
Indistinguishability of One-Way
Accumulators

Hermann de Meer, Manuel Liedel, Henrich C. Pöhls,
Joachim Posegga, Kai Samelin

demeer@uni-passau.de,

manuel.liedel@wiwi.uni-regensburg.de,

{hp,jp,ks}@sec.uni-passau.de,

Technical Report, Number MIP-1210
Department of Informatics and Mathematics

University of Passau, Germany
December 2012

Indistinguishability of One-Way Accumulators

Hermann de Meer1,4, Manuel Liedel2?, Henrich C. Pöhls3,4??,
Joachim Posegga3,4, Kai Samelin1,4? ? ?

1 Chair of Computer Networks and Communications, University of Passau, Germany
2 University of Regensburg, Germany

3 Chair of IT-Security, University of Passau, Germany
4 Institute of IT-Security and Security Law (ISL), University of Passau, Germany

demeer@uni-passau.de, manuel.liedel@wiwi.uni-regensburg.de,

{hp,jp,ks}@sec.uni-passau.de

Abstract. One-Way Accumulators have been introduced by Benaloh
and de Mare at Eurocrypt ’93. They allow to hash a potentially very
large set into a short digest, called the accumulator. The accumulator
allows to verify the membership of a given element using corresponding
witnesses. State-of-the-Art research focuses on the collision-resistance of
the resulting schemes. However, there are many applications, where the
accumulator must be hiding, i.e., if a third party does not have all mem-
bers, it should not be able to decide how many additional members a
given accumulator has. This behavior of indistinguishability is already
used in many cryptographic applications, but has neither been formal-
ized nor formally proven. In this paper, we close this gap by proving that
the construction by Barić and Pfitzmann, presented at Eurocrypt ’97,
fulfills our new notion. In particular, their accumulator is perfectly in-
distinguishable. Moreover, we show that the accumulator presented at
FSE ’96 by Nyberg does not fulfill this requirement.

Keywords: One-Way Accumulators, Privacy, Hash-Functions

1 Introduction

Cryptographic accumulators allow to hash a potentially very large set
M = {y1, . . . , y`} with ` elements into a short digest a, called the ac-

? The research leading to these results was supported by “Regionale Wettbe-
werbsfähigkeit und Beschäftigung”, Bayern, 2007-2013 (EFRE) as part of the
SECBIT project (www.secbit.de).

?? Is funded by BMBF (FKZ:13N10966) and ANR as part of the ReSCUeIT project
? ? ? The research leading to these results was supported by “Regionale Wettbe-

werbsfähigkeit und Beschäftigung”, Bayern, 2007-2013 (EFRE) as part of the
SECBIT project (www.secbit.de) and the European Community’s Seventh Frame-
work Programme through the EINS Network of Excellence (grant agreement no.
[288021]).

www.secbit.de
www.secbit.de

3

cumulator. They have first been introduced by Benaloh and de Mare at
Eurocrypt ’93 [3]. Its applications are broad and range from storage ef-
ficient protocols to anonymous credential systems [3,7]. The most used
main building block is a (one-way) function f : X ×Y → X , which fulfills
an additional property named quasi-commutativity:

∀x ∈ X , y1, y2 ∈ Y : f(f(x, y1), y2) = f(f(x, y2), y1)

The accumulator introduced in [3] uses the RSA-function [21] as the basic
underlying function. In particular, it lets (x, y) 7→ xy mod n, where n = pq
is a RSA-modulus with safe primes, i.e., p = 2p′ + 1 and q = 2q′ + 1 and
p′ and q′ are primes. Clearly, f is quasi-commutative:

