
Block-level Accountability for
Transparent Sanitizable Signatures

Kai Samelin, Henrich C. Pöhls,
Joachim Posegga and Hermann de Meer

{ks,hp,jp}@sec.uni-passau.de, demeer@uni-passau.de

Institute of IT-Security and Security-Law (ISL), University of Passau, Germany

Technical Report, Number MIP-1209
Department of Informatics and Mathematics

University of Passau, Germany
December 2012



2

Block-level Accountability for
Transparent Sanitizable Signatures

Kai Samelin1?, Henrich C. Pöhls2??, Joachim Posegga2, Hermann de Meer1

1 Chair of Computer Networks and Computer Communication
2 Chair of IT-Security

Institute of IT-Security and Security Law (ISL), University of Passau, Germany
{ks,hp,jp}@sec.uni-passau.de, demeer@uni-passau.de

Abstract. The paradigm of treating security properties on the block-
level in sanitizable signature schemes was introduced by Brzuska et al.
at EuroPKI ’12. In this paper we extend their work in two respects:

First, we provide a new construction which retains transparency, a
stronger privacy property. In particular, we formalize the property of
block-level accountability for sanitizable signatures with transparency.
The original work by Brzuska et al. did not allow for transparency. We
derive a provably secure construction, achieving the new notion.

Second, a modification of our construction sacrifices transparency, but
efficiently achieve Brzuska et al.’s stronger accountability notion also on
the level of blocks. Our modified construction only requires a constant
amount of signature generations to achieve block-level non-interactive
public accountability property, which is a significant improvement over
Brzuska et al.’s construction from EuroPKI ’12.

We have implemented our constructions and the scheme introduced by
Brzuska et al. at PKC ’09 to provide a detailed performance analysis.

Keywords: Malleable Signatures, Accountability, Sanitizable Signatures

1 Introduction

Non-malleable signature schemes like RSA-PSS [3, 24] do not allow any modifi-
cations of the protected string of Bits. This behavior ensures that a third party
can verify the integrity and authenticity of the signed message. However, there
are many scenarios where signed data must be altered by a third party in a con-
trolled way. Consider a driver’s license which is digitally signed by the issuing

?The research leading to these results was supported by “Regionale Wettbe-
werbsfähigkeit und Beschäftigung”, Bayern, 2007-2013 (EFRE) as part of the SECBIT
project (http://www.secbit.de) and the European Community’s Seventh Framework
Programme through the EINS Network of Excellence (grant agreement no. [288021]).
??Is funded by BMBF (FKZ:13N10966) and ANR as part of the ReSCUeIT project



3

state. To protect the privacy of the driver’s license holder, the holder is allowed
to anonymize its name, while the date of birth can still be verified by any other
party, e.g., a bouncer. Moreover, the government cannot be involved every time
a document needs to be altered. Hence, a third party must be able to alter data
without interacting with the original signer. This constellation is known as the
“digital document sanitization problem”, as formulated by Miyazaki et al. [21].

Sanitizable Signature Schemes (SanSig), introduced by Ateniese et al. [2], ex-
plicitly allow for controlled modifications of a signed message. In particular, a
SanSig allows that a signed message m = (m[1],m[2], . . . ,m[`]), can be changed
to a different message m′ = (m[1]′,m[2]′, . . . ,m[`]′). For each block m[i], the
signer has to decide during signature generation whether a sanitization by a
semi-trusted third party, a.k.a. the sanitizer, is admissible in the future. More-
over, the sanitizer neither requires the private key of the signer nor to perform
any protocol runs with the signer to actually sanitize the message. Hence, the
sanitizer is able to derive a new verifying message-signature pair (m′, σ′) on its
own behalf, which is still related to the original signer.

Motivation. There are many additional application scenarios, e.g., anonymiz-
ing medical details before giving the medical records to hospital’s accountant [19]
or secure routing protocols [2]. However, the security model for accountable san-
itizable signatures introduced in [2], formalized and extended in [5], only allows
to decide which party is accountable for the complete message-signature pair
(m,σ). In particular, they formalized the notion of block-level non-interactive
public accountability. A non-interactive publicly accountable SanSig allows that
every third party is able to decide which party is accountable for a given message-
signature pair (m,σ) without requiring any auxiliary information besides what
is given from the signature. If the accountable party cannot be derived without
the auxiliary information, the scheme is said to be transparent [2]. Recently,
Brzuska et al. introduced the paradigm of treating properties on the block-
level [8]. In particular, [8] derives the notion of block-level non-interactive public
accountability, i.e., a third party can decide which party is accountable for each
block m[i], so it cannot offer transparency. The question, if it possible to de-
rive the accountability of each block while keeping transparency has not been
answered. This online or interactive accountability keeps transparency as it re-
quires that the accountability can only be derived, if the signer cooperates. This
is the standard definition of accountability in transparent sanitizable signature
schemes as given by Ateniese et al.. [2] and formalized by Brzuska et al. [5].
However, Brzuska et al. [8] did not achieve block-level accountability for trans-
parent schemes, i.e., a block-level interactive or online-accountability. This paper
gives a positive answer and provides a block-level interactive accountable and
transparent sanitizable signature scheme.

As an application scenario for transparent and block-level accountable sanitiz-
able signatures consider the case where a CEO signs a contract using a SanSig.
Assume that each sentence of the contract is considered a block. The secre-



4

tary is allowed to change parts of the contract, e.g., the CEO allows sanitizing
sentences to fill in dates, add names and correct spelling mistakes. Outsiders,
especially the contractual partners, must not become aware of any corrections or
changes by the secretary. Hence, the used SanSig must be transparent. However,
for each sentence altered, the secretary shall later internally be deemed account-
able, while each sentence not corrected or checked is under the full accountability
of the CEO. This allows to later decide if the secretary has subsequently changed
a sentence or not. With current schemes, this detailed level of accountability for
each sentence is not possible. The current accountability notions only allow dis-
tinguishing if the secretary made no change to the document at all or at least
one change somewhere. Hence, if the secretary is found to be accountable one
could not say for which block, i.e., which sentence.

State of the Art. The standard security properties of SanSigs have first been
introduced by Ateniese et al. [2]. They have later been formalized and extended
by Brzuska et al. [5]. Limiting sanitizers to certain values has also been dis-
cussed [9, 14, 17, 22]. Later, Brzuska et al. introduced the concept of unlinkabil-
ity, a privacy notion which prohibits a third party from linking two messages [7].
Currently, the notion of unlinkability combined with transparency requires the
costly utilization of group signatures [7]. We thus focus on the security proper-
ties presented in [5]. In particular, unlike Canard et al. [10, 11], the signer needs
to define which blocks are admissible during the signature generation, while we
focus on a setting of a single signer and a single sanitizer, as transparent SanSigs
for more than one sanitizer currently also require the costly use of group signa-
tures [7, 10]. However, our ideas remain generally applicable in the multi-sanitizer
setting.

