90 40.10 66.70 33.30
9 Italy 2.20 5.20 10.40 28.10 52.20 47.80
10 Russia 2.10 5.70 15.30 29.30 73.80 26.20
11 Colombia 1.90 4.70 9.80 27.80 59.20 40.80
12 France 1.90 4.70 12.10 28.50 57.80 42.20

Table 5. FIFA World Cup 2014 prediction via independent Poisson regression

Team World Champion Final Semi Quarter R16 Prelim. Round
1 Brazil 20.00 28.50 36.80 51.40 81.30 18.70
2 Spain 16.70 26.20 35.10 51.50 85.10 14.90
3 Germany 13.50 25.10 51.10 67.60 84.50 15.50
4 Netherlands 8.80 15.90 24.80 40.10 74.10 25.90
5 Argentina 8.10 19.30 44.00 71.50 92.90 7.10
6 Uruguay 6.00 12.20 21.80 47.60 73.20 26.80
7 England 4.20 9.50 18.00 43.70 69.60 30.40
8 Russia 3.20 7.70 17.80 32.70 70.90 29.10
9 Portugal 2.70 8.20 21.70 38.60 58.20 41.80
10 Colombia 2.00 4.90 10.20 27.40 61.10 38.90

Table 6. FIFA World Cup 2014 prediction via nested Poisson regression

The Elo ratings as they were on 11 june 2014 for the top 5 nations (in this rating) are as
follows:

Brazil Spain Germany Argentina Netherlands
2113 2086 2046 1989 1959
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We clearly see that the forecasts correspond roughly to the Elo ranking, but the different
modeling of team specific strengths changes the ordering of the teams slightly. Moreover,
certain probabilities differ significantly in the different models. For example, Spain wins the
cup with probability 21.80% in the independent regression model but only with probability
16.70% in the nested regression model. We also see that the early drop out of Italy was
not so surprising after all.

In Table 7 we compare the different models by calculating the different scores from Section
3. The nested Poisson regression scores best for the E1 score, Brier score and RPS. The
E2 score favors slightly the bivariate model.

Models E1 E2 Brier RPS
Independent Poisson regression 26 34.65 22.10 5.48
Nested Poisson regression 25 34.32 21.89 5.42
Bivariate Poisson regression 28 34.16 22.33 5.52
Diagonal Inflated Bivariate Poisson regression 26 34.68 22.13 5.48

Table 7. Scores for the FIFA World Cup 2014 simulations

5. Validation of Models on FIFA World Cup 2010 results

The simulations for the FIFA World Cup 2010 are done as in the previous section, but
using data between 01.01.2000 and the beginning of the championship.

Results for the independent regression model and the nested regression model are given in
Tables 8 and 9. The tables for the other models can be found in Appendix 10.2.

Team World Champion Final Semi Quarter R16 Prelim. Round
1 Brazil 25.50 34.10 45.10 61.60 78.60 21.40
2 Netherlands 15.00 24.40 36.40 67.30 87.70 12.30
3 Spain 11.20 23.00 32.90 49.80 90.90 9.10
4 England 7.80 15.50 34.30 57.80 85.10 14.90
5 Portugal 5.80 13.40 22.70 38.60 69.10 30.90
6 Italy 4.80 11.20 19.90 48.40 86.90 13.10
7 France 4.80 9.00 18.00 31.50 58.40 41.60
8 Argentina 3.50 10.50 28.70 51.80 86.60 13.40
9 Uruguay 3.30 6.80 15.20 28.80 55.80 44.20
10 South Korea 2.70 5.40 11.40 22.40 45.20 54.80
11 Germany 2.30 9.80 33.60 64.80 93.00 7.00

Table 8. FIFA World Cup 2010 prediction via independent Poisson regression
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Team World Champion Final Semi Quarter R16 Prelim. Round
1 Brazil 19.70 27.60 38.40 54.90 69.30 30.70
2 Spain 14.70 26.80 36.80 51.80 94.40 5.60
3 Netherlands 14.60 23.90 37.30 65.10 87.60 12.40
4 England 7.00 14.60 32.80 57.80 86.20 13.80
5 Uruguay 6.40 11.70 21.50 36.60 62.90 37.10
6 France 4.70 8.70 16.20 28.50 52.30 47.70
7 Portugal 4.30 10.10 18.40 32.20 60.50 39.50
8 Italy 4.00 9.80 19.70 50.90 89.80 10.20
9 South Korea 3.90 7.10 13.20 25.50 52.40 47.60
10 Argentina 3.70 9.80 26.50 48.00 84.20 15.80

