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Abstract

An existent gap in the underlying security assumptions taken for
the WebRTC and postMessage APIs led us to find a novel attack
abusing the browsers’ persistent storage capabilities. The presented
attack can be executed without the website’s visitor knowledge, and
it requires neither browser vulnerabilities nor additional software on
the browser’s side.

To exemplify the power of the attack, we use browsers to create a
network for persistent storage and distribution of arbitrary data. In
our proof of concept, the total storage of the network, and therefore
the space used within each browser, grows linearly with the number of
origins delivering the malicious JavaScript code. Further, data trans-
fers between browsers are not restricted by the Same Origin Policy,
which allows for a unified cross-origin browser network, regardless of
the origin from which the script executing the functionality is loaded
from.

In the course of our work, we assess the feasibility of a real-life
deployment of the network by running experiments using Linux con-
tainers, browser automation tools, and custom-made software. More-
over, we lay the groundwork towards possible countermeasures and
illustrate why thwarting the proposed attack is a difficult research
challenge.

1 Introduction

So far, Web security on the client side has been governed by content isolation
and by preventing attacks such as script injection, drive-by downloads, and
others. For instance, Lekies et. al. described how using local storage for
content caching results in script injection, and how to prevent it [19]. Also,
in the case of the postMessage API, which allows two windows to have cross-
origin communication within the browser, Hanna et. al. illustrated how
the lack of origin® validation leads to execution of undesired functionality in
real life websites [15]. Last but not least, Provos et. al. detected that the
dynamic creation of zero pixel frames through scripts is a common attack
vector used for drive-downloads [30].

Ltwo JavaScript execution contexts have the same origin only if they have the same IP
or fully qualified host name, and if they use the same protocol and port.



Nonetheless, in spite of the significant efforts invested to secure each API,
the undesired consequences arising from client-side API combinations remain
uncharted. Herein, we explore two particular aspects of browser APIs. On
the one hand, we show that using the postMessage API, local storage, and
the dynamic creation of iframes leads to a transparent? increase of the total
storage available for a website in the visitor’s browser, i.e. beyond the storage
quota. On the other hand, we show how WebRTC data channels allow for
cross-origin data transfers among browsers.

Moreover, we conclude that the combination of cross-origin channels and
the increase of local storage comprises a novel attack vector in which the
visitor’s browser is coerced, not only to store data permanently, but also to
transmit such data directly to other browsers.

The presented attack has three interesting properties. First, the attack
relieves the server from the responsibility (and performance overhead) associ-
ated with hosting and distributing the content. This is a direct consequence
of storing the content in the browsers and transferring it over direct browser-
to-browser links. Second, an attacker keeps the website’s visitor oblivious to
the malicious behaviour, i.e. storage and distribution of unknown content,
since no warnings or messages are presented to the user. This lack of aware-
ness on the user’s side is particularly concerning when data stored is his/her
browser is of sensitive nature, legally or morally. Third, the attack is very
difficult to defeat because, in principle, every API call required by the attack
is not harmful on its own under the current Web security model.

1.1 Contribution and Outline

We describe a novel attack in which the storage and networking capabilities
of the browser are abused for the attacker’s benefit without requiring any
additional installations or vulnerabilities on the client’s side. While describ-
ing our attack, we also enumerate the security assumptions from postMes-
sage API, the programmatic iframe creation and WebRTC which led to the
browser abuse vector.

We have implemented a proof of concept browser network which has long
term storage capabilities without making the user aware of its existence. In

2Although the website can always request an increase in the quota, this must be ap-
proved by the user. This must be avoided by an attacker who wants to hide the resource
abuse from the user.



the proposed browser network, data is transferred over peer-to-peer links be-
tween browsers regardless of the origin from which they loaded the JavaScript
code from, i.e. not covered by the Same Origin Policy. In addition, the per-
sistent storage space allocated for the network inside each browser grows as
more origins serve the malicious JavaScript code.

Also, we evaluated the proof of concept through a set of experiments. In
each experiment, several real-life browsers were automated to visit a mali-
cious website in a controlled environment; furthermore, several parameters,
such as the number of visitors, time between visits, and the visitor return
rate, i.e. how many visitors returned to the website in a given period of time,
were varied for each execution. Throughout the experiments, network traffic
as well as the status of the network was collected for off-line analysis. The
results of the analysis show the feasibility of the attack.

From a more constructive perspective, we discuss the challenges faced
when attempting several countermeasures and their potential side effects.

This paper is organized as follows. We describe our attack in Section 2.
Then, in Section 3 and 4, we describe the proof of concept implementation
and its evaluation. Afterwards, we present a discussion on possible counter-
measures in Section 5 followed by the related work in Section 6. Finally, we
present our conclusions in Section 7.

2 The Attack

We will present the attacker model first, and move to the attack overview
and its details afterwards.

2.1 Attacker Model

Throughout the paper, we assume an attacker capable of executing a script
abusing the browser’s storage, i.e. Abusive Script, when a website is
intentionally opened by a visitor, i.e. Intended Site. This can be achieved
through an advertisement network, or script injection techniques. Neither
of these techniques require server side access. Besides, the JavaScript con-
text where the Abusive Script is executed, as well as its origin, are totally
irrelevant for the attack.

To increase the browser’s storage without the user’s knowledge, the at-
tacker needs to host an Abusive Script in several origins. This can be easily



achieved by using free domains; also, if the attacker owns a domain already,
he could generate many sub-domains or use several ports in one domain to
deliver the script 3. The final storage space available for the attacker will
be the number of origins hosting his script multiplied by the storage quota
imposed by the browser. Nonetheless, unlike the Intended Site, the Abusive
Script does not need to be intentionally opened by the user.

To communicate data between browsers, the attacker needs access to a
server to negotiate browser-to-browser connections. This can be achieved
through a cloud service [29], or by hosting the server. Notably, this server
only intervenes during the connection session establishment, but it is not
used to transfer data between browsers.