∀x ∈ X , y1, y2 ∈ Y : (xy1 mod n)y2 mod n = (xy2 mod n)y1 mod n

Consequently, to extent this to more than two elements, one simply cal-
culates:

a = b
∏`
i=1 yi mod n

where b ∈R X , and X = Y = (Z/nZ). Note, it is required that the
elements yi are hashed using a random oracle H : {0, 1}∗ → {0, 1}λ,
prior to accumulating to be collision-resistant [2,3]. Here, λ is a security
parameter. To keep the introduction simple, this hashing step is left out
for now. b is a randomly chosen “starting value” [3]. The modulus n can
be seen as the key of f . For the rest of this paper, we drop this index,
if it is appropriate to do so. To verify that a given element yi ∈ M was
actually part of the calculation of the accumulator a, a corresponding
witness pi can be calculated, which is essentially a ythi -root of a, i.e.,

pi = yi
√
a mod n, or, in other words, pi = b

∏`
j=1,i 6=j yj mod n. Therefore,

pyii = a mod n yields, and a third party can verify that the value yi
was accumulated into a. Hence, for each element yi ∈ M, there exists a
witness pi ∈ X which proves that yi was actually accumulated. Obviously,
to result in a meaningful cryptographic construction, the function needs
to be one-way, i.e., it is hard to find a new pair (x′, y′) 6= (x, y), for which
f(x′, y′) = f(x, y) yields, if the factorization of n is unknown [3]. Note, we
do not consider that roots can be calculated, if the factorization of n = pq
is known. In other words, the entity actually generating the parameters
for the accumulator is not considered adversarial. We give an algorithmic
description and formal security definitions in Sect. 2.

Motivation. All existing work on the primitive of accumulators only
focuses on the unforgeability or its possible usages. As an example, the

4

original application scenario given in [3] proposes using accumulators for
time-stamping [11]. In particular, all documents are accumulated into
the accumulator a, which is finally time-stamped by the time-stamping
service. Following this approach, only a has to be time-stamped, while
neither elements nor the corresponding witnesses need to be known by
the time-stamping service. Hence, the time-stamping service does not
know what documents it timestamps. However, as we show in Sect. 3,
not all existing accumulators hide the amount of the members actually
contained inside the accumulator a. As an example, the accumulator in-
troduced by Nyberg at FSE ’96 does not hide the amount of digested
elements [18]. We prove this claim formally in Sect. 3. Assume that the
entity which needs to time-stamp a set of documents only lets its invoices
be time-stamped. The one-way property of the accumulator definition
already implies that the time-stamping service cannot derive which in-
voices are actually contained, but it may derive how many invoices are
time-stamped. This is already leaks, potentially critical, financial infor-
mation about the business, as it allows to infer how many invoices have
been issued and therefore “how good the business is performing”. This
insider information can be used in the stock market to help forecast-
ing the business’ share prices. From the privacy perspective this is ob-
viously not acceptable. Consequently, one requires a privacy-preserving
accumulator to hide the amount of members, i.e., a third party must not
be able to derive how many elements were used to calculate the given
accumulator. This behavior has already been utilized and assumed in
many applications, e.g., in authenticated dictionaries [10], redactable sig-
natures [1,12,19,20], sanitizable signatures [8,14], the already mentioned
time-stamping scenario [3], revocation checks [13,17] and anonymous cre-
dentials [7]. We show that, however commonly used, not all accumulator
constructions do fulfill the indistinguishability requirement. In particular,
we prove that the accumulator introduced in [2] does hide the amount of
elements, if the parameters are chosen correctly, while the accumulator
by Nyberg cannot achieve our indistinguishability notion [18].

State of the Art. The first one-way accumulator has been introduced
by Benaloh and de Mare at Eurocrypt ’93 [3]. They have been extended
to collision-free accumulators in [2]. Based on this work, Sander derived
a trapdoor-free RSA-accumulator by generating the modulus n with un-
known factorization in a verifiable way. A different approach to imple-
ment trapdoor-free accumulators, based on Bloom-Filters [4], has been
proposed by Nyberg [18]. Her approach however, is not indistinguishable

5

due to the underlying Bloom-Filter. We prove this claim in Sect. 3. Unde-
niable accumulators have then been introduced in [6]. These accumulators
do not allow to generate a non-membership witness, if the corresponding
value has been accumulated, and vice versa. Universal accumulators, in-
troduced in [7], allow to dynamically add and remove values from the ac-
cumulator. Additional trapdoor-free accumulators have been introduced
in [16,22].