Table 9. FIFA World Cup 2010 prediction via nested Poisson regression

The Elo ratings as they were on 11 june 2010 for the top 5 nations (in this rating) are as
follows:

Brazil Spain Netherlands England Germany
2087 2085 2016 1975 1929

The early drop out of Brazil may be unlikely at first sight, but at second sight seems
not so surprising since they lost against the Netherlands in the quarter final. The forecast
of Germany becoming world champion is remarkably low in all models. This reflects the
influence of the course of the tournament since Germany played against England in R16,
Argentina in the quarters and Spain in the semi finals. Interesting to note that the early
drop out of France had already a high probability. Knowing this “le fiasco de Knysna” may
have been avoided.

The error scores for the World Cup 2010 tournament are given in Table 10. Again the
nested Poisson regression scores best, now even for all four score functions.

Models E1 E2 Brier RPS
Independent Poisson regression 25 30.97 17.97 5.05
Nested Poisson regression 24 30.50 17.51 4.93
Bivariate Poisson regression 25 33.04 17.97 4.99
Diagonal Inflated Bivariate Poisson regression 25 31.49 17.96 5.08

Table 10. Scores for FIFA World Cup 2010

Remarks: In order to avoid a degenerate behaviour and a bad fit of our models we had
to do the following adaptions:

• For the nested Poisson regression model for Slovenia only matches against other
participants were used.
• For the bivariate Poisson regression model for Germany, we have taken into account
also the matches of Germany during the World Cup 2006 (held in Germany).
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• The matches of Serbia include also the matches of former “Yugoslavia” and “Serbia
and Montenegro” before the year 2006, in which Serbia started its own national
team.

6. World Cup 2018 Simulations

We simulate the whole tournament 100.000 times for each model as described in Section
4. The models are fitted on matches of all participants on neutral ground since 01.01.2010.
For France we consider only matches after 01.01.2012 and include also the matches of the
EURO 2016; compare with Section 2.1.2. The results are presented in Tables 11, 12, 13
and 14. The regression models coincide in the order of the first four favorites for the cup.
In particular, they favor Germany and not Brazil. However, single probabilities may be
quite different. For instance, Germany is estimated to win the cup with 26.00% in the
independent Poisson regression model and with 30.50% in the nested Poisson regression
model. The circumstance that all models do favor Germany and not Brazil may depend on
team specific effects and the following fact. If both Germany and Brazil win their group
they will meet only in the final. Now, if Germany reaches the final it more likely won
against stronger teams and therefore is likely to have higher Elo ranking in the final than
Brazil. This underlines the importance of the dynamic Elo updating in the simulations.

Team World Champion Final Semi Quarter R16 Prelim. Round
1 Germany 26.00 36.50 52.10 68.80 92.50 7.40
2 Brazil 13.20 26.00 41.00 57.70 88.30 11.70
3 Spain 11.20 21.30 41.50 68.60 84.90 15.30
4 Argentina 9.20 16.70 31.90 53.60 84.50 15.50
5 Colombia 7.00 13.20 24.10 49.70 75.10 24.90
6 Portugal 5.90 13.30 28.80 53.80 73.90 26.20
7 France 5.30 12.40 26.00 46.60 79.70 20.30
8 Peru 4.30 9.20 19.00 35.80 67.70 32.30
9 Belgium 3.60 9.40 19.50 48.20 85.40 14.80
10 Poland 2.80 6.30 13.70 33.20 59.80 40.20

Table 11. World Cup 2018 prediction via independent Poisson regression

7. Sankey

We present the simulation results of the nested Poisson regression model in a Sankey
diagram, see Figure 4. The width of the edges correspond to the probabilities of reaching
stages in the the tournament.