Another malleable signature scheme are redactable signatures, introduced by
Johnson et al. [16] and in a slightly different way by Steinfeld et al. [27]. In
these malleable signature schemes, blocks cannot be modified: they can only
be removed, i.e., redacted. Exemplary, refer to the work done in [1, 4, 12, 19, 20,
23, 25, 26, 28]. Approaches to combine redactable signature schemes and SanSigs
appeared in [15]. In this paper, we focus on SanSigs, as redactable signatures
schemes allow public redactions and are designed to achieve slightly different
goals.

Our Contribution and Outline. This paper gives a positive answer to the
question from Brzuska et al. [8]: We efficiently construct a scheme offering block-
level accountability and transparency build only from standard primitives, i.e.,
an UNF-CMA digital signature scheme and a tag-based chameleon hash. In
particular, we formalize the notion of block-level accountability for transparent
sanitizable signatures and give a provably secure construction based on standard
signature schemes and tag-based chameleon hashes [5, 18]. An alteration of our
construction allows to achieve block-level non-interactive public accountability



5

equal to [8] more efficiently, with only a constant amount of signatures. Moreover,
we have implemented our constructions and the SanSig introduced by Brzuska
et al. in [5]. We provide a detailed performance analysis of our implementations
and allow a comparison of speeds.

The rest of the paper is structured as follows: the standard security model our
work is based upon is stated in Sect. 2. The notion of block-level accountability
is introduced in Sect. 3. Our constructions and the corresponding performance
evaluation are presented in Sect. 4, while our work is concluded in Sect. 5. All
formal proofs are relegated to App. A.

2 Preliminaries

We shortly revisit the utilized algorithms, nomenclature and notations. They are
derived from [5]. For a message m = (m[1], . . . ,m[`]), we call m[i] a block. “,”
denotes a uniquely reversible concatenation, while ⊥ /∈ {0, 1}∗ denotes a special
symbol not being a string, e.g., to indicate an error or an exception. A secure
SanSig consists at least of the following algorithms:

Definition 1 (Sanitizable Signature Scheme). Any SanSig consists of seven
PPT algorithms (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge), such that:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys consisting of a private
key and the corresponding public key, based on the security parameter λ:

(pksig, sksig)← KGensig(1
λ), (pksan, sksan)← KGensan(1λ)

Signing. The Sign algorithm takes as input the security parameter λ, a message
m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗, the secret key sksig of the signer, the
public key pksan of the sanitizer, as well as a description adm of the admis-
sibly modifiable blocks. adm contains the number of blocks in m, denoted by
`, and a list of the indices of the modifiable blocks. ` is included in adm to
inhibit all attacks that maliciously try to append or remove blocks at the end.
Note, we assume that adm can always be correctly reconstructed from σ. It
outputs the message m and a signature σ (or ⊥, indicating an error):

(m,σ)← Sign(1λ,m, sksig,pksan,adm)

Sanitizing. Algorithm Sanit takes the security parameter λ, a message m =
(m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗, a modification instruction mod, a signature
σ, the public key pksig of the signer and the secret key sksan of the sanitizer.
It modifies the message m according to the modification instruction mod. We
model mod to contain a list of pairs (i,m[i]′) indicating that block i shall be
modified into the string m[i]′. Note, mod can be empty or the string m[i]′ can



6

be equal to m[i]. Sanit generates a new signature σ′ for the modified message
m′ = mod(m). Sanit outputs m′ and σ′ (or ⊥ in case of an error:

(m′, σ′)← Sanit(1λ,m,mod, σ,pksig, sksan)

Verification. The Verify algorithm outputs a bit d ∈ {true, false} indicating
the correctness of a signature σ for a message m with respect to the security
parameter λ, the public keys pksig and pksan:

d← Verify(1λ,m, σ,pksig,pksan)

Proof. The Proof algorithm takes as input the security parameter λ, the secret
signing key sksig, a message m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗ and a sig-
nature σ as well a set of (polynomially many) additional message-signature
pairs {(mi, σi) | i ∈ N+} and the public key pksan. It outputs a string
π ∈ {0, 1}∗ (or ⊥ in case of an error):

π ← Proof(1λ, sksig,m, σ, {(mi, σi) | i ∈ N},pksan)

Judge. Algorithm Judge takes as input a message m = (m[1], . . . ,m[`]), m[i] ∈
{0, 1}∗ and a valid signature σ, the public keys of the parties and a proof
π. It outputs a decision d ∈ {Sig, San,⊥}, indicating whether the message-
signature pair has been created by the signer or the sanitizer (or ⊥ in case
of an error):

d← Judge(1λ,m, σ,pksig,pksan, π)

We require that the usual correctness properties hold. In particular, every gen-
uinely signed or sanitized message is accepted as valid by Verify. Moreover, every
genuinely created correct proof by the signer makes Judge decide in favor of the
signer. See [5] for a formal definition of these correctness requirements.

Note, again: mod does not necessarily contain the instruction to modify the
actual bits of a block: If (i,m[i]′) ∈ mod, then it might still be that m[i]′ = m[i].
This allows a sanitizer to take accountability for a block m[i] without modifying
the contents of it.

Ateniese et al. introduced a set of desirable properties [2], later rigorously for-
malized by Brzuska et al. [5, 8]. We list the informal description of all of them
for the paper to be self-contained:

– Immutability prevents the sanitizer from modifying blocks not admissible [5].

– Unforgeability assures that third parties cannot produce a signature for a
“fresh” message. Fresh means the message has not been signed by the signer,
nor issued by the sanitizer using the Sanit algorithm). This is similar to the
unforgeability requirements of standard signature schemes. [5]



7

– Privacy, prevents third parties from recovering any original information from
sanitized message parts. Its extension unlinkability [7], describes the “the
impossibility to use the signatures to identify sanitized message-signature
pairs originating from the same source” [6].

As an example, a third party cannot retrieve any additional information
besides what is given from a sanitized message and the signature [5]. Even
if it a third party has access to two potentially differently sanitized versions
of the same document, it cannot find out that they stem from the same
source and hence cannot deduce any information, e.g., like recovering blocks
by merging in the un-sanitized blocks from the other document [6].

– Transparency prevents third parties to decide which party is accountable for
a given message-signature pair (m,σ). This is important, if the existence of
a sanitizer must be hidden. This is required, if sanitization leads to disad-
vantages of any party involved [5].

– Accountability makes the origin (signer or sanitizer) of a signature undeni-
able. Hence, it allows a judge to settle disputes over the origin of a mes-
sage [5]. The judge may request additional information from the signer.
Brzuska et al. show [5] that accountability comes in two flavors: Signer-
and Sanitizer-Accountability.

– Non-Interactive Public Accountability allows that a third party can al-
ways decide which party is accountable for a given message-signature pair
(m,σ) [8] without additional interaction or auxiliary information.

– Block-level Non-Interactive Public Accountability allows that a third party
can always decide which party is accountable for a given block -signature pair
(m[i], σ) [8] without additional interaction or auxiliary information-signature
pair.

We restate the formal definitions of immutability, privacy, signer- and sanitizer-
accountability, transparency, and the block-level public accountability to increase
readability of Sect. 3, which introduces the new properties.

