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Abstract. Comparing and ranking information is an important topic
in social and information sciences, and in particular on the web. Its
objective is to measure the difference of the preferences of voters on a
set of candidates and to compute a consensus ranking. Commonly, each
voter provides a total order of all candidates. Recently, this approach has
been generalized to bucket orders, which allow ties.
In this work we further generalize and consider total, bucket, interval
and partial orders. The disagreement between two orders is measured
by the nearest neigbor Spearman footrule distance, which has not been
studied so far. We show that the nearest neighbor Spearman footrule
distance of two bucket orders and of a total and an interval order can be
computed in linear time, whereas the computation is NP-complete and
6-approximable for a total and a partial order. Moreover, we establish
the NP-completeness and the 4-approximability of the rank aggregation
problem for bucket orders. This sharply contrasts the well-known efficient
solution of this problem for total orders.

1 Introduction

The rank aggregation problem consists in finding a consensus ranking on a set of
candidates, based on the preferences of individual voters. The problem has many
applications including meta search, biological databases, similarity search, and
classification [2, 7, 12, 16, 18–20, 23]. It has been mathematically investigated by
Borda [6] and Condorcet [8] (18th century) and even by Lullus [17] and Cusanus
[10] (13th century) in the context of voting theory.

The formal treatment of the rank aggregation problem is determined by the
strictness of the preferences. It is often assumed that each voter makes clear
and unambiguous decisions on all candidates, i. e. the preferences are given by
total orders. However, the rankings encountered in practice often have deficits
against the complete information provided by a total order, as voters often come
up with unrelated candidates, which they consider as tied (“I consider x and y
coequal.”) or incomparable (“I cannot compare x (apples) and y (oranges)”.).
Voters considering all unrelated pairs of candidates as tied are represented
by bucket orders, such that ties define an equivalence relation on candidates
within a bucket. They are also known as partial rankings or weak orders [1, 13].
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As incomparable pairs of candidates come into play, more general orders are
needed: A ranking is an interval order if the voters specify their preferences
by associating an interval with each candidate. Candidate x is then preferred
over y if the interval of x ends before the one of y begins, while overlapping
intervals represent incomparabilities or ties. In the most general case the voters
describe their preferences by partial orders. In this case unrelatedness (ties and
incomparabilities) is not transitive and the preference relation is not negatively
transitive. In all orders for two unrelated candidates, no matter if they are tied or
incomparable, the voter accepts any local order on them without penalty or cost.
Nevertheless, we will stress the different intuition behind unrelated candidates by
speaking of tied candidates (∼=) in bucket orders and of unrelated ( 6�≺, meaning
tied or incomparable) candidates in interval or partial orders.

The common distance measures for two total orders σ and τ are the Kendall
tau and the Spearman footrule distance, K(σ, τ) and F (σ, τ). K(σ, τ) counts the
number of disagreements of candidates, while F (σ, τ) accumulates the mismatches,
summing the distances of the positions of each candidate.

Investigations on ranking problems have focused on total orders or permuta-
tions. Its generalization to bucket orders has been considered more recently by
Ailon [1] and Fagin et al. [13]. The focus and main result in [13] is the equivalence
of several distance measures, especially the Hausdorff versions of the Kendall tau
and Spearman footrule distances, introduced by Critchlow [9]. Ailon [1] studied
the nearest neighbor Kendall tau distance for bucket orders.

In this work we generalize rankings to partial and interval orders, and measure
the distance by the nearest neighbor Spearman footrule distance. Our emphasis is
on the complexity of computing distances and rank aggregations. We establish a
sharp separation between efficient algorithms and NP-completeness. In particular,
we show that the nearest neighbor Spearman footrule distance can be computed
in linear time for two bucket orders and for a total and an interval order. In
contrast, these computations are NP-complete for a total and a partial order,
and hence for the more general cases. These results (and some open problems)
are summarized in Tab. 1. Concerning the Spearman footrule distance and total
orders, the rank aggregation problem can be solved efficiently using a weighted
bipartite matching [12]. This sharply contrasts our NP-completeness result for
bucket orders. Furthermore, we establish the equivalence between the nearest
neighbor Spearman footrule distance and the nearest neighbor Kendall tau
distance. Finally, we achieve constant factor approximations for the computation
of the nearest neighbor Spearman footrule distance of a total and a partial order
as well as for the rank aggregation problem for bucket orders.