8. Discussion

In this section we want to give some quick discussion about the used Poisson models and
related models. Of course, the Poisson models we used are not the only natural candidates
for modeling football matches. Multiplicative mixtures may lead to overdispersion. Thus, it
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Team World Champion Final Semi Quarter R16 Prelim. Round
1 Germany 30.50 41.80 57.70 74.30 92.10 7.90
2 Brazil 18.30 33.60 46.20 61.90 93.20 6.70
3 Spain 13.90 24.80 47.50 70.80 90.00 10.10
4 Argentina 8.30 16.20 32.30 57.10 86.20 13.80
5 Colombia 4.30 9.40 19.30 45.00 73.40 26.60
6 Portugal 3.90 11.00 27.40 52.00 75.90 24.10
7 France 3.40 10.10 25.10 46.70 78.90 21.20
8 Belgium 3.00 8.70 18.70 50.40 83.10 16.80
9 Russia 2.80 5.30 10.40 21.50 49.00 51.00
10 England 2.60 6.70 15.30 43.60 75.80 24.40

Table 12. World Cup 2018 prediction via nested Poisson regression

Team World Champion Final Semi Quarter R16 Prelim. Round
1 Germany 26.90 37.30 52.30 70.70 93.20 6.80
2 Brazil 13.00 26.00 40.10 59.80 89.70 10.30
3 Spain 11.20 21.20 41.70 69.20 86.20 13.90
4 Argentina 9.60 17.30 33.60 56.30 88.20 11.90
5 Colombia 8.40 15.30 27.80 59.10 82.20 17.80
6 France 5.20 12.60 27.90 49.20 81.80 18.30
7 Portugal 5.20 13.00 28.90 53.70 76.00 24.10
8 Belgium 3.90 10.60 22.40 55.90 89.70 10.40
9 Peru 3.90 8.80 19.00 36.00 68.50 31.40
10 England 2.10 4.90 11.70 31.40 76.70 23.20

Table 13. World Cup 2018 prediction via bivariate Poisson regression

Team World Champion Final Semi Quarter R16 Prelim. Round
1 Germany 25.80 36.10 51.00 68.70 91.40 8.60
2 Brazil 12.30 24.30 38.50 57.00 89.60 10.30
3 Spain 11.20 20.90 40.40 66.60 85.70 14.30
4 Argentina 9.60 17.20 33.00 55.00 86.70 13.10
5 Colombia 7.60 14.10 26.30 55.50 81.00 18.90
6 Portugal 5.20 12.40 27.60 51.70 75.60 24.30
7 France 5.00 11.60 24.80 44.30 75.40 24.60
8 Belgium 3.90 10.50 21.90 53.90 87.10 12.90
9 Peru 3.70 8.50 18.20 35.20 67.50 32.50
10 England 2.20 4.60 10.00 26.40 59.30 40.70
Table 14. World Cup 2018 prediction via diagonal inflated Poisson regression

is desirable to use models having a variance function which is flexible enough to deal with
overdispersion and underdispersion. One natural model for this is the generalised Poisson
model, which was suggested by (Consul, 1989). We omit the details but remark that this
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distribution has an additional parameter ϕ which allows to model the variance as λ/ϕ2; for
more details on generalised Poisson regression we refer to (Stekeler, 2004) and (Erhardt,
2006). Estimations of ϕ by generalised Poisson regression lead to the observation that ϕ is
close to 1 for the most important teams. Therefore, no additional gain is given by the use
of the generalised Poisson model.

Another related candidate for the simulation of football matches is given by the negative
binomial distribution, where also another parameter comes into play to allow a better fit.
However, the same observations as in the case of the generalised Poisson model can be
made, that is, the estimates of the additional parameter lead to a model which is almost
just a simple Poisson model. We refer to (Joe and Zhu, 2005) for a detailed comparison of
generalized Poisson distribution and negative Binomial distribution.

A potential problem may rely in the fact that there are not sufficiently many matches for
each team during the last eight years. This relies, in particular, on the fact that we consid-
ered only matches on neutral playground. Of course, it is possible to include also matches
from the qualifier rounds for the international tournaments. We followed this approach
and, in order to weight home advantages/away disadvantages, we introduced another cat-
egorical covariate L for the “home advantage” which lead to the following regression model
extending (2.1) and (2.2):

logµA(EloO) = α0 + α1 · EloO + α2 · L,
log νB(EloO) = β0 + β1 · EloO + β2 · L,

where L = 1 if A plays at home, L = −1 if B plays at home, and L = 0 if the match is on
neutral playground.