2.2 Attack Detalils

For the sake of clarity, Figure 1 depicts the attack where three different
browsers opened Intended Sites including Abusive Scripts in different ways.
First of all, the figure shows Intended Sites including Abusive Scripts from
two different origins, i.e. Originl and Origin2. Further, cross-site scripting
injection (Browser 3) would allow the Abusive Script to access the JavaScript
execution context of the Intended Site. On the contrary, Intended Sites
shown in Browser 1 and 2 load the Abusive Script in a different context, e.g.
inside an iframe. The latter occurs when the Abusive Script is present in an
advertisement and is therefore isolated from the Intended Site context due
to the Same Origin Policy. Now, we mention how to achieve the Abusive
Script’s execution, the irrelevance of the Same Origin Policy for the attack,
how to increase the browser quota, the browser-to-browser channels, and
summarize the complete attack afterwards.

2.2.1 Abusive Script Execution

Although script injection through additional software is possible, we analyse
techniques without requiring browser plug-ins, vulnerability exploitation or
additional software on the client’s side. An attacker can include the Abusive
Script in an Intended Site in two ways: delivering the Abusive Script through
an advertisement or injecting the code in an Intended Site

To deliver the Abusive Script through an advertisement network, an at-
tacker can purchase browser time distributed across the Web. The effec-

3All are separate Origins According to RFC 6454



Browser 1 Browser 2

Intended Site Intended Site
Abusive Script Abusive Script
Origin 1 Origin 2

—
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Browser 3 D : Same Origin
Intended Site with Policy isolation
Abusive Script — :WebRTC data
Origin 1 transmission

Figure 1: Overview of the Attack

tiveness of delivering JavaScript code to millions of browsers spending a few
tens of dollars has been already demonstrated by Grossman et. al. when
they created their “million browser botnet” [14]. Although in this case, the
Abusive Script would be included inside an iframe in the Intended Site, as
seen in Browser 1 and 2 in Figure 1, this does not interfere with the attack.
Further, it does not matter whether the advertising executing the Abusive
Script is delivered through legitimate advertising networks or advertising in-
jectors [38].

To inject an Abusive Script in an Intended Site, the attacker can use
known attack techniques such as Man in the Browser [21, 40], Proxy Cache
Poisoning [37], or cross-site scripting among others. Cross-site scripting is a
particularly promising way to infect websites, given that by 2013 more than
6000 unique vulnerabilities were found across the Alexa top 500 websites
(9.6% of the analysed sites) [20]. Further, unlike the case when the Abusive
Script is delivered through an advertisement network, the Abusive Script
would share the execution context with the Intended Site in this case, as
depicted by Browser 3 in Figure 1.

2.2.2 Irrelevance of the Same Origin Policy

The attacker’s goal is to execute the Abusive Script and abuse the local
storage space and networking capabilities of the browser; hence, accessing
the DOM or the JavaScript context of the Intended Site is not a prerequisite
for the attacker. Thus, as it can be seen in Figure 1, the Same Origin Policy
isolation between the Intended Site and the Abusive Script is not hindering
the attacker in any way.



Besides, data can be sent to browsers who loaded the Abusive Script
from any origin, therefore allowing for cross-origin communication not only
among different Intended Sites, but also between different Abusive Script
origins too. This is possible because according to the proposed security ar-
chitecture! for WebRTC dataChannels [31], enforcing the Same Origin Policy
between browser-to-browser channels does not provide any additional secu-
rity. This design decision was based on two reasons: data channels do not
inject code in other origins, and data can always be forwarded through the
severs. Although these two statements are true, enabling cross-origin com-
munication over peer-to-peer links is problematic because the direct channel
empowers the developer to move data from one browser to another without
the user’s knowledge regardless of the origin from which the code was loaded
from. What is worse, this happens without burdening the server with the
data transfer. The latter is of utmost importance for the scalability of the
attack since, although data could be relayed through a server, this would
impose a heavy toll on the performance of the server, therefore making the
proposed attack less attractive.

2.2.3 Increasing the Local Storage Limit

In this section we will describe how the combination of invisible iframes, lo-
cal storage, and the postMessage API allows an Abusive Script to use space
beyond the intended quota per website, i.e. 5 MB. We start by listing the
security assumptions behind each API. Afterwards, we describe the mecha-
nism used to increase the storage quota. To conclude this section, we clarify
the issues related to the initial security assumptions leading to the attack.
From the local storage perspective, a 5 MB quota is enforced per origin,
unless the user opts-in to increase it for a particular origin. The quota
prevents a single origin from abusing the browser’s local storage. When it
comes to spawning an iframe during runtime, no visible problem appears
because, unless the iframe and the parent window share the same origin®,
data loaded inside the iframe (and its JavaScript execution context) is out
of reach of the script creating it due to the Same Origin Policy. Finally,
according to the postMessage specification[24], the assumptions dictate that,
as long as developers validate the origin of the messages exchanged and their

4This is a IETF-draft which means this is still work in progress.
Swindows can also set their origin to be a super origin, i.e. mysite.company.com can
set its origin as company.com to share the same origin with other pages.
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Figure 2: Storage Quota Increase

proper encoding, no vulnerabilities can be exploited. The rationale behind
these validations are to prevent websites from acting on commands sent by
malicious windows and to avoid script injection attacks respectively.

The technique used to bypass the quota enforcement for a particular web-
site uses iframes with different origins to store data in their local storage, i.e.
Storage Iframes. Given that each Storage Iframe has a different origin,
each one of them has 5 MB of local storage. However, through the postMes-
sage API they can communicate with the parent window, i.e. Abusive Script,
allowing it to access their local storage. In other words, an attacker can use
the postMessage API to create an asynchronous intra-browser messaging
system to exchange control commands and data between the Storage Iframe
and the Abusive Script, shown as “broker” in Figure 2. In turn, the Abusive
Script obtains a quota equivalent to the number of Storage Iframes spawned
multiplied by the browser storage quota.

The main problem with the postMessage API security model is its im-
plicit assumption of a benign and a malicious site in the postMessage API
interaction. This model falls short when both origins communicating behave
maliciously; for example, when they conspire against browser’s the visitor.
Obviously, without the postMessage API, the attacker could still abuse the
browser’s storage by spawning frames; however, this would achieve a Denial
of Service attack at most, since data would not be reachable when origins
differ.