All approaches focus on the unforgeability, i.e., the collision-resistance,
of the resulting accumulator, while there exists no work on the hiding
property of accumulators. This paper addresses this gap. We want to
emphasize that the scenario where the generator of the parameters is ma-
licious, was left as open work in [3], tackled by introducing trusted third
parties in [15] and finally solved by Sander [22] and also, in a slightly
different setting, by Lipmaa [16] and Nyberg [18]. Lipmaa uses a concept
related to the CRS-model [5] to verify that the parameters were gener-
ated honestly [16], while Nyberg relies on a Bloom-Filter. In this work,
we focus on the original setting, i.e., the entity generating the parameters
is not considered adversarial. Moreover, we do not discuss more sophis-
ticated accumulators which allow removing elements [7] or generating
non-membership witnesses [15]. We also do not discuss batch-updates, as
introduced in [23]. However, our results, in particular the formal notion
of indistinguishability, remain generally applicable.

Our Contribution and Outline. This paper proves that there exists
one-way accumulators which hide the actual amount of accumulated ele-
ments. On the other hand, we also show that there are one-way accumu-
lators which do not fulfill our new privacy notion of indistinguishability.
The rest of the paper is structured as follows: in Sect. 2, all preliminar-
ies are presented. The new notion of indistinguishability is introduced in
Sect. 3. This section also covers the proofs that Nyberg ’s accumulator [18]
is not indistinguishable, while the one of Barić and Pfitzmann [2] is. This
result shows that only some accumulators can be used in applications
scenarios where our stronger privacy guarantee is crucial, e.g., hiding the
contents and the number of documents submitted to time-stamping.

The rest of the paper is structured as follows. In Sect. 2, the nomenclature
and the existing security model are revisited. We discuss the new notion
of indistinguishability in Sect. 3. This section also contains the proofs that
the accumulator by Barić and Pfitzmann [2] is indistinguishable if used
correctly, while Nyberg ’s [18] is not. We conclude our work in Sect. 4.

6

2 Preliminaries

For a set M = {y1, . . . , y`}, we call yi an element and ` the element
count, i.e., ` is the cardinality of M. p and q always denote safe primes,
i.e, p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are also primes. n = pq
denotes a product of two safe primes. H : {0, 1}∗ → {0, 1}λ denotes a
random oracle, while λ denotes the security parameter. The following
notations and the algorithmic description are derived from [9] and [16].
ϕ : N → N is Euler ’s totient function. Pn denotes the set of odd primes
less or equal to n, i.e., Pn = {m | 2 < m ≤ n,m is prime}. With ordp(n),
we denote the order of the element n in the group (Z/pZ).

Definition 1 (Cryptographic Accumulators). A cryptographic ac-
cumulator ACC consists of five efficient (PPT) algorithms. In particular,
ACC := (Setup,Dig,Proof,Verf) such that:

Setup. The algorithm Setup is the parameter generator. On input of
the security parameter λ, it outputs the public parameter parm, i.e.,
parm ← Setup(1λ). Hence, Setup can be interpreted as the instance
generator

Dig. The algorithm Dig takes as input the set M = {y1, . . . , y`}, yi ∈
Yparm to accumulate, the public parameters parm and outputs an ac-
cumulator value a, i.e, a← Dig(parm,M)

Proof. The algorithm Proof takes as input the public parameters parm, a
value yi ∈ Yparm and returns a witness pi from a witness space Pparm,
if yi ∈ M was input to Dig, i.e., Dig(parm,M), and ⊥ otherwise.
Hence, it outputs pi ← Proof(parm, yi,M)

Verf. The verification algorithm Verf takes as input the public parameters
parm, an accumulator a ∈ Xparm, a witness pi, and a value yi ∈ Yparm
and outputs a bit d ∈ {true, false} indicating whether pi is a valid
proof that yi has been accumulated into a. Hence, it outputs a decision
d← Verf(parm, a, yi, pi)