Definition 2 (Immutability). A sanitizable signature scheme SanSig is im-
mutable, if for any efficient algorithm A the probability that the experiment
ImmutabilitySanSigA (λ) given in Fig. 1 returns 1 is negligible (as a function of λ).
The attacker gets access to a signing oracle. To break immutability, the adversary
must either (1) be able to alter blocks not designated to be sanitized (directly or
by manipulation of adm), or (2) exchange the public sanitizer key to a new one
which has not been input to the signing oracle.

Definition 3 (Privacy). A sanitizable signature scheme SanSig is private, if

for any efficient algorithm A the probability that the experiment PrivacySanSigA (λ)
given in Fig. 2 returns 1 is negligibly close to 1

2 (as a function of λ). To breach



8

Experiment ImmutabilitySanSigA (λ)

(pksig, sksig)← KGensig(1λ)

(pk∗,m∗, σ∗)← ASign(sksig,··· ),Proof(sksig,... )(pksan)
let (m′i, σ

′
i) for i = 1, . . . , q denote the answers from Sign indexed by i

return 1, if:

Verify(1λ,m∗, σ∗, pksig, pk
∗) = true, and

∀i : pk∗ 6= pksan,i or
m∗[ji] 6= mi[ji], where ji /∈ admi
//shorter messages are padded with ⊥

Fig. 1. Immutability

Experiment PrivacySanSigA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, pksan)← KGensan(1λ)
b← {0, 1}
a← ASign(sksig,··· ),Sanit(··· ,sksan),Proof(sksig,··· ),LoRSanit(...,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit on input of:
m0,i,mod0,i,m1,i,mod1,i,admi
if mod0,i 6⊆ admi, return ⊥
if mod1,i 6⊆ admi, return ⊥
if mod0,i(m0,i) 6= mod1,i(m1,i), return ⊥
let (mi, σi)← Sign(mb,i, sksig, pksan,admi)
return (m′i, σ

′
i)← Sanit(mi,modb,i, σ, pksig, sksan)

return 1, if a = b

Fig. 2. Privacy

privacy, the adversary gives two crafted input messages to the LoRSanit and has
toto decide which one was used to produce the signed outcome.

Definition 4 (Signer Accountability). A sanitizable signature scheme SanSig
is signer accountable, if for any efficient algorithm A the probability that the ex-
periment Sig-AccSanSigA (λ) given in Fig. 3 returns 1 is negligible (as a function
of λ). In this game, the adversary has to generate a proof π∗ which makes a
genuine Judge decide that the sanitizer is accountable, even though it is not.

Definition 5 (Sanitizer Accountability). A sanitizable signature scheme
SanSig is sanitizer accountable, if for any efficient algorithm A the probabil-
ity that the experiment San-AccSanSigA (λ) given in Fig. 4 returns 1 is negligible
(as a function of λ). In this game, the adversary has to generate a valid signa-



9

Experiment Sig-AccSanSigA (λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
(pk∗, π∗,m∗, σ∗)← ASanit(··· ,sksan)(pksan)

let (m′i, σ
′
i) for i = 1, . . . , q

denote the answers from the oracle Sanit
return 1, if:

Verify(1λ,m∗, σ∗, pk∗, pksan) = true, and
(pk∗,m∗) 6= (pksig,i,m

′
i) for all i = 1, . . . , q, or

Judge(1λ,m∗, σ∗, pk∗, pksan, π
∗) = San

Fig. 3. Signer Accountability

Experiment San-AccSanSigA (λ)

(pksig, sksig)← KGensig(1λ)
b← {0, 1}
(pk∗,m∗, σ∗)← ASign(··· ,sksig,··· ),Proof(sksig,··· )(pksig)

let (mi,admi, pksan,i) and σi for i = 1, . . . , q
denote the queries to the oracle Sign

π ← Proof(1λ, sksig,m
∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗)

return 1, if:

Verify(1λ,m∗, σ∗, pksig, pk
∗) = true, and

(pk∗san,m
∗) 6= (pksan,i,mi) for all i = 1, . . . , q, and

Judge(1λ,m∗, σ∗, pksig, pk
∗, π) = Sig

Fig. 4. Sanitizer Accountability

ture σ∗ which makes a genuine Proof generate a proof π, leading the Judge to
decide that the signer is accountable, even though it is not.

Definition 6 (Transparency). A sanitizable signature scheme SanSig is
proof-restricted transparent, if for any efficient algorithm A the probability that
the experiment TransparencySanSigA (λ) given in Fig. 5 returns 1 is negligibly close
to 1

2 (as a function of λ). The basic idea is that the adversary is not able to
decide whether it sees a freshly signed signature or a signature created through
Sanitize even though the attacker controls the input message

Definitions allowing usage of deterministic signature schemes can be found in [5].

3 Block-level Accountability

In this section, we introduce the notion of block-level accountability:
First, we keep transparency, hence, the resulting construction (Sect. 4.2) pre-
serves unforgeability, immutability, privacy and transparency, while it achieves



10

Experiment TransparencySanSigA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(...,sksan),Proof(sksig,... ),Sanit/Sign(...,sksig,sksan,b)(pksig, pksan)

where Sanit/Sign for input mi,modi,admi
σi ← Sign(1λ,mi, sksig, pksan,admi),

(m′i, σ
′
i)← Sanit(1λ,mi,modi, σi, pksig, sksan)

if b = 1:

σ′i ← Sign(1λ,m′i, sksig, pksan,admi),
finally return (m′i, σ

′
i).

return 1, if a = b and A has not
queried any (mi, σi) output by Sanit/Sign to Proof.

Fig. 5. Transparency

block-level accountability. Note, this does not achieve public non-interactive ac-
countability, as we achieve transparency which is mutually exclusive to any pub-
lic non-interactive accountability. We are the first to give a construction which
allows block-by-block accountability, while fully achieving transparency.
Second, we re-state the stronger accountability notion of public non-interactive
accountability, which our second construction (Sect. 4.3) fulfils. Henceforth, the
second construction cannot preserve transparency, but achieves immutability,
privacy and public non-interactive block-level accountability.

3.1 Block-level Interactive Accountability with Transparency

Let us give an informal definition of block-level accountability first:

A SanSig offers block-level accountability, iff for all valid message-
signature pairs (m,σ), with m = (m[1], ...m[`]), the algorithm Proof
outputs a proof π which allows the algorithm BlockJudge to decide
(i.e., BlockJudge outputs Sig or San), iff the given block -signature pair
(m[i], σ), with m[i] ∈ m, originates from the signer, or from the sanitizer,
even in the presence of malicious signers/sanitizers.