This work is organized as follows: In Sect. 2 we introduce orders and distances.
In Sect. 3 and Sect. 4 we consider the complexity of distance and rank aggregation
problems. Sect. 5 addresses the equivalence of the nearest neighbor Kendall tau
and Spearman footrule distances of partial orders and establishes the constant
factor approximability for some problems, which we have shown to be NP-
complete. We conclude with some open problems in Sect. 6.
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Table 1. Computation of FNN between two orders

total bucket interval partial
partial NP-C (Th. 3)

6-appr.
NP-C (Th. 3)
appr. open

NP-C (Th. 3)
appr. open

NP-C (Th. 3)
appr. open

interval O(n) (Th. 2) compl. open
appr. open

compl. open
appr. open

bucket O(n) (Th. 1) O(n) (Th. 1)
total O(n) (obv.)

Table 2. Rank aggregation problems with FNN for different types of orders

total bucket interval partial

O(n3) ([12]) NP-C (Th. 4)
4-appr.

NP-C (Th. 4)
appr. open

NP-C (Th. 4)
appr. open

2 Preliminaries

For a binary relation R on a domain D and for each x, y ∈ D, we denote x ≺R y if
(x, y) ∈ R and x ⊀R y if (x, y) /∈ R. A binary relation κ is a (strict) partial order
if it is irreflexive, asymmetric and transitive, i. e., x ⊀κ x, x ≺κ y ⇒ y ⊀κ x,
and x ≺κ y ∧ y ≺κ z ⇒ x ≺κ z for all x, y, z ∈ D. Candidates x and y are
called unrelated if x ⊀κ y ∧ y ⊀κ x, which we denote by x 6�≺κ y. The intuition
of x ≺κ y is that κ ranks x before y, which means a preference for x. A partial
order α is an interval order if there is a bijection I from D into a set of intervals
with I(x) = [lx, rx] and x ≺α y ⇔ rx < ly. W. l. o. g., the boundaries of the
intervals are integers between 1 and |D|. A partial order π is a bucket order
if it is irreflexive, asymmetric, transitive and negatively transitive, which says
that for each x, y, z ∈ D, x ≺π y ⇒ x ≺π z ∨ z ≺π y. Hence, the domain is
partitioned into a sequence of buckets B1, . . . ,Bt such that x ≺π y if there are
i, j with i < j and x ∈ Bi and y ∈ Bj . Note that x and y are unrelated if they
are in the same bucket. Thus, unrelatedness is an equivalence relation on tied
candidates x ∼=π y within a bucket. Finally, a partial order τ is a total order if it
is irreflexive, asymmetric, transitive and complete, i. e., x ≺τ y ∨ y ≺τ x for all
x, y ∈ D with x 6= y. Then τ is a permutation of the elements of D. τ can also be
considered as a bijection τ : D → {1, . . . , |D|}. Clearly, total ⊂ bucket ⊂ interval
⊂ partial, where ⊂ expresses a generalization.

For two total orders σ and τ the Kendall tau distance counts the disagreements
or inversions of pairs of candidates, K(σ, τ) = |{{x, y} ⊆ D : x ≺σ y ∧ y ≺τ x}|.
The Spearman footrule distance is the L1-norm taking the difference of the
positions of the candidates into account, F (σ, τ) =

∑
x∈D |σ(x)− τ(x)|.
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We consider distances between generalized orders based on their sets of total
extensions. A total order τ is a total extension of a partial order κ if τ does not
contradict κ, i. e., x ≺κ y ⇒ x ≺τ y for all x, y ∈ D.