We also require the correctness requirements to hold. In particular, for any
security parameter λ ∈ N+, any parm← Setup(1λ), anyM = {y1, . . . , y`}
let a← Dig(parm,M). We require:

∀yi ∈M : Verf(parm, a, yi,Proof(parm, yi,M)) = true

7

Experiment IndistinguishabilityACCA (λ)

parm← Setup(1λ)

b
$← {0, 1}

d← ALoRHash(·,·,b,parm)(parm)
where oracle LoRHash for input S,R:

{z} $← Yparm

if b = 1:
return (Dig(parm,S ∪R ∪ {z}), {(yi, pi) | pi ← Proof(parm, yi,S ∪R ∪ {z}), yi ∈ S})

if b = 0:
return (Dig(parm,S ∪ {z}), {(yi, pi) | pi ← Proof(parm, yi,S ∪ {z}), yi ∈ S})

return 1, if d = b

Fig. 1. Game for Indistinguishability

3 Indistinguishability

In this section, we introduce the formal definition of indistinguishability.
In a nutshell, indistinguishability requires that an adversary cannot de-
cide how many members a given accumulator has. We define this notion
formally with the next definition.

Definition 2 (Indistinguishability). We call an accumulator indistin-
guishable, if for any PPT algorithm A the probability that the experiment
depicted in Fig. 1 returns 1 is negligibly close to 1

2 .

The basic idea is that an adversary can choose two sets. The oracle either
digests the union of it or just the first one. Additionally, it adds a blinding
value z, chosen at random. This randomly chosen element accounts for
deterministic accumulators. z can be seen as the starting value b for the
standard RSA-accumulator. The adversary is then given only the proofs
for the first set. It has then to decide if both sets or just the first set along
with z has been digested. This definition also covers accumulators without
a starting value, e.g., the one introduced by Nyberg [18]. We prove that
this additional blinding value does not have an impact on our proofs.

3.1 Nyberg ’s Accumulator

Here, we restate the construction of the accumulator by Nyberg [18]. We
use this construction to prove afterwards, that her accumulator does not
fulfill our notion of indistinguishability.

8

Construction 1 (Nyberg ’s Accumulator) Let, ACC := (Setup,Dig,
Proof,Verf) such that:

Setup. Let N = 2d be an upper bound of elements to be accumulated.
Furthermore, let r ∈ N+ be an additional integer. Let H : {0, 1}∗ →
{0, 1}λ be a one-way function, modeled as a random oracle, where
λ = rd. Output parm = (r, d,N,H). Note, we omit the key space of H
for simplicity

Dig. Let Z = {zi | zi ← H(yi), yi ∈ M}, M = {y1, . . . , y`} denote the
set of hashed elements. Note, the length of an element zi is equal to
λ = rd due to H. Let zi = (zi,1, . . . , zi,r) denote the list of bit strings
of r elements with length d corresponding to zi. Map each element zi
to a binary string bj = (bi,1, . . . , bi,r) of length r, where bi,j = 0, if
zi,j = 0 and bi,j = 1, if zi,j 6= 0. Informally this means replacing the
d bits of zi,j by 0 or 1 depending on whether zi,j = 0 or zi,j = 1.
The accumulated hash value a is now defined as the coordinate-wise

product mod2 of each binary r-tuple bi, i.e., ai ←
∏|S|
j=1 bi,j mod 2.

Output a = (a1, . . . , ar)

Proof. The algorithm Proof returns Dig(parm,M), i.e., the accumulator
a

Verf. To verify that a given value yi was accumulated into a = (ap, . . . , ar),
one calculates zi ← H(yi) and the corresponding bit string bi = (bi,1, . . . , bi,r).
Afterwards, it checks that for all j = 1, . . . , r that, if bi,j = 0 then
aj = 0. Note, the accumulator itself is considered the proof

Non-Indistinguishability of Nyberg ’s Construction. In this sec-
tion, we prove that Nyberg ’s construction is not indistinguishable and
therefore cannot be used in applications where this privacy notion is re-
quired.