This definition requires to introduce an additional algorithm BlockJudge, which
returns a list of di, where di ∈ {Sig, San} indicates which party is accountable
for the block m[i]. The additional algorithm BlockJudge is defined as follows:

di ← BlockJudge(1λ,m, σ, pksig, pksan, π, i)

With this block-level notion, the standard message-level accountability notion
for the complete message-signature pair (m,σ) becomes a corner case. To incor-
porate the standard accountability notion for the message level,



11

Experiment Block-Signer-AccSanSigA (λ)

(pksan, sksan)← KGensan(1λ)

b
$← {0, 1}

(pk∗, π∗,m∗, σ∗)← ASanit(··· ,sksan)(pksan)
Let (mj ,modj , σj , pksig,j) and (m′j , σ

′
j) for j = 1, 2, . . . , k

be the queries and answers to and from oracle Sanit.
return 1, if:

Verify(1λ,m∗, σ∗, pk∗, pksan) = true, and
∀j : pksig,j 6= pk∗sig, or

∃q : BlockJudge(1λ,m∗, σ∗, pk∗, pksan, π
∗, q) = San, and

(q,m′j [q]) /∈ modj

Fig. 6. Block-level Signer Accountability

Definition 7 (Message-level Accountability from Block-Level). A sani-
tizer is accountable for a complete message-signature pair (m,σ), iff the SanSig
is block-level accountable and there exists at least one block of m, for which
BlockJudge identifies the sanitizer as accountable.
Vice versa, a signer is accountable for the complete message-signature pair
(m,σ), iff the SanSig is block-level accountable and BlockJudge identifies the
signer to be accountable for all blocks of m.

This is the expected behavior, as defined by Brzuska et al. [5]. For block-level
accountability, we now give rigorous definitions, that allow to formally include
the existing definitions as a border case:

Definition 8 (Block-level Signer Accountability). A sanitizable signature
scheme SanSig is block-level signer accountable, if for any efficient algorithm
A the probability that the experiment Block-Signer-AccSanSigA (λ) given in Fig. 6
returns 1 is negligible (as a function of λ). Basically, the adversary wins if it
can frame a genuine sanitizer identified by pksan. To win the game the adversary
has to generate a tuple (pk∗,m∗, σ∗) including a proof π, which leads Judge to
decide that a specific sanitizer identified by a fixed pksan is accountable for a
block q, while it is not.

Definition 9 (Block-level Sanitizer Accountability). A sanitizable signa-
ture scheme SanSig is block-level sanitizer accountable, if for any efficient algo-
rithm A the probability that the experiment Block-Sanitizer-AccSanSigA (λ) given in
Fig. 7 returns 1 is negligible (as a function of λ). Basically, to win the game
the adversary has to generate a tuple (pk∗san,m

∗, σ∗) for which Proof generates
a proof π which leads Judge to decide that a specific signer identified by a fixed
pksig is accountable, while it is not. Note, with sanitizer accountability we as-



12

Experiment Block-Sanitizer-AccSanSigA (λ)

(pksig, sksig)← KGensig(1λ)
b← {0, 1}
(pk∗san,m

∗, σ∗)← ASign(··· ,sksig,··· ),Proof(sksig,··· )(pksig)
Let (mi,modi, σi, pksan,i) and (mi, σi) for i = 1, 2, . . . , k
be the queries and answers to and from the oracle Sign.

π ← Proof(1λ, sksig,m
∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗san)

return 1, if:

Verify(1λ,m∗, σ∗, pksig, pk
∗
san) = true, and

∀i : pksig,i 6= pk∗sig, or

∃q : BlockJudge(1λ,m∗, σ∗, pksig, pk
∗
san, π, q) = Sig and

(q,m′j [q]) ∈ modj

Fig. 7. Block-level Sanitizer Accountability

sume the signer rebuttals an attack by generating genuine proofs which are given
to Judge.

Theorem 1 (Block-level Signer Accountability =⇒ Signer Account-
ability). Every SanSig which is block-level signer accountable is also signer ac-
countable.

Proof. Assume towards contradiction, that there exists a block-level signer ac-
countable scheme, which is not signer accountable on the message-level. Assume
signer accountable on the message-level is build upon the block-level as described
Then there exists a tuple (m∗, σ∗, π∗) for which the genuine algorithm Judge de-
cides wrong, i.e., outputs San while the message is still untouched. This implies,
that there exists one block m∗[i] has not been generated by the sanitizer, which
must be detected by BlockJudge to be block-level signer accountable. The con-
tradiction follows.

Theorem 2 (Block-level Sanitizer Accountability =⇒ Sanitizer Ac-
countability). Every SanSig which is block-level sanitizer accountable is also
sanitizer accountable.

Proof. Assume towards contradiction, that there exists a block-level sanitizer
accountable scheme, which is not sanitizer accountable on the message-level.
Then there exists a tuple (m∗, σ∗, π∗) for which the genuine algorithm Judge
decides wrong, i.e., outputs Sig while the message has been touched by the
sanitizer. This implies, that there exists one blockm∗[i] which has been generated
by the sanitizer. Hence, this will be detected by BlockJudge as the scheme is
block-level sanitizer accountable. The contradiction follows.

Definition 10 (Block-level Accountability). A sanitizable signature scheme
SanSig is block-level accountable, if it is block-level signer accountable and block-
level sanitizer accountable.



13

3.2 Block-level Non-interactive Public Accountability without
Transparency

To simplify the notion of (block-level) public accountability, Brzuska et al. define
that the algorithm Judge decides upon reception of empty proof π = ⊥ [8]. In
this paper, we stick with their approach for consistency. Obviously, transparency
inhibits this public and instant form of accountability [8]. Following the afore-
mentioned definitions, transparency and (block-level) public accountability are
therefore mutually exclusive.

For the following formal definition of block-level non-interactive public account-
ability, we require the algorithm Detect [8]. It takes as input the security param-
eter, a message m and a valid signature σ together with the sanitizer’s public key
pksan and the signer’s public key pksig. Most notably, it also takes as an input a
block index i and then returns San or Sig, indicating which party is accountable
for the ith block [8]:

Detect. On input of the security parameter 1λ, a valid message-signature pair
(m,σ), the corresponding public keys pksig and pksan, and the block index i,
Detect outputs the accountable party for block i (or ⊥ in case of an error).

d← Detect(1λ,m, σ, pksig, pksan, i), d ∈ {San, Sig,⊥}

Definition 11 (Block-level Non-Interactive Public Accountability). A
sanitizable signature scheme SanSig together with an algorithm Detect is block-
level non-interactive publicly accountable, if for any efficient algorithm A the
probability that the experiment Block-Pub-AccSanSigA (λ) given in Fig. 8 returns 1
is negligible (as a function of λ).

4 Constructions

In this section, we derive two new constructions. The first new construction
achieves block-level accountability with transparency. The second construction
allows a more efficient block-level non-interactive public accountability requiring
only a constant number of signatures. Note, for readability, we drop the security
parameter λ for the rest of the paper.

4.1 Prerequisites

All implemented constructions make use of the tag-based chameleon hash by
Brzuska et al. [5]. We shortly restate the requirements and their construction
from [5]. In particular, the chameleon hash must be collision-resistant under
random tagging-attacks as assumed and shown in [5].