Definition 1. For partial orders κ and µ on a domain D define the nearest
neighbor Spearman footrule and Kendall tau distance via their extensions,

FNN (κ, µ) = min{F (τ, σ) : τ ∈ Ext(κ), σ ∈ Ext(µ)}

KNN (κ, µ) = min{K(τ, σ) : τ ∈ Ext(κ), σ ∈ Ext(µ)}

Observe that the nearest neighbor distances fail the axioms of a metric. They
do neither satisfy the identity of indiscernible d(x, y) = 0⇔ x = y nor does the
triangle inequality hold.

Proposition 1. The nearest neighbor Kendall tau and Spearman footrule dis-
tances coincide with their mates on total orders τ and σ, i. e. KNN (τ, σ) = K(τ, σ)
and FNN (τ, σ) = F (τ, σ).

Definition 2. Given two orders κ and µ on a domain D and an integer k, the
distance problem is whether or not d(κ, µ) ≤ k.

Accordingly, the rank aggregation problem is the problem whether or not
for orders κ1, . . . , κr and an integer k, there exists a total order τ such that∑r
i=1 d(κi, τ) ≤ k. A total order τ∗ minimizing k is the consensus ranking.

For a partial order κ on a domain D and a set X ⊆ D we write [X ] if X
is totally ordered by κ in a way that is clear from the respective context. For
sets X ,Y ⊆ D, if x ≺κ y for all x ∈ X and y ∈ Y, we write X ≺κ Y. We call X
unrelated by κ if xi 6�≺κ xj for all xi, xj ∈ X .

In the following proofs we use shifting and switching operations on total
orders. For two total orders σ1 and σ2 on a domain D and candidates x, y ∈ D
we say that σ2 is derived from σ1 by shifting x up to position p if σ2(c) = σ1(c)
for all c ∈ D with σ1(c) < σ1(x) or with σ1(c) > p, and if σ2(c) = σ1(c)− 1 for
all c ∈ D with σ1(x) < σ1(c) ≤ p, and if σ2(x) = p. Shifting x down to position p
is defined analogously. We say that σ2 is derived from σ1 by switching x and y,
if σ2(c) = σ1(c) for all c ∈ D \ {x, y}, and if σ2(x) = σ1(y), and if σ2(y) = σ1(x).

3 Distance Problems

In this section we address the computation of the nearest neighbor Spearman
footrule distance of two bucket orders, of a total and an interval order and of a
total and a partial order.

3.1 Nearest Neighbor Spearman Footrule Distance of Bucket
Orders

Theorem 1. The nearest neighbor Spearman footrule distance of two bucket
orders can be computed in linear time.
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We start with the definition of an operation, that breaks ties within a bucket
order. The refinement of a bucket order γ by a bucket order π is the bucket order
π ∗ γ such that x ≺π∗γ y ⇔ x ≺γ y ∨ x ∼=γ y ∧ x ≺π y holds for all x, y ∈ D.
Hence, a tie in γ may be broken by π. Clearly, if π is a total order then π ∗ γ is
a total order. ∗ is an associative operation, so for a third bucket order η on D,
η ∗ π ∗ γ makes sense. Note that refinement is only defined for bucket orders, but
not for interval or partial orders.

Fagin et al. [13] have characterized the Hausdorff Spearman footrule distance
of two bucket orders in terms of refinements. Adopting techniques from [13] we
obtain the corresponding characterization for the nearest neighbor Spearman
footrule distance. From [13] we can directly reuse Lemma 1, Lemma 2 and
Lemma 3, which we state here without proof, and rephrase Lemma 4 to serve
our purposes.

Lemma 1. [13] For positive integers a, b, c, d ∈ N, suppose a ≤ b and c ≤ d.
Then |a− c|+ |b− d| ≤ |a− d|+ |b− c|.

Lemma 2. [13] Let τ be a total order and let γ be a bucket order on the domain
D. Suppose that τ 6= γ. Then there exist x, y ∈ D such that τ(y) = τ(x) + 1 and
y ≺γ x or y ∼=γ x. If γ is a total order, then γ(y) < γ(x).

Lemma 3. [13] Let τ be a total order and let γ be a bucket order on the domain
D. Then the quantity F (τ, σ) taken over all σ ∈ Ext(γ) is minimized for σ = τ ∗γ.