Theorem 1 (Nyberg ’s Accumulator is not Indistinguishable). The
accumulator by Nyberg [18] does not fulfill our notion of indistinguisha-
bility. Please note that we do not prove anything related to the collision-
resistance of the accumulator.

Proof. For this proof, we assume that each bit is independently set to 0,
or 1 resp., by H with probability exactly 0.5, which is implied by the use
of the random oracle. This has already been assumed in Nyberg ’s original

9

work to prove the collision-resistance of her accumulator [18]. Hence, also
following Nyberg [18], the probability that a bi,j is equal to 0 is 2−d, i.e.,
Pr[bi,j = 0] = 2−d. Hence, the expected number of ai = 0, i.e.,

∑
ai=0 1,

is equal to r2−d for a single element accumulated. This single element is
treated as {z}, as defined in the game given in Fig. 1.

For m hashed elements, the expected number of ai = 1 equals r((1 −
2−d)m). Obviously, this is a monotonous function fr,d(m), decreasing with
m, as d and r are constants. In terms of the formal game, the adversary
chooses a random string a. It sets R = ∅ and S = {a}. It follows that
r((1− 2−d)0) ≥ r((1− 2−d)1). The case that adding a new element does
not change the accumulator only happens with negligible probability, as
this implies a collision. Refer to [18] for a thorough discussion and the cor-
responding probabilities concerning collisions. Thus, the number of 0s, or
1s resp., allows an approximation of the number of elements accumulated.
Hence, the adversary wins the game with non-negligible probability. This
proves Th. 1. ut

3.2 Barić and Pfitzmann’s Accumulator

In this section, we restate the construction by Barić and Pfitzmann [2]
and prove the indistinguishability under certain assumptions. Note, our
proofs only focus on the indistinguishability, as the collision-resistance
has already been proven in the original work [2].

Construction 2 (Barić and Pfitzmann’s Accumulator) A crypto-
graphic accumulator ACC consists of five efficient (PPT) algorithms. In
particular, ACC := (Setup,Dig,Proof,Verf) such that:

Setup. The algorithm Setup is the parameter generator. On input of the
security parameter λ, it outputs the parameter parm, i.e., the RSA-
modulus n. To do so, it picks two safe primes p and q of bit-length λ.
Additionally, it chooses a hash-function H : {0, 1}∗ → Pn), modeled
as a random oracle. Finally, it outputs (H, n), where n = pq.

Dig. The algorithm Dig takes as input the set M = {y1, . . . , y`} to ac-
cumulate, the public parameters parm = (H, n) and outputs an ac-

cumulator value a. It picks a random starting value b
$← (Z/nZ)×.

Afterwards, it sets a← b
∏`
i=1H(yi) mod n. Finally, it outputs a

10

Proof. The algorithm Proof takes as input the public parameters parm =
(H, n), the set M = {y1, . . . , y`} and an element yi ∈ M. It outputs

pi ← b
∏`
j=1,i 6=j H(yj) mod n

Verf. The verification algorithm Verf takes as input the public parameters
parm, an accumulator a ∈ Xparm, a witness pi, and a value yi ∈ Yparm
and outputs a bit d ∈ {true, false} indicating whether pi is a valid
proof that yi has been accumulated into a. Finally, it outputs a decision
d← Verf(parm, a, yi, pi)

The security of the hash function has already been discussed in [2].

Indistinguishability of Barić and Pfitzmann’s Construction. This
section proves that the accumulator by Barić and Pfitzmann accumula-
tor [2] is indistinguishable following our definition. We give some addi-
tional proofs prior to giving the main theorem to increase readability.

Theorem 2 (The probability that H outputs a prime r, such that
r is not coprime to ϕ(n) = 4p′q′ is negligible). The probability that
the random oracle H outputs a prime r such that gcd(ϕ(n), r) 6= 1 is
negligible in the security parameter λ.