2.2.4 Inter-Browser Cross-Origin Communication

Inter-browser communication is paramount if the attacker wants to instruct
browsers to share data among each other. This functionality relies on the

8
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WebRTC dataChannels [25] which requires an initial negotiation phase. Such
initialization phase is solved by the implementation of the Interactive Con-
nectivity Establishment protocol (ICE) [17]. In particular cases, when browsers
are behind a router with Network Address Translation (NAT), a server pro-
viding Session Traversal Utilities for NAT (STUN) [34] allows them to dis-
cover their public IP address and port. In most cases a short intervention
of a STUN server is enough to enable browsers to communicate with each
other directly. The previous protocols are covered by a server accessible by
the attacker, as mentioned in Section 2.1. Nevertheless, in some cases, it
may be impossible to establish a direct connection between two peers who
are behind two different NAT routers. Then, an additional relay server im-
plementing the Traversal Using Relay NAT protocol (TURN) [22] is needed
for the communication.

2.2.5 Putting it All Together

In order to put together an attack in which data stored in a browser is
available across the whole cross-origin browser network, the attacker needs
to extend the Abusive Script presented in Figure 2 with browser-to-browser
connectivity. As a result, each Storage Iframe hosts an overlay peer, i.e. a
WebRTC enabled frame. Also, the Storage IFrame needs to receive control
commands, through postMessage API, not only to share data from Local
Storage, but also to connect to other peers, retrieve and send data from
them, etc.

Figure 3 reflects an example in which two browsers visit one origin each,
where the Abusive Script is hosted. Further, this figure shows the Storage
Iframe hosted on three different origins, i.e. originl, origin2, origin3.



3 Proof of Concept

We have built a proof of concept where every browser opening a website con-
taining an Abusive Script replicates files present in a unified browser network.
In our implementation there is no central server hosting the files; instead, ev-
ery browser can register files in the network and they will be automatically
replicated by other browsers. Further, every browser spawns several storage
frames, i.e. 10 in our case, and attempts to replicate as many files as possible.
The replication process stops when every file in the network is replicated lo-
cally, or when there is no space left in any Storage Iframe. Naturally, content
transfers happen over browser-to-browser WebRTC connections.

Although the mapping between peers and files in the network could have
been distributed across the browser network, e.g. using a Distributed Hash
Table [11], we implemented this index in a centralized server because this
extension does not strengthen nor weaken our argumentation on the security
issues raised by the attack. Likewise, our prototypical implementation does
not divide large files into chunks to store them, but requires files to have at
most 5 MB when they are encoded in base 64.

We have tested our implementation by building a cross-origin network
using Chrome 43.0.2357.81, and Firefox 38.0. In both browsers, the circum-
vention mechanism to increase the storage quota available for the network
worked. Each browser has a 5 MB quota limit enforced per origin; as a result,
if there are 2 origins capable of serving the content, each browser can host
up to 10 MB, if there are 10 origins, each browser will host 50 MB, etc.

Now, to address the details of our proof of concept implementation, we
first present the components required for our implementation. Afterwards,
we provide details on the interaction between the different components during
runtime and the file replication technique used.

3.1 Components

Our proof of concept requires the following components: an Abusive Script,
a signalling server, and a peer and file index.

Abusive Script: We have implemented a JavaScript Abusive Script in-
cluded in a very simple website. Our “broker” uses the postMessage API
to exchange control commands asynchronously between the Abusive Script
and the Storage Iframes storing the files. We have adopted a hierarchical
approach where the Abusive Script commands each Storage Iframe to exe-

10



cute actions, e.g. retrieve a file from another peer, and receives callbacks
with the status of the task afterwards. This provisions the Abusive Script
with an overview of the files that are stored locally. This in turn, enables the
network to ensure that files are not replicated more than once per browser.
For our proof of concept, we host the Abusive Script and the Storage Iframe
in a Web server reachable under n different origins, where n is the number
of Storage Iframes created.

Signalling Server: We used a local installation of the PeerJS Server [8].
This open-source server, in combination with the Peer client library, provides
a high level API allowing to send signals to peers in the network. This
facilitates the initial steps required to establish WebRTC channels among
them.

Peer and File Index: this is a Python server (using the Tornado frame-
work [39]) used to track which files are stored in which peer as well as which
peers are currently in the overlay network. Whenever a browser joins the
network a WebSocket is opened to this server. Due to the asynchronous na-
ture of WebSockets, clients can notify the Peer and File Index with updates
at any time without incurring in the overhead of an HTTP request. Such
updates include, for example, notifying the index that a new file is available
in the peer. This allows every browser in the network to keep an almost
real-time synchronization with the file and peer index. Further, since every
browser keeps a WebSocket open with the Peer and File Index server, the
server can safely assume that a given browser (and all its Overlay Peers) left
the network when the browser connection is closed. Also, for visualization
purposes, this server offers a simple HTML page to upload files to a Storage
[frame, retrieve files from other browsers, an query an updated index of peers

and files.

3.2 Component Interactions

Before discussing the replication techniques in Section 3.3, we present the
general message exchange between the different actors in Figure 5. In this
set-up it, is assumed that Bob and Charlie have already joined the network;
thus, they are already registered in the Peer and File Indez, and they already
stored locally some files required by the peers hosted by Alice’s browser.
The first step corresponds to when Alice opens an Intended Site con-
taining an Abusive Script. The second step takes place when the Abusive
Script generates n different invisible Storage Iframes, where n is the number

11
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Figure 4: Storage Iframe Execution Flow Diagram (proof of concept)

of origins serving the code. Each Storage Iframe follows the flow diagram in
Figure 4. The registration of the Storage Iframe as a peer in the network is
shown in the third step.

At this point, in the fourth step, the Abusive Script will command each
Storage Iframe to download files from several peers. Once a Storage Iframe,
inside Alice’s browser, receives a command from the Abusive Script requir-
ing the acquisition of a file from a specific peer, it will start the transfer
between browsers. This process starts when Alice’s browser uses the PeerJS
implementation to negotiate the connection details to establish the WebRTC
channel with the specific iframe in Bob’s and Charlie’s browsers ¢. Once the
signalling process succeeds, a direct connection between Alice and Bob, and
another one between Alice and Charlie can be established, so the content
can be transferred directly. Once a new file arrives to Alice’s browser, Alice’s
browser will communicate this to the Peer and File Index server.