Lemma 4. (adapted from [13]) Let π and γ be bucket orders and let ρ be an
arbitrary total order on the domain D. Then the quantity F (σ, σ ∗ γ), taken over
all σ ∈ Ext(π), is minimzed if σ = ρ ∗ γ ∗ π.

Proof. Note that for any σ ∈ Ext(π) there is some total order τ , such that
σ = τ ∗ π. We now show that ρ ∗ γ is among the best choices for τ with regard to
the minimization of F (σ, σ ∗ γ). That means for all total orders τ ,

F (ρ ∗ γ ∗ π, ρ ∗ γ ∗ π ∗ γ) ≤ F (τ ∗ π, τ ∗ π ∗ γ)

from which the lemma follows.
Let U be the set of total orders with U = {τ : F (ρ ∗ γ ∗ π, ρ ∗ γ ∗ π ∗ γ) >

F (τ ∗ π, τ ∗ π ∗ γ))}. If U is empty, we are done, so suppose U is not empty.
Over all total orders in U , choose τ to be the total order minimizing K(τ, ρ∗γ).

As clearly ρ ∗ γ /∈ U , τ 6= ρ ∗ γ. Therefore, Lemma 2 guarantees that we can find
a pair x, y ∈ D such that τ(y) = τ(x) + 1, but ρ ∗ γ(y) < ρ ∗ γ(x). Produce τ ′

by switching x and y in τ . Clearly, τ ′ has one inversion less than τ with respect
to ρ ∗ γ, so K(τ ′, ρ ∗ γ) < K(τ, ρ ∗ γ). We now show that τ ′ ∈ U holds, which
derives a contradiction as τ is supposed to be the total order in U having the
minimum Kendall tau distance to ρ ∗ γ.

Case 1: If x ≺π y or y ≺π x, then τ ′ ∗ π = τ ∗ π. Hence F (τ ′ ∗ π, τ ′ ∗ π ∗ γ) =
F (τ ∗ π, τ ∗ π ∗ γ) and τ ′ ∈ U .

Case 2: If x ∼=π y and x ∼=γ y then switching x and y in τ switches their
positions in both τ ∗ π and τ ∗ π ∗ γ, while leaving all the other candidates in
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their position. So we have F (τ ′ ∗ π, τ ′ ∗ π ∗ γ) = F (τ ∗ π, τ ∗ π ∗ γ) and we again
conclude that τ ′ ∈ U .

Case 3: If x ∼=π y and x ≺γ y or y ≺γ x, we have the following situation:
First τ ′ ∗ π is just τ ∗ π with the adjacent elements x and y switched. Second
τ ′ ∗ π ∗ γ = τ ∗ π ∗ γ as x and y are not tied in γ. Recall that we have chosen x
and y with the property that x ≺τ y and y ≺ρ∗γ x. From x ∼=π y and x ≺τ y we
derive τ ∗ π(x) < τ ∗ π(y). From y ≺ρ∗γ x we derive y ≺τ∗ρ∗γ x. We now make
use of Lemma 1. We substitute a = ρ ∗ γ(y), b = ρ ∗ γ(x), c = τ ′ ∗ π(y) and
d = τ ′ ∗ π(x). Then by Lemma 1

|ρ ∗ γ(y)− τ ′ ∗ π(y)|+ |ρ ∗ γ(x)− τ ′ ∗ π(x)| ≤
≤ |ρ ∗ γ(y)− τ ′ ∗ π(x)|+ |ρ ∗ γ(x)− τ ′ ∗ π(y)| .

From the fact that τ ∗π is just τ ′ ∗π with the adjacent elements x and y swapped
and the fact that τ ′ ∗ π ∗ γ = τ ∗ π ∗ γ we derive

|ρ ∗ γ(y)− τ ′ ∗ π(x)|+ |ρ ∗ γ(x)− τ ′ ∗ π(y)| =
= |ρ ∗ γ(y)− τ ∗ π(y)|+ |ρ ∗ γ(x)− τ ∗ π(x)| .