14

Experiment Block-Pub-AccSanSigA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Sanit(...,sksan)(pksan, pksig)
Let (mi,admi, pksan,i) and σi for i = 1, 2, . . . , k

be the queries and answers to and from oracle Sign.
Let (mj ,modj , σj , pksig,j) and (m′j , σ

′
j) for j = 1, 2, . . . , k

be the queries and answers to and from oracle Sanit.
return 1 if

Verify(1λ,m∗, σ∗, pksig, pk
∗) = true, and

for mi with pksan,i = pk∗, ∃q, such that

Detect(1λ,m∗, σ∗, pksig, pk
∗, q) = Sig

and mi[q] ⊆ modi
return 1, if

Verify(1λ,m∗, σ∗, pk∗, pksan) = true, and
for mj with pksig,j = pk∗, ∃q such that

Detect(1λ,m∗, σ∗, pk∗sig, pksan, q) = San

and mj [q] /∈ modj
return 0

Fig. 8. Block-level public accountability

Experiment Rand-TagCHA (λ)

(pk, sk)← CHKeyGen(1λ)

(TAG,m, r,TAG′,m′, r′)← AOAdapt(sk,··· )(pk)

where oracle OAdapt for the ith query (TAGi,mi, ri,m
′
i) with TAGi ∈ {0, 1}λ

let TAGi ← {0, 1}λ and compute r′i ← CHAdapt(sk,TAGi,mi, ri,TAG
′
i,m

′
i)

return (TAG′i, r
′
i)

return 1, if
(TAG,m) 6= (TAG′,m′) and

let i = 1, . . . , q denote the ith oracle query
CHash(pk,TAG,m, r) = CHash(pk,TAG′,m′, r′) and
{(TAG,m),TAG′,m′)} 6= {(TAGi,mi),TAG

′
i,m

′
i)} for all i = 1, . . . , q and

{(TAG,m),TAG′,m′)} 6= {(TAGi,mi),TAG
′
j ,m

′
j)} for all i, j = 1, . . . , q

Fig. 9. Collision-Resistance against Random Tagging Attacks

Definition 12 (Collision-Resistance under Random-Tagging Attacks).
A tag-based chameleon hash CH is said to be collision-resistant under random-
tagging attacks, if the probability that the experiment depicted in Fig. 9 returns
1 is negligible (as a function of λ).

The following tag-based chameleon hash achieves this notion [5]:

Construction 1 (Chameleon Hash with Tags) A chameleon hash CH :=
(CHKeyGen,CHash,CHAdapt) with tags consists of three efficient algorithms:



15

CHKeyGen. The algorithm CHKeyGen takes as input the security parameter 1λ

and outputs the key pair required for the chameleon hash:

1. Generate RSA-parameter n, e, d, where e ∈ {ei ∈ N | 2 < ei <
n, gcd(ϕ(n), ei) = 1}, based on the security parameter λ

2. Choose a function H : {0, 1}∗ → (Z/nZ)×, modeled as a random oracle

3. Output (sk,pk), where sk = (d) and pk = (n, e,H)

CHash. The algorithm CHash takes as input the public key pk, a string m to
hash, a tag TAG and a randomness r ∈ {0, 1}λ. It outputs:

H(TAG,m) · re (mod n)

CHAdapt. The algorithm CHAdapt takes as input the private key sk, m, m′,
TAG, TAG′, r. It outputs r′ ← ((H(TAG,m)·re)·(H(TAG′,m′)−1))d (mod n)

The formal proofs of correctness and security can be found in [5].

4.2 Block-level Accountable and Transparent SanSig

Next, we introduce a provably secure construction which is transparent, private,
immutable, block-level accountable and unforgeable.

Construction 2 (Transparent and Block-level Accountable SanSig.) Our
construction is based upon the scheme introduced by Brzuska et al. [5]. In par-
ticular, each block is hashed using a tag-based chameleon hash. However, in-
stead of using one tag for the complete message m, we use different tags for
each block m[i]. We utilize a standard UNF-CMA signature scheme SS =
(SKeyGen,SSign,SVerify) to generate the final signature. Moreover, like the orig-
inal construction, we utilize a pseudorandom function PRF mapping n-bit input
on a n-bit output for n-bit keys and a pseudorandom generator PRG mapping
n-bit inputs to 2n-bit outputs.

KGensig. Generate a key pair of the underlying signature algorithm SKeyGen,
i.e., (pk, sk) ← SKeyGen(1λ). Pick a key κ← {0, 1}λ for the PRF . Output
(pksig, sksig) = (pk, (sk, κ)).

KGensan. Generate a key pair of the underlying chameleon hash. In particular,
output (pksan, sksan)← CHKeyGen(1λ).

Sign. On input of the message m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗, pksan, sksig

and adm, draw ` + 1 nonces ni, ni ← {0, 1}λ. Compute xi ← PRF(κ, ni)
and TAGi ← PRG(xi) for all i = 0, . . . , `. Draw ` + 1 additional nonces ri,
ri ← {0, 1}λ. Afterwards, compute:

h[i]←

{
CHash(pksan,TAGi,m[i], ri) if i ∈ adm

m[i] else



16

for all i = 1, . . . , `. Let h[0] = CHash(pksan,TAG0, (TAG1, . . . ,TAG`), r0).
Generate σc ← SSign(sk, (h[0], h[1], . . . , h[`],pksan,adm)). Output (m,σ),
where σ = (σc, (TAGi)0≤i≤`, (ni)0≤i≤`,adm, (ri)0≤i≤`)

Verify. On input of pksig, pksan, m and σ = (σc, (TAGi)0≤i≤`, (ni)0≤i≤`,adm,
(ri)0≤i≤`) compute:

h[i]←

{
CHash(pksan,TAGi,m[i], ri) if i ∈ adm

m[i] else

and h[0] = CHash(pksan,TAG0, (TAG1, . . . ,TAG`), r0). Output SVerify(pk,
(h[0], h[1], . . . , h[`],pksan,adm), σc)

Sanit. On input of pksig, sksan, m, mod and σ first check if the received message-
signature pair is valid using Verify. Check, if mod ⊆ adm. If not, stop and
output ⊥. For each block (i,m[i]′) ∈ mod, draw new nonces n′i ← {0, 1}λ
and new tags TAG′i ← {0, 1}2λ. If i /∈ mod, the tags, randoms and nonces are
copied from the original signature, i.e., n′i = ni and TAG′i = TAGi. Always
draw an additional nonce: n′0 ← {0, 1}λ and an additional tag: TAG′0 ←
{0, 1}2λ. Compute: r′i ← CHAdapt(sksan,TAGi,m[i], ri,TAG

′
i,m[i]′) for each

i ∈ mod and r′0 ← CHAdapt(sksan,TAG0, (TAG1, . . . ,TAG`), ri,TAG
′
0, (TAG

′
1,

. . . ,TAG′`)). Output (m′, σ′), where m′ ← mod(m) and

σ′ = (σc, (TAG
′)0≤i≤`, (n

′
i)0≤i≤`,adm, (r

′
i)0≤i≤`)

Proof. On input of sksig, m, σ = (σc, (TAGi)0≤i≤`, (ni)0≤i≤`,adm, (ri)0≤i≤`),
pksan and a sequence of message-signature pairs {(mi, σi) | i ∈ N}, search
for a matching signature, such that for each block m[i], (pksan,TAGi,m[i], ri)
the following yields:

CHash(pksan,TAGi,m[i], ri) = CHash(pksan,TAG
′
i,m

′[i], r′i)

Set TAGi ← PRG(xi), where xi ← PRF(κ, ni). Output π, where

π = ((TAGi)0≤i≤`,m,pksig,pksan, (ri)0≤i≤`, (xi)0≤i≤`)

If any errors occur, it outputs ⊥. In other words, Proof outputs the originals
of each block as the proof for the complete message.