Proof. Assuming that H : {0, 1}∗ → Pn is a random oracle always re-
turning uniformally distributed odd prime numbers 2 < qi ≤ n, i.e.,
qi ∈ Pn, we can derive that the probability that it returns a r, such that
r | ϕ(n) = 4p′q′ is negligible. Obviously, the only primes dividing ϕ(n) are
{2, p′, q′}, as every other divisor must be a multiple of one of the elements
contained in {2, p′, q′}. As only p′ and q′ are members of Pn, we have
exactly 2 primes not fulfilling our definition. This is obviously negligible
in λ.

Hence, we can assume that H only outputs primes which are coprime to
ϕ(n):

H : {0, 1}∗ → (Pn \ {a | gcd(a, ϕ(n)) 6= 1}) (1)

Theorem 3. If gcd(u, ϕ(n)) = 1, fa : (Z/nZ)→ (Z/nZ), a 7→ au mod n
is bijective.

Proof. We prove this theorem by showing that the kernel of fa is trivial,
i.e., kern(fa) = {1}. It is obvious that fa describes a group homomor-
phism. Let fa(x) = 1, i.e., au = 1. It follows that ordn(a) | u and following

11

Lagrange ordn(a) | ϕ(n). But since gcd(u, ϕ(n)) = 1, a = 1 follows. Thus,
injectivity is proven. Since domain and range are equal, the function is
therefore also bijective. ut

Definition 3 (The inverse of fa). We define the inverse of fa as f−1a :
(Z/nZ)→ (Z/nZ), a 7→ u

√
a mod n.

Theorem 4 (There exists always a uniformally distributed b′, for
all subsets ofM). For every setM, every starting value b, every subset
M′ ⊂M, there exists a b′, which is also uniformally distributed.

Proof. Let H s.t. it outputs only odd primes, coprime to ϕ(n), which as
shown in Th. 2 has negligible impact. If M′ = M we are already done,
as b′ = b and b is chosen at random. For M′ (M we have to show that
for every M′ = {y1, . . . , y`} there exists a b′, which is also uniformally
distributed, if the original b is. To do so, we let

b′ =
H(y`)

√
· · · H(y2)

√
H(y1)
√
a mod n

As Th. 3 states, the zthi root is uniquely determined for radicands in
(Pn \ {a | gcd(a, ϕ(n)) 6= 1}). Hence, b′ is defined as a composition of
isomorphisms. This implies that b′ is uniformally distributed as well, if b
is. ut

Theorem 5. The accumulator value a is always uniformally distributed,
if b is chosen at random.

Proof. Analogue to Th. 4.

Theorem 6. The proofs pi are also uniformally distributed.

Proof. For given value zi = H(yi), the proof is defined as pi = zi
√
a mod n

for a given accumulator a. Following Th. 4, we can derive that pi is
uniformally distributed as well, if a is uniformally distributed. This is
given, since the starting value b is chosen uniformally.

Theorem 7. The construction by Barić and Pfitzmann is indistinguish-
able, if b is chosen at random, the hash-function H is modeled as a ran-
dom oracle always outputting uniformally distributed odd primes coprime
to ϕ(n).

12

Proof. The starting value b is uniformally chosen by the oracle given in
Fig. 1. Given the accumulator a, the adversary cannot decide how many
values have been accumulated, as shown in Th. 5. The proofs are also
uniformally distributed, as proven in Th. 6. Following our definition of
indistinguishability, no additional information is given to the adversary.
This proves the theorem. ut

3.3 Achieving Resilience Against Unbounded Adversaries

The last case we have to consider is if H outputs a prime r, s.t., r ∈
{p′, q′}. Here, the roots are not uniquely determined and may not be uni-
formally distributed. Hence, the proofs themselves may give the adversary
a non-negligible advantage. The same is true for the accumulator value a,
which may therefore not be uniformally distributed. To counter this, we
suggest to adjust the digest algorithm to check, if H outputs r ∈ {p′, q′}.
If so, the corresponding message has to be padded or rehashed using a
different modulus. This simple alteration allows for perfect indistinguisha-
bility. This overhead only occurs with negligible probability, as proven in
Th. 2.