To keep an updated Peer and File Index, the index server removes peers
and files hosted by browsers for which the WebSocket connection has been
closed. In any case, when any event implying index changes takes place, every
browser in the network is notified asynchronously, e.g. Bob and Charlie’s
browsers, through the WebSocket connection established between the browser
and the index server as shown in Figure 5 with the arrows labelled as Async
index updates.

6Steps 5 and 6 are denoted with an apostrophe to represent that they are executed in
parallel
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3.3 Content Replication Technique

The replication technique followed by each Abusive Script for the proof of
concept is very simple. When there is space in a Storage Iframe, the Abusive
Script determines a file which complies with the following conditions, based
on the current state of the index: on the one hand, the file should have the
least amount replications in the network, and on the other hand, it should
neither be stored in the Storage Iframe with available space nor any of its
siblings, i.e. it is not replicated in this browser. Afterwards, the Storage
Iframe is commanded to download the file determined in the previous step.
This guarantees that when nodes leave and files are being less replicated,
they are copied to other nodes before they perish. Although this is a very
simple replication technique, it is enough to exemplify the implementation
of a replication strategy.

We have leveraged the asynchronous features of JavaScript, and the PostMes-
sage API to do a greedy replication from the Abusive Script. First of all, it
must be noted that the creation of a Storage Iframe requires a registration
process. The registration process includes connecting to the index server,
creating the peer in the WebRTC network, and registering the files stored
already in its local storage. The greedy replication technique consists in the
following: when the Abusive Script starts, it creates every Storage Iframe,
and starts distributing tasks to replicate files immediately. However, since
the registration process executed inside each Storage Iframe, and the task
distribution (done by the Abusive Script) happen concurrently, the Storage
Iframe could receive a command to download a file that is already repli-
cated in the browser, but which has not been registered in the index yet.
However, in case the Storage Iframe requests a file already replicated in the
browser before the index has been fully updated, it will be discarded once it
is received. This approach will use more network than strictly necessary in
browsers that are coming back, but will ensure that new visitors start repli-
cating immediately. We prioritize fast replication over network usage because
files not replicated in timely fashion are lost, while using more network on
the browser’s side does not bring any cost to the attacker.

13
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4 FEvaluation

We do not pretend to cover an extensive performance evaluation of the proof
of concept. Instead, we merely want to establish a set of conditions under
which the attack works and argue for its plausibility in a real world deploy-
ment. Thus, there are two concerns that we need to address. First of all,
the browser network should keep files available in spite of the high churn
produced by browsers joining and leaving the Intended Site. Also, network
overhead imposed on servers, e.g. the signalling server, should be negligible
compared to the network use on the browser’s side. This would guarantee
that the network can scale without requiring high computational resources
from the attacker. To this end, we collect log files and network traffic from
the experiments. The main goal is to calculate how long is a file available in
the network during an experiment run, and also to assess the network load
on the servers and browsers forming the browser network. Also, every com-
ponent was restarted between experiments to ensure that sequential runs do
not interfere with each other.

4.1 Set-up

Linux containers constitute a resource friendly approach to execute software
in an isolated manner. The main difference between containers and virtual
machines is that containers reuse the host kernel, and follow a copy-on-write
approach. We have used Docker [12] Linux containers to ensure that tests
have exactly the same initial state file system. As Figure 6 shows, we have
used docker containers to execute the so called selenium controller. The sele-
nium controller is a custom-made multi-threaded Java application providing
a REST API. This application receives commands, including actions such
as open a website, close the window, or wait a certain time before the next
instruction, through HT'TP. These actions are then executed on a Chromium
browser inside the docker instance through a Selenium [36] driver. To run
a headless Chromium browser inside containers, we used Xvtb [41] as an X
server to simulate a terminal without using hardware for it.

Having a generic selenium client proved to be very useful to execute sev-
eral tests without re-building the containers for every test case. More to the
point, this architecture allowed us to execute the exact same instructions for
every browser in both experiments: the attack evaluation, and the simulation
of the countermeasure.

15



In addition to the containers for the selenium controller, an apache2 (host-
ing the Intended Site, the Abusive Script and the Storage Frames), a Peer
and Index server, as well as a PeerJS server instance were run in separate
containers, in the same host machine. Also, a specific /etc/hosts file was au-
tomatically generated and copied into every container, so that it can address
the servers by name regardless of the docker IP. Further, the n domains used
for the Storage Frames point to the same apache server in the hosts file.

On the bottom of Figure 6, the orchestrator represents a Python program
sending actions to every selenium controller used for the experiment. This
is a multi-threaded Python application using the Tornado [39] framework
to implement an HTTP server to receive callbacks from the selenium con-
trollers, once they have finished a task. The Orchestrator implements the
waiting times between browser visits and specifies which Chromium profile
should be used for the browser session to be opened from the selenium con-
troller. Specifying a certain profile empowers the Orchestrator to ensure that
elements stored in the local storage for the given profile are available in the
browser session executed by Selenium. For example, if the orchestrator wants
to simulate a visitor that comes for the first time to a website, a clean profile
without any cookies, local storage items, or any other previous information
is used. Conversely, loading a Selenium session with a specific profile, which
has already been used by a browser session which visited the network’s site,
would contain all the stored files in local storage and is therefore used to rep-
resent a returning visitor. The profiles are represented as folders in the case
of Chromium and Chrome. Moreover, the host machine used was a Lenovo
T430S with 16 GB RAM memory, and an Intel(R) Core(TM) i7-3520M CPU
@ 2.90GHz processor with Ubuntu 12.04 LTS.

4.2 Data Collection

Figure 7 shows the data sources required for our evaluation in gray-shaded
boxes. The data sources were: a network capture including all the traffic
during the experiment, and the log files where the peer and index server
stores the count of number of replications per file, i.e. a simple array. The
former capture is performed by executing tcpdump on the host to capture all
the bytes transferred through the docker0 network interface, which is used by
docker to forward all the traffic between containers, and between containers
and the host too. The latter is a file, generated by the Peer and File Index
server, where every change to the file index is logged. The volume where the
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Figure 6: Overall Measurement Set-up for 3 browsers

index log file is stored is actually mounted from a folder in the host system
allowing us to recover after the container has finished its execution.