BlockJudge. On input of m, σ, pksig, pksan, an index i, and the proof π =
((TAGπi )0<i≤`,m

π,pkπsig,pkπsan, (r
π
i )0<i≤`, (x

π
i )0≤i≤`), first check, if σ veri-

fies. Afterwards, check if pkπsan = pksan. Else, it return ⊥. For block m[i] in
m let:

di ←


San if CHash(pksan,TAGi,m[i], ri) = CHash(pkπsan,TAG

π
i ,m

π[i], rπi )

and the collision is non-trivial, i ∈ adm,TAGπi = PRG(xπi )

Sig else

Output (di)0<i≤`. or ⊥ on error.



17

Judge. The algorithm Judge gets m, σ, pksig, pksan and the proof π =
((TAGπi )0<i≤`,m

π,pkπsig,pkπsan, (r
π
i )0<i≤`, (x

π
i )0<i≤`) as input. For each i ∈

adm, it calls di ← BlockJudge(m,σ,pksig,pksan, π, i). On error, output ⊥.
If ∃i : di 6= Sig, then output San and Sig otherwise.

Theorem 3 (The Construction is Secure.). If the underlying signature
scheme SS is unforgeable, the used chameleon hash is collision resistant under
random tagging attacks, while PRF and PRG are pseudorandom, our construc-
tion is transparent, private, immutable, block-level accountable and unforgeable.

The proofs are relegated to App. A.

4.3 Block-level Non-Interactive Publicly Accountable SanSig

Next, we present a provably secure construction which is private, immutable,
block-level non-interactive publicly accountable and unforgeable based on our
first construction. This construction alters our first construction such that it
removes transparency, but efficiently gives block-level non-interactive public ac-
countability. We achieve this with a constant number of signatures compared
to Brzuska et al.’s construction [8], where the number of signatures increases
linearly with the number of blocks. However, we require linearly many hash
operations.

Construction 3 (Block-level Non-Interactive Publicly Accountable SanSig.)
A secure construction which is private, immutable, block-level non-interactive
publicly accountable and unforgeable, based on our first construction.

KGensig. Generate a key pair of the underlying signature algorithm SKeyGen,
i.e., (pk, sk)← SKeyGen(1λ). Output (pksig, sksig) = (pk, sk).

KGensan. Generate a key pair of the underlying chameleon hash and of an un-
forgeable signature scheme. In particular, let (pkc, skc)← CHKeyGen(1λ) and
(pks, sks)← SKeyGen(1λ). Output (pksan, sksan) = ((pkc,pks), (skc, sks))

Sign. On input of the message m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗, pksan, sksig

and adm, draw ` nonces: si = ri ← {0, 1}λ and ` additional nonces, i.e.,
TAGi ← {0, 1}2λ Compute:

h[i]←

{
CHash(pksan.pkc,TAGi,m[i], ri) if i ∈ adm

m[i] else

for all i = 1, . . . , `. Generate σc ← SSign(sks, (h[1], . . . , h[`],pksan,adm, r1, . . . , r`))
and σd ← SSign(sks, (h[1], . . . , h[`], s1, . . . , s`)). Output:

σ = (σc, σd, (TAGi)0<i≤`, (ri)0<i≤`, (si)0<i≤`,adm)



18

Verify. On input of pksig, pksan, m, σ = (σc, σd, (TAGi)0<i≤`, (ri)0<i≤`, (si)0<i≤`,adm),
compute:

h[i]←

{
CHash(pksan.pkc,TAGi,m[i], si) if i ∈ adm

m[i] else

Check, if σd either verifies under pksan.pks or pksig. If σd verifies under
pksig, also check, if the ri protected by σc and σd are equal, i.e., if ri = si.
If so, output:

SVerify(pk, (h[1], . . . , h[`],pksan,adm, s1, . . . , s`), σc)

Sanit. On input of pksig, sksan, m, mod and σ = (σc, σd, (TAGi)0<i≤`, (ri)0<i≤`, (si)0<i≤`,adm)
first check, if the received message-signature pair is valid using Verify. If
not, stop outputting ⊥. For each block (i,m[i]′) ∈ mod, draw new tags
TAG′i ← {0, 1}2λ. If (i,m[i]′) /∈ mod, set TAG′i = TAGi and s′i = ri. After-
wards, compute:

s′i ← CHAdapt(sksan.skc,TAGi,m[i], ri,TAG
′
i,m[i]′)

Output (m′, σ′), where m′ ← mod(m) and

σ′ = (σc, σ
′
d, (TAG

′)0<i≤`, (ri)0<i≤`, (s
′
i)0<i≤`,adm)

where σ′d ← SSign(sksan.sks, (h[1], . . . , h[`], s′1, . . . , s
′
`)) If i /∈ mod, the tags

and nonces are copied from the original signature. We want to emphasize,
that r′i = ri, where i ∈ mod, is only possible with negligible probability. This
can directly be derived from the definition of a chameleon-hash.

Proof. Always returns ⊥.

Detect. On input of m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗, and σ = (σc, σd,
(TAGi)0<i≤`, (ri)0<i≤`, (si)0<i≤`,adm), pksig, pksan, ⊥ and an index i, first
check, if σ verifies. For block m[i] in m let:

di ←

{
San if ri 6= si ∧ i ∈ adm

Sig else

Output di or ⊥ on error.

Judge. The algorithm Judge gets m, σ = (σc, σd, (TAGi)0<i≤`, (ri)0<i≤`, (si)0<i≤`,
adm), pksig, pksan and ⊥ as input. First it checks, if σ verifies. For each
i ∈ adm, it calls di ← BlockJudge(m,σ,pksig,pksan,⊥, i). On error, output
⊥. If ∃i : di 6= Sig, output San and Sig otherwise.

Theorem 4 (The Construction is Secure.). If the underlying signature
scheme SS is unforgeable, the used chameleon hash is collision resistant under
random tagging attacks, while PRF and PRG are pseudorandom, our construc-
tion is private, immutable, block-level non-interactive publicly accountable and
unforgeable.

The proofs are relegated to App. A.