Combining these two (in)equalities and using the fact that for all z ∈ D with
z 6= x, y, τ ∗ π(z) = τ ′ ∗ π(z), we immediately obtain F (τ ′ ∗ π, τ ′ ∗ π ∗ γ) ≤
F (τ ∗ π, τ ∗ π ∗ γ), from which we conclude that τ ′ ∈ U . ut

The correctness of Theorem 1 can now be verified by combining the results
of Lemmas 3 and 4. Think for now of σ ∈ Ext(γ) as fixed. Then by Lemma 3 the
quantity F (σ, τ) for every τ ∈ Ext(π) is minimized for τ = σ ∗ π.

By Lemma 4 the quantity F (σ, σ ∗ π) for every σ ∈ Ext(γ) is minimized for
σ = ρ ∗ π ∗ γ. Therefore

min
σ∈Ext(γ)

min
τ∈Ext(π)

F (σ, τ) = F (ρ ∗ π ∗ γ, ρ ∗ π ∗ γ ∗ π).

Since ρ ∗ π ∗ γ ∗ π = ρ ∗ γ ∗ π, we conclude

FNN (γ, π) = F (ρ ∗ π ∗ γ, ρ ∗ γ ∗ π) .

Theorem 1 follows, since refinements as well as the Spearman footrule distance
between two total orders can obviously be computed in linear time.

3.2 Nearest Neighbor Spearman Footrule Distance of a Total and
an Interval Order

Theorem 2. The nearest neighbor Spearman footrule distance of a total and an
interval order can be computed in linear time.

Let α be an interval order on a domain D with an interval [lx, rx] for each
candidate x ∈ D, and let σ be a total order on D. Then the following algorithm
computes a total order τ∗ ∈ Ext(α) with F (τ∗, σ) = FNN (α, σ).
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The algorithm successively builds τ∗ taking |D| steps. For k = 1, . . . , |D| it
determines x ∈ D with τ∗(x) = k. We will refer to this as x is placed at position
k.

In each step k the algorithm holds the set Ak of α-admissible candidates
consisting of all not yet processed candidates x, for which all candidates y with
y ≺α x have already been processed. Due to the specification of the α-admissible
candidates, τ∗ ∈ Ext(α) holds. Lk contains all late candidates x ∈ Ak, whose
contribution to F (τ∗, σ) increases by one in the k + 1-th step if x is not placed
in the k-th step. Ek contains all early candidates x ∈ Ak, whose contribution will
decrease by one. If there are any late candidates, the algorithm places any at
position k. Otherwise it chooses the early candidate x with the smallest right
interval boundary rx.

Input: Interval order α, total order σ on a domain D
Output: Total order τ∗ ∈ Ext(α) with F (τ∗, σ) = FNN (α, σ)

1 foreach x ∈ D do set τ∗(x)←⊥;
2 for k = 1, . . . , |D| do
3 Ak = {x ∈ D : τ∗(x) =⊥ ∧∀y≺αxτ∗(y) 6=⊥};
4 Lk = {x ∈ Ak : σ(x) ≤ k};
5 Ek = {x ∈ Ak : σ(x) > k};
6 if Lk 6= ∅ then
7 choose an arbitrary x ∈ Lk and set τ∗(x)← k;
8 else
9 choose an arbitrary x ∈ Ek with rx = miny∈Ek ry and set τ∗(x)← k;

10 return τ∗;

Algorithm 1: Computing FNN of an interval order and a total order

To prove the correctness of Algorithm 1, we consider the set of optimal orders
τ ∈ Ext(α) with F (τ, σ) = FNN (α, σ).

Lemma 5. The total order τ∗ computed by Algorithm 1 is optimal.

Proof. Choose any optimal order τ1 that, considering τ1 and τ∗ as permutations
on D, coincides with τ∗ in the longest prefix. That means, τ1 maximizes the
quantity z such that s ≤ z ⇒ τ∗−1(s) = τ−11 (s). If z = |D|, we are done; so
suppose by contradiction z < |D| and consider the candidate x having τ∗(x) =
τ1(x) = z, and the candidate y having τ∗(y) = z + 1 and τ1(y) > z + 1. In the
following, we show that a total order τ2, which is derived from τ1 by shifting and
switching operations on y, thus having s ≤ z + 1 ⇒ τ∗−1(s) = τ−12 (s), is also
optimal. This contradicts the fact that τ1 maximizes z.