An important property of the browser network is to offload the network
stress required to transfer files to other browsers for replication purposes.
Thus, we capture the network traffic count to count the bytes transferred
over peer-to-peer links using WebRTC and compare it to the number of
bytes transferred between browsers and servers during the experiments. In
this particular scenario, running docker instances simplifies the recognition of
browser-to-browser communication based on the IP addresses. Otherwise, if
we would have run every browser as a simple process in the host, filtering the
traffic would have been very challenging due to the complexity of the proto-
cols used as part of the WebRTC file transfer, the connection establishment,
etc.

4.3 Browsers’ Behaviour

A selenium controller has the possibility to do one-time visits, i.e. a non-
returning visitor, or a returning visit depending on the profile used, see Sec-
tion 4.1. Therefore, we generate instructions to simulate returning and non
returning visits. We divide the set of browsers in two sets accordingly. In this
way, a returning controller will always return with its previous state during
the whole experiment. On the contrary, a selenium controller doing visits
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equivalent to a non-returning visitor also returns to the website following the
same pattern, but it loads a fresh profile every time. Since the latter kind
of selenium controller represents a one-time, or “non-returning” visitor, it is
also called non-returning selenium controller (or browser) from now on.

For each returning or non-returning selenium controller, the process to
generate the visit length, i.e. time in which the browser keeps the Intended
Site open, and the time between wisits, i.e. time until the browser comes
back, is generated using a random number generator, see Figure 8. Thus, the
time of the experiment is filled with sequences of visits followed by waiting
times between visits. The visit length is depicted in the gray-shaded areas
for each browser, while time between visits is represented by white sections.

4.4 Measurements

For the experiments, 10 domains have been used in order to use up to 50 MB
of data in each browser. The content hosted by the network is comprised of
33 pictures with an average size of 1 MB each, i.e. a total of 33 MB. This
size ensures that 33 MB can be stored in one browser once they have been
encoded in base 64, which is required to use the local storage API. Although
exploring how the network reacts when not all files can be stored in one
browser would be interesting, we omit this analysis because the performance
of the browser network is not our primary goal.

The wvisit length for every visit in the experiments has been randomly
generated in a range from 30 to 50 seconds using NumPy [26] random gener-
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ator. We consider this number to be conservative, since there are marketing
reports showing average sessions across countries higher than 50 seconds for
every kind of website category [9]. Further, research has reported web ses-
sions to have a mean value of 74 minutes [5]; also, it is known that certain
pages such as Facebook, have users with sessions ranging from a few to several
tens of minutes [6]. The duration of every experiment is 5 minutes.

As mentioned in Section 4.1, returning visits are achieved by instructing a
selenium controller to load a Chromium profile containing information from a
previous visit. Moreover, to have files in the browser network, each selenium
controller acting as a returning client has a profile containing its initial state.
Therein lie all the files to be replicated in the browser network. This profile is
copied to the docker instance at the beginning of every experiment in order to
keep a consistent initial state across the different runs of the tests. Browsers
acting as first visitors don’t use these profiles and have no information in
local storage, cookies, or browsing cache.

We vary two parameters during our experiments, namely the time be-
tween visits, and the number of selenium controllers returning to the web-
site, i.e. using a Chrome profile containing data from their previous visits.
Further, the time between wvisits is generated using the ranges [10-40],
[110-140] and [210-240] seconds by the random generator of the NumPy li-
brary [26]. The number of returning selenium controllers has also been mod-
ified to be 3, 5 and 7 out of 10 browsers for each set of experiments, which
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yields a 30, 50 and 70% visitor return rate.

In the upcoming sections, we focus on the two critical aspects under
evaluation: the file availability of the network, and the network load imposed
on the browsers and servers.

4.4.1 File Availability

The analysis of the index file, generated by the Peer and File Index server
consisted on verifying the timestamps and state of the index to calculate
the percentage of the time for the experiment run in which each file was
available. Afterwards, the average value and standard deviation for the array
of percentages was calculated using Python NumPy [26].

As shown in Figure 9, the availability is strongly influenced by the time
between visits; on the contrary, it is noticeable that the percentage of re-
turning visits impacts to a lesser extent. With the shortest time between
visits (10-40 seconds), the mean availability for the files is 95.7%, 93.2%, and
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87.8% for 70%, 50% and 30% of return rate respectively; furthermore, in all
the cases the standard deviation lies between 3.0% and 3.1%.

We can safely conclude that when 3 out of 10 browsers are controlled by
the returning selenium controller, there is a 30% visitor return rate. This
can be directly extrapolated to visitor return rate calculated for websites per
month, or per day without any loss of generality. Moreover, considering that
a recent marketing report [9] states that return visitor rates commonly lie
between 25 and 52%, achieving a visitor rate of 30% for an Intended Site is
realistic from the returning visitor perspective.

Further, regarding the come back rate our browser network has two ad-
vantages. The first advantage in favour of the attacker is that he does not
need to ensure a high return rate for every origin used by the network, e.g.
origins used to store the Storage Iframes. As long as an Intended Site is
visited, the Abusive Script will spawn invisible frames which can point to
any domain without the user’s knowledge. The second advantage is that, al-
though a 30% return visitor ratio is feasible to achieve, the requirements for
the browser network are less restrictive. The attacker could place the Abu-
sive Script in several Intended Sites, such that whenever they are visited,
they spawn n Storage Frames owned by the attacker. Since the Same Origin
Policy is not affecting our network, the browser will always join the same
network, i.e. returning to it, in spite of visiting a different Intended Site,
or even when the Abusive Script is from a different origin. Therefore, the
return rate required for the attack is not that of a single Intended Site, but
rather the return rate of all the Intended Sites serving the Abusive Scripts
combined. Naturally, this could be leveraged by an attacker exploiting sev-
eral cross-site scripting vulnerabilities on the top Alexa websites as shown
by Lekies et .al. [20].