19

Signing Verifying Sanitizing

@
@@λ
`

100 500 1, 000 100 500 1, 000 100 500 1, 000

512 Bit 16 63 125 15 46 78 157 766 1,641

1, 024 Bit 28 112 14,132 20 96 22 1,007 4,948 9,720

2, 048 Bit 110 391 750 62 328 657 7,109 35,328 70,997

4, 096 Bit 563 1,546 2,798 250 1,235 2,469 54,719 272,672 545,062
Table 1. Performance of our first Scheme; Median Runtime in ms

Signing Verifying Sanitizing Detecting

@
@@λ
`

100 500 1, 000 100 500 1, 000 100 500 1, 000 100 500 1, 000

512 Bit 16 78 140 15 47 94 172 797 1,578 16 46 94

1, 024 Bit 47 172 313 31 141 265 1,047 5,062 10,438 32 125 266

2, 048 Bit 172 516 969 94 437 875 7,547 36,079 72,735 93 421 859

4, 096 Bit 922 2,157 4,141 328 1,546 3,546 55,453 271,329 562,683 360 1,546 3,109
Table 2. Performance of our second Scheme; Median Runtime in ms

4.4 Performance Measurements

We have implemented our SanSigs and the construction by Brzuska et al. [5].
The source code used for this evaluation will be made available on request.
The tests were performed on a Fujitsu Celsius with an Intel Q9550 Quad Core
@2.83 GHz and 3 GiB of RAM. We only used one core and utilized RSA as
the signature algorithm. The moduli have been fixed to 512, 1, 024, 2, 048 and
4, 096-Bit. We evaluated every algorithm with 100, 500 and 1, 000 blocks. We
fixed the amount of admissible blocks to 50% and always sanitized all admissible
blocks. We omit the key pair generation, as we assume that the key pairs are
pre-generated. Proof and Judge are very fast, as they contain only a database
lookup, and are therefore omitted. The results can be seen in Tab. 1, Tab. 2,
Tab. 3.

As seen, the performance is nearly the same for all three schemes. Hence, our
constructions are as useable as the one by Brzuska et. al [5], while offering more
possibilities and stronger security notions.

5 Conclusion and Open Questions

This paper answers the questions given by Brzuska et al. [8]. In particular, we
have introduced and formalized the notion of block-level accountability. Based
on these definitions, we have derived a provably secure construction relying on



20

Signing Verifying Sanitizing

@
@@λ
`

100 500 1, 000 100 500 1, 000 100 500 1, 000

512 Bit 15 46 93 16 31 78 156 781 1,532

1, 024 Bit 31 125 219 32 109 203 984 4,875 9,703

2, 048 Bit 110 391 765 62 328 672 7,109 34,747 70,782

4, 096 Bit 594 1,547 2,750 250 1,250 2,453 57,390 273,625 537,110

Table 3. Performance of the Scheme by Brzuska et al. [5]; Median Runtime in ms

the ideas of Brzuska et al. [5]. A small modification of our scheme also allows to
achieve block-level public accountability with less signatures than the previously
given constructions. The performance analysis of our implementations show that
the scheme by Brzuska et al. [5] and our two new ones are reasonable performant,
while our constructions achieve stronger security notions, as we have proven the
block-level accountability notions imply the message level notions. It remains
an open question how to offer the new paradigm of accountability to interlinked
groups of blocks, i.e., accountability on a meta-block level. Furthermore, it is
unclear how to mix public accountability and transparency in one message.

References

1. J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.
Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096,
2011. http://eprint.iacr.org/.

2. G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik. Sanitizable signatures. In
ESORICS: Proceedings of the 10th European Symposium on Research in Computer
Security, pages 159–177. Springer-Verlag, 2005.

3. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In EUROCRYPT,
pages 92–111, 1994.

4. C. Brzuska, H. Busch, O. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser,
M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable Sig-
natures for Tree-Structured Data: Definitions and Constructions. In Proceedings of
the 8th International Conference on Applied Cryptography and Network Security,
ACNS’10, pages 87–104. Springer, 2010.

5. C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page, J. Schelbert,
D. Schröder, and F. Volk. Security of Sanitizable Signatures Revisited. In Proc.
of PKC 2009, pages 317–336. Springer, 2009.

6. C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Unlinkability of Sanitizable
Signatures. In Public Key Cryptography, pages 444–461, 2010.

7. C. Brzuska, M. Fischlin, A. Lehmann, and D. Schroeder. Unlinkability of sanitiz-
able signatures. In Public Key Cryptography, pages 444–461, 2010.

8. C. Brzuska, H. C. Pöhls, and K. Samelin. Non-Interactive Public Accountability
for Sanitizable Signatures. In EuroPKI 9th European Workshop, volume ???? of
LNCS, pages ??–?? Springer-Verlag, 2012.

9. S. Canard and A. Jambert. On extended sanitizable signature schemes. In CT-
RSA, pages 179–194, 2010.



21

10. S. Canard, A. Jambert, and R. Lescuyer. Sanitizable signatures with several signers
and sanitizers. In AFRICACRYPT, pages 35–52, 2012.

11. S. Canard, F. Laguillaumie, and M. Milhau. Trapdoor sanitizable signatures and
their application to content protection. In ACNS, pages 258–276, 2008.

12. E.-C. Chang, C. L. Lim, and J. Xu. Short Redactable Signatures Using Random
Trees. In Proceedings of the The Cryptographers’ Track at the RSA Conference
2009 on Topics in Cryptology, CT-RSA ’09, pages 133–147, Berlin, Heidelberg,
2009. Springer-Verlag.

13. J. Gong, H. Qian, and Y. Zhou. Fully-secure and practical sanitizable signatures.
In Xuejia Lai, Moti Yung, and Dongdai Lin, editors, Information Security and
Cryptology, volume 6584 of Lecture Notes in Computer Science, pages 300–317.
Springer Berlin / Heidelberg, 2011.

14. S. Haber, Y. Hatano, Y. Honda, W. G. Horne, K. Miyazaki, T. Sander, S. Tezoku,
and D. Yao. Efficient signature schemes supporting redaction, pseudonymization,
and data deidentification. In ASIACCS, pages 353–362, 2008.

15. T. Izu, N. Kunihiro, K. Ohta, M. Sano, and M. Takenaka. Information security
applications. chapter Sanitizable and Deletable Signature, pages 130–144. Springer-
Verlag, Berlin, Heidelberg, 2009.

16. R. Johnson, D. Molnar, D. Song, and D.Wagner. Homomorphic signature schemes.
In Proceedings of the RSA Security Conference - Cryptographers Track, pages 244–
262. Springer, Feb. 2002.

17. M. Klonowski and A. Lauks. Extended Sanitizable Signatures. In ICISC, pages
343–355, 2006.

18. H. Krawczyk and T. Rabin. Chameleon Hashing and Signatures. In Symposium
on Network and Distributed Systems Security, pages 143–154, 2000.

19. A. Kundu and E. Bertino. Structural Signatures for Tree Data Structures. In Proc.
of PVLDB 2008, New Zealand, 2008. ACM.

20. K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshiura, S. Tezuka, and
H. Imai. Digitally Signed Document Sanitizing Scheme with Disclosure Condition
Control. IEICE Transactions, 88-A(1):239–246, 2005.

21. K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, and H. Yoshiura.
Digital documents sanitizing problem. Technical report, 2003.

22. H. C. Pöhls, K. Samelin, and J. Posegga. Sanitizable Signatures in XML Signature
- Performance, Mixing Properties, and Revisiting the Property of Transparency. In
Applied Cryptography and Network Security, 9th International Conference, volume
6715 of LNCS, pages 166–182. Springer-Verlag, 2011.

23. H. C. Pöhls, K. Samelin, J. Posegga, and H. de Meer. Length-hiding redactable
signatures from one-way accumulators in O(n) (mip-1201). Technical report, Uni-
versity of Passau, 4 2012.

24. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 26(1):96–99, 1983.