Using this regression approach leads, however, to effects that hide the team’s real strength
in tournaments. In numbers, almost every team has then a probability between 2% and
6% of winning the World Cup, which obviously makes no sense. This in turn leads to the
conclusion that matches during championships behave different than typical matches in
the qualifier round.

We did not study the robustness of our models rigorously. However, we observed that the
regressions models tend to be rather sensitive to the choices of matches. In particular, we
had to adapt the time range of historical match data before each of the different World
Cup simulations for 2010, 2014 and 2018. Although 8 years seem to be a quite reasonable
time range, it did not lead to satisfying regression parameters for the World Cup 2010 and
2014 simulations. This explains why we had to take different time ranges for each World
Cup under consideration. We refer to (Karlis and Ntzoufras, 2011) for a detailed discussion
on robustness. We note that the model is sensitive to changes of the Elo points during the
tournament. Simulations where the Elo points are not updated during the tournament
lead to quite different probabilities (up to 5 percent points) and clearly favor the stronger
teams. I particular, this shows that the dynamic Elo updating models the effect of alleged
underdogs having a good run.

There have been attempts to improve the Elo rating. For instance, (Constantinou and
Fenton, 2013) propose a dynamic rating that takes into account the relative ability between
adversaries. In (Constantinou and Fenton, 2013) it is shown that this rating outperforms
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in certain cases models based solely on Elo scores. We also refer to (Constantinou et al.,
2012), (Constantinou et al., 2013) and references therein for more details on Bayesian
models for forecasting football matches outcomes and to (Hirotsu and Wright, 2003) for
Markov models of team specific characteristics. The models above are in our opinion more
appropriate for short term forecasts. As in our case we are interested in long term forecasts,
random effects are of considerable influence, and we suspect that more sophisticated models
do not a priori improve the quality of the forecast. It goes without saying that a more
intensive study on which data is relevant for (longtime) football forecasts is needed, e.g.
see (Constantinou and Fenton, 2017).

Measuring the accuracy of any forecasting model is a critical part of its validation. In the
absence of an agreed and appropriate type of scoring rule it is rather difficult to reach
a consensus about whether a model is sufficiently “good” or which of several different
models is “best”. Our results show that the four scoring rules under considerations agree
on the “best” model. With the relentless increase in football forecasting sports events
and tournaments it will become more and more important to use effective scoring rules
for ordinal variables. Although we are not suggesting (neither are convinced) that our
proposed scoring rules E1 and E2 and the RPS are the only valid candidates for such a
scoring rule, we have shown that they mostly, at least in our setting, give the same result
on which model is “best”.

9. Conclusion

Several team-specific Poisson regression models for the number of goals in football matches
facing each other in international tournament matches are studied and compared. They all
include the Elo points of the teams as covariates and use all FIFA matches of the teams
since 2010 as underlying data.The fitted models were used for Monte-Carlo simulations of
the FIFA Worldcup 2018. According to these simulations, Germany (followed by Brazil)
turns out to be the top favorite for winning the title. Besides, for every team probabilities
of reaching the different stages of the cup are calculated.

A major part of the statistical novelty of the presented work lies in the introduction of
two new score functions for ordinal variables as well as the construction of the nested
regression model. This model outperforms previous studied models, that use (inflated)
bivariate Poisson regression, when tested on the previous FIFA World Cups 2010 and
2014.

We propose a weighted visualization of the course of the tournament using a large Sankey
diagram. It enables experts and fans to obtain at a glance a quantified estimation of all
kind of possible events.