Given that we have already covered the visit length and the visitor return
rate, it now boils down to assessing whether the concurrent sessions opened
by browsers during our experiment is feasible in real world websites. To this
end, we do an approximate estimation of this based on average values. First
of all, in equation 1, we calculate the expected number of visits per browser.
Thus, we divide the time for the experiment by the average time between
one visit and the next, i.e. average time of the visit plus average time of
the waiting time between visits. Afterwards, as shown by equation 2, the
number of visits per browser times the number of browsers yields the total
number of visits in our experiment.
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Assuming a uniform distribution of visits and using the pigeon hole prin-
ciple this value could be extrapolated to 133.000 visitors per week. This
number seems to be acceptable, given that currently the top 500%" site ac-
cording to Alexa’s ranking [3, 4] has 78 Million visits per month, and research
has shown that even several years ago more than 20% of typical commercial
sites had more than 10.000 browser clients concurrently connected, and from
4 to 10% of randomly selected sites would be able to host more than 1000
concurrent nodes [5].

Like with the previous observation, placing the Abusive Script in several
origins allows the attacker to increase the number of visitors to the browser
network since it is not covered by the Same Origin Policy. This increases the
chances of the applicability of the attack.

To summarize, we can only extrapolate the effectiveness of the presented
attack under the following assumptions. First of all, every file can be stored
in one browser, i.e. the attacker has deployed JavaScript code in sufficient
domains. Second, the attacker is capable of placing Abusive Script in at least
one domain achieving a return rate of at least 30% for all domains combined.
Third, visitors of the websites have sessions in the range between 30 and 50
seconds.

4.4.2 Network Analysis

Raw network traffic has been collected from every experiment. The raw cap-
ture file, containing all the bytes exchanged between entities of the browser
network, was processed after the experiment has finished by a Python script
using the dpkt [13] package to count the bytes aggregated by source and
destination IP. We use this information to analyse properties of the browser
network.

For readability reasons, the information is not shown on a per-entity
basis, but instead we focus on interaction between three groups of entities:
the group of returning browsers, the group of browsers executing the one-
time visits, and the group of servers including the index and peer server, the
Web server, and the PeerJs server.
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The nature of the network analysis requires to represent the network
traffic for each experiment run individually. Due to the similarity between
network captures, we chose one experiment to analyse the traffic, i.e. time
between visits in [10-40] with 5 selenium controllers returning. In Figure 10
we depict the average amount of data (in MB) transmitted between the group
represented by the row of the matrix to the group represented by the column
of the matrix; also, darker colors represent less amount of data.

Based on this, it is observed that browsers executed by selenium clients
send a very small amount of data to servers. It is also clear that browsers
exchange the highest amount of data in the browser network, as expected.
Another interesting fact is that returning browsers send more data to non-
returning browsers than returning browsers, this happens because non-returning
browsers have a clean local storage every time they join, and therefore at-
tempt to replicate files constantly. This effect changes when there are many
returning browsers (7), see Appendix for more detailed network capture in-
formation. Also, the fact that there is data being transferred between re-
turning browsers happens due to the greedy replication approach mentioned
in Section 3.3.

Due to HTTP Headers, static content must not be retrieved again (when
it has not changed). This is clearly observable because returning browsers
send and receive less data to/from servers in comparison to browsers con-
trolled by non-returning selenium controllers. Last but not least, returning
browsers send a considerable amount of bytes to non-returning browsers,
which is not reciprocal. Figure 10 shows that non-returning browsers receive
23.39 (18.9 + 4.49) MB from returning and non-returning browsers in av-
erage. Moreover, non-returning browsers deliver 6.97 (2.48 + 4.49 ) MB to
returning and non-returning browsers in average. Nonetheless, the fact that
they deliver almost 5 (6.97) MB to other non-returning browsers, is a good
sign of their contribution to keep files replicated.

5 Towards Countermeasures

We analyse the local storage increase, the cross-origin browser communica-
tion, and then the complex attack.

Preventing the Increase of Local Storage constitutes a good start
towards a countermeasure against the combined attack (a simulation is pre-
sented in Appendix A); however, the attack would still be feasible with
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returning selenium |non-returning selenium servers
returning selenium 15.57 18.90 0.13
non-returning selenium 2.48 4.49 0.22
servers 0.55 1.17 0.00

Figure 10: Average data (in MB) transmitted with 5 returning senelinum
controllers - time between visits in [10-40] seconds

enough browsers executing the Abusive Script. Be that as it may, the secu-
rity community has obliged in the past with similar conditions; for instance,
a Denial of Service is always possible when enough clients are available to an
attacker.

Pragmatic options to limit the quota increase include: limit storage, limit
number of frames spawned and throttle the postMessage throughput.

An idea to limit storage is to apply a quota to the parent window, i.e.
Abusive Script, covering not only the space used by it but also the space
used by frames contained by it. However, this raises two problems. On
the one hand, this opens a Denial of Service attack from an iframe included
in other sites, in which the use of the quota from the frame would lead to
the starvation of other frames and the parent window. On the other hand,
sharing the quota can bring privacy issues because a frame could attempt to
use as much space available in the storage at different points in time, to learn
how the parent window or other frames utilize local storage. This creates a
side channel between frames and the parent window.

Limiting the number of frames inside a window is the second option to
prevent the local storage explosion; however, it needs to be explored whether
a feasible number could be chosen, so that abuse is prevented while keeping
today’s Web running. This should be determined by observing behaviour
patterns on the World Wide Web.

Another option would be to follow similar approaches to the WebSocket
implementation in browsers, and throttle the postMessage API throughput,
i.e. limit number of messages per unit of time. This approach would not
prevent the actual allocation of the space and its availability within each
browser; however, this modification is likely to significantly increase the
amount of browsers needed to achieve high availability of the data across

24



the network since they join and leave with high churn. Similarly to the
previous approach, its applicability should be assessed by analysing today’s
programming patterns on the Web.

Preventing Cross-Origin Browser to Browser Communication
would prevent an attacker from transferring data among Storage Iframes
with different origins (See data transmission between Browser 1 and Browser
2 in Figure 1). However, this still would not change the fact that the Same
Origin Policy separation between the Abusive Script and the Intended Site
does not prevent the attack. Further, even enforcing the Same Origin Policy
between scripts exchanging data through WebRTC disables envisioned use
cases. For instance, according to the initial draft on the WebRTC security
architecture [31], different origins should be able to use an Identity Provider
to authenticate themselves before establishing calls with each other. Further,
the implementation of Cross Origin Resource Sharing (CORS) [1] would not
help, since the attacker can host his/her own Storage Iframes, and therefore
allow requests from other origins.