In the following let X = {c ∈ D : τ1(x) < τ1(c) < τ1(y)}, which intuitively
means that X contains all candidates that are ranked between x and y by τ1.

Case 1: y ∈ Lz+1 holds, as Algorithm 1 placed y at position z+ 1 in τ∗. Thus
σ(y) ≤ z+ 1. Now let τ2 be the total order derived from τ1 by shifting y down to
position z + 1, causing each c ∈ X being shifted up by one position (see Fig. 1).
As for each c ∈ X , y ≺τ∗ c, but c ≺τ1 y, and as τ∗ ∈ Ext(α) and τ1 ∈ Ext(α)
both hold, clearly y 6�≺α c. Therefore, shifting y did not cause τ2 to contradict α
and τ2 ∈ Ext(α) holds.
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σ . . .
y

. . .

τ ∗ . . .
y

. . .

τ−1(1) . . . τ−1(z)

τ1 . . . . . .
y

. . .

X

τ2 . . .
y

. . . . . .

X

Fig. 1. σ, τ∗, τ1 and τ2 as they appear in Case 1 of Lemma 5.

Compare F (τ2, σ) and F (τ1, σ). We have τ2(c) = τ1(c) for each c ∈ D \ (X ∪
{y}), τ2(c) = τ1(c) + 1 for each c ∈ X , and τ2(y) = τ1(y) − |X |. Therefore the
contribution of each c ∈ X to F (τ2, σ) might increase by one compared to its
contribution to F (τ1, σ). On the other hand, as τ2(y) = z+ 1, τ1(y) = z+ 1 + |X|
and σ(y) ≤ z + 1, the contribution of y to F (τ2, σ) decreases by |X |, such that
F (τ2, σ) ≤ F (τ1, σ), and thus τ2 is optimal, too.

Case 2: Lz+1 = ∅ and therefore x ∈ Ez+1 held, as Algorithm 1 placed y at
position z + 1 in τ∗.

We first show that X ⊆ Az+1, from which X ⊆ Ez+1 follows immediately.
Suppose for contradiction that there exists some c ∈ X such that c /∈ Az+1. That
means, there exists at least one candidate c′ which is α-admissible at step z + 1,
but prevents c from being α-admissible as c′ ≺α c. Thus c′ ∈ Ez+1 as Lz+1 = ∅.
As the algorithm picked y instead of c′ at step z + 1, ry ≤ rc′ (see line 9 of
Algorithm 1). But then y ≺α c, which yields a contradiction to c ≺τ1 y, although
τ1 ∈ Ext(α).

From that we derive two important facts: First σ(c) > z + 1 for all c ∈ X ,
and second all candidates from X ∪ {y} are pairwise unrelated in α as otherwise
they could not be within the α-admissible candidates at the same time.

We now derive τ2 from τ1 by a sequence of switching operations (see Fig. 2).
Let c1 ∈ X be the candidate having τ1(c1) = z + 1. Now switch y and c1. If
σ(c1) ≥ z+1+|X |, we are done. If otherwise z+1 < σ(c1) < z+1+|X |, let c2 ∈ X
be the candidate σ(c1) = τ1(c2) and switch c1 and c2. The repetition of this
procedure will finish as soon as we find a candidate ci having σ(ci) ≥ z + 1 + |X |
(which according to the pidgeon hole principle will happen).

As we only performed switching operations concerning candidates from X∪{y},
which are pairwise unrelated in α, τ2 does not contradict α, and thus τ2 ∈ Ext(α).

Compare F (τ2, σ) and F (τ1, σ). For each c ∈ D\ (X ∪{y}) and for each c ∈ X
which has not been moved by a switching operation, we have τ2(c) = τ1(c). As
y has been shifted down by |X | positions we have τ2(y) = τ1(y) − |X |, which
means that the contribution of y to F (τ2, σ) might increase by |X | compared



10 Franz J. Brandenburg, Andreas Gleißner, Andreas Hofmeier

σ . . .
c2

. . .
c3

. . .
c1

. . .
y

. . .
c4

. . .