10. Appendix

10.1. FIFA World Cup 2014 simulations. We present the tables of the forecast for the
FIFA World Cup 2014 simulations using the bivariate Poisson regression model and the
diagonal inflated bivariate Poisson regression model. Each model was simulated 100.000
times.
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Team World Champion Final Semi Quarter R16 Prelim. Round
1 Spain 24.70 35.80 46.00 60.30 89.90 10.10
2 Brazil 21.00 31.20 41.50 54.90 86.90 13.10
3 Germany 11.80 24.20 52.40 70.40 85.70 14.30
4 Netherlands 7.80 15.00 23.70 37.70 72.50 27.50
5 Portugal 5.30 12.90 30.80 48.50 68.00 32.00
6 Argentina 4.80 13.90 38.00 68.10 93.80 6.20
7 Uruguay 3.60 8.30 15.80 41.20 67.50 32.50
8 England 3.00 8.00 15.00 44.70 70.60 29.40
9 Russia 2.20 6.30 16.90 32.60 79.60 20.40
10 Italy 2.10 4.90 9.90 27.20 50.80 49.20
11 Colombia 1.80 4.50 9.50 27.40 59.50 40.50
12 France 1.70 4.30 11.60 28.50 58.30 41.70

Table 15. FIFA World Cup 2014 prediction via bivariate Poisson regression

Team World Champion Final Semi Quarter R16 Prelim. Round
1 Spain 20.70 31.40 43.30 57.60 88.00 12.00
2 Brazil 20.40 30.80 41.30 54.90 86.60 13.40
3 Germany 11.70 24.10 51.50 69.60 85.40 14.60
4 Netherlands 7.80 14.80 23.50 37.30 71.30 28.70
5 Argentina 7.70 16.80 38.00 67.60 93.70 6.30
6 Portugal 5.50 12.90 30.40 48.20 68.10 31.90
7 Uruguay 3.70 8.50 16.30 41.30 67.00 33.00
8 England 3.40 8.40 16.00 44.80 69.50 30.50
9 Russia 2.50 6.40 16.40 31.80 78.30 21.70
10 Colombia 1.80 4.50 9.60 27.70 59.90 40.10
11 France 1.80 4.30 11.80 28.60 58.80 41.20
12 Italy 1.70 4.20 9.20 25.80 48.80 51.20

Table 16. FIFA World Cup 2014 prediction via diagonal inflated bivariate
Poisson regression

10.2. FIFA World Cup 2010 simulations. We present the tables of the forecast for the
FIFA World Cup 2010 simulations using the bivariate Poisson regression model and the
diagonal inflated bivariate Poisson regression model. Each model was simulated 100.000
times.
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Team World Champion Final Semi Quarter R16 Prelim. Round
1 Brazil 24.60 33.20 43.90 60.90 77.30 22.70
2 Netherlands 15.10 24.40 35.90 65.20 89.10 10.90
3 Spain 12.00 24.60 35.10 52.70 93.20 6.80
4 England 6.60 13.50 30.20 50.10 77.40 22.60
5 Italy 5.20 11.60 20.60 47.90 85.00 15.00
6 Portugal 4.80 11.80 20.50 35.90 68.10 31.90
7 France 4.50 8.60 17.60 31.40 58.60 41.40
8 Germany 3.80 12.20 37.00 64.50 93.00 7.00
9 Argentina 3.60 10.40 28.30 52.60 87.40 12.60

10 Uruguay 3.20 6.70 15.20 29.20 56.40 43.60
Table 17. World Cup 2010 prediction via bivariate Poisson regression

Team World Champion Final Semi Quarter R16 Prelim. Round
1 Brazil 23.20 31.40 42.00 58.30 76.70 23.30
2 Netherlands 14.60 23.80 35.60 64.20 87.90 12.10
3 Spain 8.40 17.70 29.10 44.70 83.80 16.20
4 England 7.10 14.20 30.90 51.20 77.80 22.20
5 Germany 5.80 15.60 36.90 64.10 92.60 7.40
6 Portugal 5.30 12.50 21.90 38.20 68.00 32.00
7 Italy 5.30 11.70 21.30 47.50 84.70 15.30
8 France 4.60 8.60 17.40 31.40 58.50 41.50
9 Argentina 4.50 11.50 27.90 52.20 87.20 12.80
10 Uruguay 3.30 6.90 15.10 29.20 56.20 43.80

Table 18. World Cup 2010 prediction via diagonal inflated bivariate Pois-
son regression
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Figure 4. Sankey presentation of the forecast of the FIFA Worldcup 2018
based on 100.000 simulations of the nested regression model.