Lastly, one could explore the detection of the complex attack, as
described in Section 2.2.5, through dynamic monitoring. To this end, detect-
ing the particular pattern of API calls and data flows observed in our attack
is definitely possible; however, this yields a very specific enforcement mech-
anism covering only this particular attack. Conversely, if generic patterns
of browser abuse should be detected, previous work on malicious JavaScript
code detection would be a formidable starting point [33, 35, 10]. But, the
biggest challenge for such approach is finding a proper dataset, previously
labelled, to train the algorithms. This is very difficult since we are describing
a new kind of attack.

6 Related Work

Our main contributions are comprised of a novel attack, and a prototype
of a hidden content distribution network; therefore, we divide this section
accordingly.

6.1 Similar Attacks

From the storage abuse perspective, Feross discovered that a single website
could instruct local storage to store data in infinite suborigins. This lead to
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abuse the users’ disk, filling it until the browser crashes [7, 2]. This relates
to our quota bypass mechanism in the sense that both rely on using different
origins to increase the quota. However, fixing the bypass mechanism pro-
posed by us has proven to be more difficult, because the malicious behaviour
is not executed by one script writing to several suborigins, but instead is
executed across sites loaded from several origins and collaborating through
an asynchronous message channel, i.e. postMessage API.

Also, there is previous work exploring API combinations for network-
related abuse attacks. On the one hand, Parra et. al showed the applicability
of forcing the visitor’s browser to launch a Denial of Service attack against
regular Web servers by spawning WebWorkers that open as many WebSockets
as possible [28]. On the other hand, port-scanning from browsers is possible
by combining cross-origin requests with WebsSockets [18] and analysing how
their states change.

6.2 Content Distribution

PeerCDN [16] is a WebRTC-based Content Distribution Network (CDN)
forcing the visitor’s browser to share the website’s static HTML content
with other browsers without his knowledge. Owners of the company claim
to achieve a 90% bandwidth reduction for the server hosting the site. After
PeerCDN was created, Zhang et. al implemented another browser-based
CDN called Maygh [42]. Maygh relies not only on WebRTC, but also on
Real Time Media Flow Protocol (RTMFP), i.e. a closed source protocol
accessible from Flash plug-ins. Their architecture includes a coordinator
using WebRTC and RTMFP as the directory of clients and content is hosted.
The authors examined the performance and the applicability of the CDN
network by conducting experiments where simulated browsers would visit
the website using the CDN.They conclude a reduction of 75% on bandwidth
use on the operator of the website’s side. Further, to avoid abusing the
clients, the CDN network ensures that users do not upload more than 10 MB
to the CDN. From a slightly different perspective, there is recent research
work to transmit video streams between browsers using WebRTC [23, 27, 32]
to ease the burden imposed on servers hosting the video streams.

Although these three approaches execute JavaScript code without making
the visitor fully aware of this, there are three important differences between
the previously mentioned approaches and ours. First of all, PeerCDN and
the video distributing networks do not use the browsers to store persistent
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information, and retrieve it afterwards. The second difference is that the
content distributed by peerCDN, Maygh and the video distribution networks
is not arbitrary, i.e. it matches the page or the video that is rendered to the
visitor of the website. The third and most important difference is that they
neither bypass the storage, nor use the cross-origin capabilities as we do.

7 Conclusion

The cross-window communication channels through postMessage API and
the direct browser-to-browser data channels trough WebRTC bring more
flexibility to the Web developer. However, in both cases it is implicitly as-
sumed that preserving the isolation of the JavaScript context and restricting
access to the DOM of scripts engaging in communication is enough to thwart
attacks.

Nevertheless, we have shown that an attacker serving malicious code, i.e.
Abusive Script, from different origins can use a unified local storage occu-
pying space beyond the intended browser quota. Also, the Abusive Script
requires neither access to the DOM nor access to the JavaScript execution
context of the compromised website, i.e. Intended Site. Thus, presenting an
advertisement to the user is as effective as injecting malicious code on the
visited website; as a result, the attack surface is considerably increased in
comparison to most existing Web attacks which have to bypass the Same
Origin Policy.

Furthermore, circumventing the local storage quota enforcement can be
combined with coercing the visitor’s browser to communicate stored data
through browser-to-browser links, even when the site’s origins of both browsers
differ. This allows an attacker to create a browser network for data storage
and distribution in a hidden manner.

All in all, we believe there are two revolutionary aspects of our attack.
First of all, we present an attack where several origins collude against the
user, therefore invalidating several implicit assumptions behind current Web
security models. More specifically, assuming that the Same Origin Policy is
not needed in cases when data can be relayed through the server, provisions
the attacker with a powerful platform to distribute his data across browsers
through WebRTC. Likewise, we show that preventing code injection and
ensuring proper origin authentication in postMesage API interactions is not
enough when two or more origins collude to increase the total storage used by
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a particular site. The second key aspect of our attack is that we are extending
a young research field exploring browser abuse through combination of client-
side APIs and assessing their feasibility in a real-life deployment. Further, we
hope our discussion of countermeasures constitutes the foundation towards
the prevention of the attack while preserving today’s Web functionality.

Lastly, we expect to raise awareness on the need to expand the Web

security model to include scenarios in which several origins collude against a
visitor to obtain or misuse the browser’s resources, as presented in Section 2.
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A Countermeasure Simulation

We have simulated an enforcement mechanism preventing an Abusive Script
from increasing its local storage quota. To do this, we run the same exper-
iments presented in Section 4.4, i.e. the exact same instructions to every
browser, but with only one domain instead of 10 domains hosting the mali-
cious site. This is equivalent to enforcing a 5 MB quota, instead of 50 MB
quota per tab.

The mean percentage of the time in which a file is available in the network
and its standard deviation is depicted in Figure 11. A significant reduction
in the availability of files in the network, and a high standard deviation due
to the effectiveness of the countermeasure can be observed. When examining
the index log files, we observed only few files being replicated at the same
time. This happens due to the lack of space in the browser to host more files.
Also, several files have a 0% availability while others have higher values. This
leads to high standard deviation, i.e. even greater than the mean value.