25. K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. On Struc-
tural Signatures for Tree Data Structures. In Applied Cryptography and Network
Security, 10th International Conference, volume 7341 of LNCS, pages 171–187.
Springer-Verlag, 2012.

26. K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. Redactable
signatures for independent removal of structure and content. In ISPEC, volume
7232 of LNCS, pages 17–33. Springer-Verlag, 2012.

27. R. Steinfeld and L. Bull. Content extraction signatures. In Information Security
and Cryptology - ICISC 2001: 4th International Conference. Springer Berlin /
Heidelberg, 2002.



22

28. Z.-Y. Wu, C.-W. Hsueh, C.-Y. Tsai, F. Lai, H.-C. Lee, and Y. Chung. Redactable
Signatures for Signed CDA Documents. Journal of Medical Systems, pages 1–14,
December 2010.

A Proofs

Security of Construction 1. It is enough to show that the scheme is block-
level accountable, transparent and immutable due to the implications given by
Brzuska et al. [5, 8] and our implications. We prove each property on its own.
Most of the proofs are kept short, as they are comparable to the ones given in [5].

Theorem 5 (Construction 1 is Secure.). If the underlying signature scheme
SS is unforgeable, while the used chameleon hash is collision-resistant under
random-tagging attacks, our construction is transparent, private, immutable, un-
forgeable and block-level accountable. Following [5, 8], and our implications, it is
enough to show that transparency, immutability and block-level accountability
hold to prove the security of our scheme.

Proof (Our scheme is immutable). Let A denote an efficient adversary breaking
the immutability of our scheme. We can then construct an adversary B using A
as a black box to break the unforgeability of the underlying signature scheme
as follows. We simulate A’s environment by simulating the signing oracle; the
signature of the underlying signature scheme (σc) is generated by B’s own oracle.
Eventually, A will output a forgery attempt, i.e., a tuple (pk∗san,m

∗, σ∗). This
finishes the simulation. We have to distinguish between three cases: (1) We have
pksan 6= pksan,i for all queries. As pksan has been signed, the underlying signature
scheme has been broken. (2) For some j and ij /∈ admj , m

∗
j [i] 6= mj [i] yields. As

m∗ has therefore not been queried, the unforgeability of the underlying signature
scheme has been broken as well. (3) For some position i, the message has been
replaced by a hash or vice versa resp. As this implies adm 6= adm∗, the signature
must have been forged, as adm is signed. If neither case happens, the simulation
aborts. The signature forgeries can be extracted in all cases and are then returned
by B as a valid forgery of the underlying signature scheme. Hence, B’s success
probability equals the one of A.

Proof (Our scheme is transparent). Transparency follows from the uniform dis-
tributions of CHash and CHAdapt (random oracle), while the pseudorandom
generators output numbers which are computationally indistinguishable from
random. Transparency follows. We do not consider any tag-collisions here, as
they only appear with negligible probability. Refer to [5] for a more formal proof
of transparency.

Proof (Our scheme is block-level sanitizer accountable). Please note, that in the
case where h[i] 6= h∗[i], where h denotes the concatenation of blocks, implies a



23

direct forgery of the underlying signature scheme. This is also true for pksan,i 6=
pk∗san and admi 6= adm∗. Also note, that in this case the Proof-oracle can trivially
be simulated by picking κ itself. Hence, we can focus on the chameleon hash.
To be successful, the adversary against block-level signer accountability needs
to make sure that the proof algorithm Proof cannot find at least one non-trivial
colliding pair of chameleon hash digests. Hence, we have:

CHash(pksan,TAGj,0, (TAGj,i)0≤i≤`j , rj,0) = CHash(pk∗san,TAG
∗
0, (TAGj,i)

∗
0≤i≤`j , r

∗
0)

for some query j. However, this is non-trivial and Proof can find the collision, a
contradiction. This also applies for the outer chameleon hash, protecting against
match-and-mix attacks. Building an extractor is straight forward and therefore
omitted.

Proof (Our scheme is block-level signer accountable). Let A denote an efficient
adversary breaking the block-level signer accountability of our scheme. We can
then construct an adversary B using A as a black box to break the collision-
resistance against random-tagging attacks of the underlying chameleon hash in
the follow way. As before, B simulates A’s environment. However, calls to the
sanitization oracle are simulated using B’s OAdapt-oracle and its own generated
signature key pair. Eventually, A returns (pk∗sig, π

∗,m∗, σ∗). As by definition, π∗

must contain two (non-trivial) colliding tuples:

CHash(pksan,TAGj,0, (TAGj,i)0<i≤`, rj,i) = CHash(pk∗san,TAG
∗
i , (TAGj,i)0≤i≤`)

∗, r∗i )

This finishes the simulation. Afterwards, B outputs the colliding tuples. These
tuples break the collision-resistance of the chameleon hash as the tags are drawn
at random. Any tag-collision is therefore only possible with negligible probability.
Hence, B’s success probability equals the one of A. Please note that this also
applies for the outer chameleon hash, protecting against match-and-mix attacks.
Building an extractor is straight forward and therefore omitted. Note, the attack
discovered by Gong et al. does not apply here, as we add an additional chameleon
hash, protecting the whole message [13].

Security of Construction 2.

Theorem 6 (Construction 2 is Secure.). If the underlying signature scheme
SS is unforgeable, while the used chameleon hash is collision-resistant under
random-tagging attacks, our construction is private, immutable, unforgeable and
block-level non-interactive publicly accountable. Following [5, 8] and our impli-
cations, it is enough to show that privacy, immutability and block-level non-
interactive public accountability hold to prove the security of our scheme.

Proof. The proofs for privacy, immutability and unforgeability are exactly the
same as for our first construction, with two notable exceptions: We do not achieve



24

transparency, while the “outer” signature protects against mix-and-match at-
tacks. However, the sanitizer is able only to draw a new tag, which changes the
random coin, but not the message, while the random coins for the chameleon
hash are always distributed uniformly, which implies privacy. Therefore, we only
need to show that our scheme is block-level non-interactive public accountability.
Assume that there is an efficient adversary A against block-level non-interactive
public accountability. We can then construct an adversary B using A as a black
box to break the unforgeability of the underlying signature scheme as follows:
B forwards any queries to its own oracles and returns the answers to A. B also
flips a coin b ← {0, 1}. Eventually, A returns a tuple (pk∗,m∗, σ∗). If b = 1,
B sets pk∗san ← pk∗ and (pksig, sksig) ← KGensig else, A sets pksig ← pk∗ and
(pksan, sksan) ← KGensan. We therefore have to distinguish between two cases,
i.e., a malicious sanitizer and a malicious signer. The probability that the sim-
ulation is done for the correct case is exactly 1

2 . We will omit cases where the
random coins are equal, as this only occurs with negligible probability.

Malicious Signer. As r′i 6= ri, the underlying signature scheme must been forged,
as σd protects all ri, as r′i = ri occurs only with negligible probability.

Malicious Sanitizer. We know that r′i = ri only occurs with negligible probabil-
ity. Therefore, σd must be a valid forgery.

In both cases, an extractor can trivially be build.