3.4 Removing the Random Oracle

As already shown by Barić and Pfitzmann, the random oracle can be
removed by restricting the input itself to prime numbers [2]. As we have
restricted the random oracle to prime numbers, the same idea can be used
in our case. Hence, perfect indistinguishability can even be achieved in
the standard model. However, the input domain is reduced significantly.
All proofs concerning the collision-resistance can be found in [2].

4 Conclusion and Open Questions

In this paper, we introduced the privacy notion of indistinguishability
of one-way accumulators. This primitive has been used in many appli-
cations, but has not been shown for any existing construction yet. We
have shown that the accumulator by Barić and Pfitzmann [2] is prov-
ably indistinguishable, while Nyberg ’s accumulator [18] does not fulfill
our notion. It remains an open question of other accumulators do fulfill

13

our requirements, as we have shown that not all accumulators are indis-
tinguishable. It remains an open question if other accumulators do fulfill
the new security definition, e.g., [7,10,13,17].

References

1. J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.
Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096,
2011. http://eprint.iacr.org/.

2. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT, pages 480–494, 1997.

3. J. Benaloh and M. de Mare. One-way accumulators: a decentralized alternative
to digital signatures. In Workshop on the theory and application of cryptographic
techniques on Advances in cryptology, EUROCRYPT ’93, pages 274–285, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

4. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

5. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-
plications (extended abstract). In STOC, pages 103–112, 1988.

6. A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management using
undeniable attestations. In ACM CCS, pages 9–17, 2000.

7. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO, pages 61–76, 2002.

8. S. Canard and A. Jambert. On extended sanitizable signature schemes. In CT-
RSA, pages 179–194, 2010.

9. N. Fazio and A. Nicolosi. Cryptographic accumulators: Definitions, constructions
and applications. Available at http://www-cs.ccny.cuny.edu/ fazio/research.html,
2003.

10. M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed
cryptographic accumulator. In ISC, pages 372–388, 2002.

11. S. Haber and W. S. Stornetta. How to time-stamp a digital document. Journal of
Cryptology, 3:99–111, 1991.

12. R. Johnson, D. Molnar, D. Song, and D.Wagner. Homomorphic signature schemes.
In Proceedings of the RSA Security Conference - Cryptographers Track, pages 244–
262. Springer, Feb. 2002.

13. H. Kikuchi. Dual rsa accumulators and its application for private revocation check.
In AINA (1), pages 237–242, 2006.

14. M. Klonowski and A. Lauks. Extended Sanitizable Signatures. In ICISC, pages
343–355, 2006.

15. J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership
proofs. In ACNS, pages 253–269, 2007.

16. H. Lipmaa. Secure accumulators from euclidean rings without trusted setup. In
ACNS, pages 224–240, 2012.

17. L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA,
pages 275–292, 2005.

18. K. Nyberg. Fast accumulated hashing. In FSE, pages 83–87, 1996.
19. H. C. Pöhls, K. Samelin, H. de Meer, and J. Posegga. Flexible redactable signature

schemes for trees - extended security model and construction. In SECRYPT, pages
113–125, 2012.

http://eprint.iacr.org/

14

20. H. C. Pöhls, K. Samelin, J. Posegga, and H. de Meer. Transparent mergeable
redactable signatures with signer commitment and applications. Technical Report
MIP-1206, University of Passau, 8 2012.

21. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 26(1):96–99, 1983.

22. T. Sander. Efficient accumulators without trapdoor extended abstracts. In ICICS,
pages 252–262, 1999.

23. P. Wang, H. Wang, and J. Pieprzyk. A new dynamic accumulator for batch up-
dates. In Proceedings of the 9th international conference on Information and com-
munications security, ICICS’07, pages 98–112, Berlin, Heidelberg, 2007. Springer-
Verlag.

	Indistinguishability of One-Way Accumulators