As mentioned in Section 5, one can overcome this countermeasure with
enough visitors. However, this would increase the complexity of the attack
severely making it less attractive.

Although Chromium is open source, we decided to simulate the counter-
measure instead of modifying the browser’s source because, as mentioned in
Section 5, it is still unclear how this countermeasure can be implemented
without compromising functionality, privacy, and without opening vectors
for Denial of Service.

B Network Measurements

This Appendix includes the network captures on a peer-to-peer basis, dis-
criminating by browser, type of server, etc. For readability purposes, Fig-
ure 12, 13 and 14 are divided in regions according to the number of returning
browsers.
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Figure 11: Execution of experiments with a 5 MB quota on the client side
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browser0 browserl browser2 browser3 browser4 browser5 browser6 browser7 browser8 browser9 index peerjs webserver
browser0 = 2.59 27.85 34.35 10.40 12.17 49.17 141 12.71 28.09 0.03 0.32 0.03
browserl 60.34 - 42.50 8.77 31.35 5.28 22.86 4.03 46.06 27.06 0.04 0.39 0.03
browser2 32.52 40.69 = 3.73 59.95 18.89 13.86 11.51 56.36 20.30 0.04 0.46 0.04
browser3 1.47 1.04 3.54 - 0.46 - 0.07 1.86 4.03 8.51 0.03 0.30 0.40
browser4 0.44 1.50 2.67 10.02 = 3.73 10.52 25.95 0.15 3.49 0.03 0.37 0.41
browser5 0.51 0.20 245 - 0.15 - - 7.31 - - 0.03 0.18 0.32
browser6 2020 6.62 4.27 1.87 0.43 = = 7.33 222 6.89 0.03 0.31 0.46
browser7 0.08 0.20 238 0.09 4.77 0.32 0.32 - 26.69 0.44 0.03 0.24 0.33
browser8 0.48 2.28 2,51 7.37 3.70 = 6.49 1.16 = 0.00 0.03 0.38 0.35
browser9 1.32 1.13 6.22 0.32 0.15 - 0.28 10.01 0.02 - 0.03 0.40 0.40
index 1.05 1.06 1.00 0.84 0.85 0.87 0.91 1.00 0.83 0.71 s > =
peerjs 0.46 0.48 0.70 0.26 0.35 0.19 0.30 0.26 0.34 0.30 - - -
webserver 0.03 0.03 0.03 4.13 4.16 3.47 4.13 3.46 3.47 4.16 - - -

Figure 12: Network Capture(MB) time between returning visits in [10-40]

sec. 3 returning browsers

browser0 browserl browser2 browser3 browser4 browser5 browser6 browser7 browser8 browser9 index peerjs webserver
browser0 - 21.69 46.00 18.12 23.76 23.98 5.63 21.64 29.30 - 0.04 0.31 0.03
browserl 0.92 - 4.24 0.45 25.06 0.15 0.03 0.08 18.52 10.83 0.03 0.27 0.04
browser2 5.75 21.55 - 12.62 6.67 21.82 5 6.84 39.19 25.96 0.04 0.34 0.04
browser3 38.99 9.73 31.03 S 8.26 39.90 45.29 3571 16.44 28.52 0.04 0.36 0.04
browser4d 8.89 .23 12.21 14.17 - 8.90 36.45 13.43 13.91 28.36 0.03 0.35 0.04
browser5 1.04 3.59 0.95 1.79 6.47 - 0.20 0.11 1.77 - 0.03 0.24 0.37
browser6 7.13 0.01 0.08 1.99 333 3.52 - 15.99 0.11 14.43 0.04 0.30 0.34
browser7 0.88 1.76 5.46 1.54 2.39 2.43 0.72 - 0.95 1.20 0.03 0.25 0.33
browser8 1.24 0.74 1.71 0.76 1.89 0.07 1.26 0.05 - 3.59 0.03 0.29 0.34
browser9 - 4.00 2.93 9.18 1.14 - 16.15 27.02 0.15 - 0.04 0.29 0.33
index 1.32 1.12 1.29 1.43 0.98 IS5 1.26 1.07 1.10 1.21 e = >
peerjs 0.43 0.26 0.35 0.58 0.38 0.25 0.33 0.27 0.27 0.36 - - -
webserver] 0.03 0.03 0.04 0.03 0.03 3.45 3.47 3.47 3.47 3.47 - - -

Figure 13: Network Capture(MB) time between returning visits in

sec. 5 returning browsers

browser0 browserl browser2 browser3 browser4 browser5 browser6 browser7 browser8 browser9 index peerjs webserver
browser0 = 11.74 111 25.19 28.57 12.91 7.73 9.10 34.21 11.35 0.04 0.33 0.04
browserl 18.25 = 24.27 28.58 38.57 12.38 13.59 21.83 20.93 13.67 0.04 0.40 0.05
browser2 8.93 11.10 > 15.34 11.32 9.54 15.30 36.06 3.04 24.46 0.04 0.42 0.05
browser3 7.94 6.00 37.60 = 7.98 9.40 1.89 32.76 = 3.76 0.03 0.34 0.04
browser4 10.17 1.67 8.65 17.51 = 12.74 = 13.79 = 8.79 0.03 0.28 0.04
browser5 0.61 9.59 10.97 19.53 5.46 = 0.21 13.66 28.12 14.21 0.04 0.28 0.05
browser6 3.91 0.59 0.70 0.08 = 4.92 = 28.58 9.88 7.99 0.04 0.26 0.03
browser7 0.40 6.05 1.61 3.05 1.00 6.56 4.70 - 5.21 0.01 0.04 0.33 0.34
browser8 1.49 5.96 12.38 - - 123 0.44 0.22 - - 0.03 0.29 0.35
browser9 0.43 0.63 1415 0.22 0.37 2.41 0.40 0.02 = = 0.03 0.22 0.33
index 1.58 1157 1.35 1.18 1.18 1.39 1.44 1.30 1.25 1.24 = = =
peerjs 0.40 0.43 0.54 0.41 0.33 0.30 0.26 0.33 0.27 0.24 = = =
webserver 0.03 0.03 0.03 0.03 0.03 0.03 0.02 3.46 3.47 3.47 = = =

Figure 14: Network Capture(MB) time between returning visits in

sec. 7 returning browsers
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