τ ∗ . . .
y

. . .

τ−1(1) . . . τ−1(z)

τ1 . . .
c1

. . .
c3

. . .
c4

. . .
c2

. . .
y

. . .

X

τ2 . . .
y

. . .
c2

. . .
c3

. . .
c1

. . .
c4

. . .

Xτ−1(1) . . . τ−1(z)

Fig. 2. σ, τ∗, τ1 and τ2 as they appear in Case 2 of Lemma 5. Note that τ2(y) = τ1(c1),
τ2(c1) = τ1(c2), τ2(c2) = τ1(c3), τ2(c3) = τ1(c4), τ2(c4) = τ1(y).

to its contribution to F (τ1, σ). Finally, for each c ∈ X that has been moved i
positions in a switching operation, we have τ2(c) = τ1(c)± i. As each of these
candidates has been moved i positions closer to the position it is ranked by σ, its
contribution to F (τ2, σ) decreases by i compared to its contribution to F (τ1, σ).
Summing up the number of positions each c ∈ X has been moved, we clearly
have a quantity larger than or equal to |X |, as we start with candidate c1 having
τ1(c1) = z+ 1 and place the candidate in the final switching operation at position
z + 1 + |X |. Thus F (τ2, σ) ≤ F (τ1, σ) and therefore τ2 is optimal, too. ut

For the linear run time, instead of rebuilding Ak, Lk and Ek at each step, we
hold them implicitly in an array a[] of length |D|, in which the beginning (resp.
the end) of the interval of each not yet placed candidate x ∈ D is stored at a[i]
iff lx = i (resp. iff rx = i), and a pointer p on the smallest rx of all α-admissible
candidates. Recall that the boundaries of the intervals of α are integers between
1 and |D|, so that a[] can be initialized via bucket sort. a[] and p can be updated
within each step in amortized O(1) time steps, as each candidate only once is
removed from a[i], becomes α-admissible, and switches from early to late during
the execution of the algorithm.

Theorem 2 now follows immediately from Lemma 5 and from the fact that
Algorithm 1 as well as the computation of the Spearman footrule distance on
total orders can be implemented to run in linear time.

3.3 Nearest Neighbor Spearman Footrule Distance of a Total and a
Partial Order

A partial order completely changes the picture, and shows a sharp separation
between an interval and a partial order, when the distance to a total order is of
concern. By a reduction from Clique [14] we show:
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Theorem 3. The distance problem for the nearest neighbor Spearman footrule
distance of a total and a partial order is NP-complete.

Let a graph G = (V, E) with V = {v1, . . . , vn} and E = {e1, . . . , em} and
a positive integer k be an instance of Clique. Clearly Clique remains NP-
complete for n ≥ 6 and k ≥ 3. For convenience let k∗ = k +

(
k
2

)
. Furthermore,

Clique remains NP-complete for m ≥ k∗, as otherwise we add pairs of vertices
v′i, v

′′
i and edges {v′i, v′′i } for 1 ≤ i ≤ k∗ to V and E . We will therefore assume

n > 3, k ≥ 3 and m ≥ k∗.
We reduce to an instance of the distance problem, i. e., a domain D, a partial

order κ and a total order σ on D, and a positive integer k′ ∈ N as follows. We
use V and E as sets of candidates, introduce two additional sets of candidates
B = {b1, . . . , bn8} and F = {f1, . . . , fm−k∗} and let D = V ∪ E ∪ B ∪ F .

Now construct σ = [E ] ≺σ [B] ≺σ [V] ≺σ [F ] with V, E , B and F each being
consecutively totally ordered by σ. κ is constructed as follows: F is consecutively
totally ordered by κ, while V, E and B are each unrelated by κ. Furthermore
b 6�≺κ c for each b ∈ B and c ∈ {V ∪ E ∪ F} and f ≺κ c for each f ∈ F and
c ∈ {V ∪ E}. Finally, the most important part of κ is the specification for V
and E . Here for each v ∈ V, e ∈ E , we set v ≺κ e if e is incident to v in G and
v 6�≺κ e, otherwise (we will refer to this as the incidence property). To complete

the reduction we set k′ =
(

2m− 2
(
k
2

))
n8 + n7. For the specification of σ and κ

see also Fig. 3.

κ
f1 f2

. . .

fm−k∗

v1

v2

...

vn

e1

e2

...

em

in
ci
d
en
ce

p
ro
p
er
ty

F

V E

b1 b2

. . .

bn8

B

σ
e1 e2

. . .
em b1 b2

. . .
bn8 v1 v2

. . .
vn f1 f2

. . .
fm−k∗

E B V F

Fig. 3. κ and σ as they appear in Theorem 3.

We call a total order τ ∈ Ext(κ) optimal, if F (τ, σ) = FNN (κ, σ). Before
verifying the correctness of the reduction, we start with a helpful lemma showing
that there always is an optimal order τ which ranks each candidate of B at the
same position as σ.
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Lemma 6. There exists an optimal order τ , such that τ∗(b) = σ(b) for all b ∈ B.

Proof. Choose any optimal order τ1 that ranks the longest prefix of b1, . . . , bn8

in the same way as σ does, i. e., τ1 maximizes the quantity z such that s ≤ z ⇒
σ(bs) = τ1(bs). If z = n8, we are done, so suppose by contradiction z < n8 and
consider candidate bz+1. In the following we show that a total order τ2, which
is derived from τ1 by shifting and switching operations on candidate bz+1, thus
having s ≤ z + 1⇒ σ(bs) = τ1(bs), is also optimal. This contradicts the fact that
τ1 maximizes z.

Case 1: Suppose τ1(bz+1) > σ(bz+1) and let X = {c ∈ D : τ1(bz) < τ1(c) <
τ1(bz+1)}, which intuitively means that X contains all candidates that are ranked
between bz and bz+1 by τ1. Now let τ2 be the total order derived from τ1 by
shifting bz+1 down to position τ1(bz) + 1 = σ(bz+1), causing each c ∈ X being
shifted up by one position (see Fig. 4). As bz+1 is unrelated to all other candidates
in κ, τ2 ∈ Ext(κ).

σ . . .
b1 b2

. . .
bz bz+1

. . .
bn8

. . .

τ1 . . .
b1 b2

. . .
bz bz+1

. . . . . .

X

τ2 . . .

b1 b2

. . .

bz bz+1

. . . . . .

X

Fig. 4. σ, τ1 and τ2 as they appear in Case 1 of Lemma 6

Compare F (τ2, σ) and F (τ1, σ). We have τ2(c) = τ1(c) for each c ∈ D \ (X ∪
{bz+1}), τ2(c) = τ1(c)+1 for each c ∈ X , and τ2(bz+1) = τ1(bz+1)−|X |. Therefore
the contribution of each c ∈ X to F (τ2, σ) might increase by one compared to
its contribution to F (τ1, σ). On the other hand, as τ2(bz+1) = σ(bz+1), the
contribution of bz+1 to F (τ2, σ) decreases by |X |, such that F (τ2, σ) ≤ F (τ1, σ)
and thus τ2 is optimal, too.

Case 2: Now suppose τ1(bz+1) < τ1(b1) and let τ ′1 be the total order derived
from τ1 by shifting bz+1 up to position τ1(b1)− 1. With an argument analogous
to Case 1 it can be shown that τ ′1 is optimal.

Now let x be the element having τ ′1(x) = σ(bz+1) and let τ2 be the total order
derived from τ ′1 by switching bz+1 and x (see Fig. 5). As the candidates ranked
between bz+1 and x by τ ′1 are exactly b1, . . . , bz, which are each unrelated to all
other candidates in κ, τ2 ∈ Ext(κ).

Comparing F (τ2, σ) and F (τ ′1, σ), we have τ2(c) = τ ′1(c) for each c ∈ D \
{bz+1, x}, τ2(x) = τ ′1(x)− (z + 1) and τ2(bz+1) = τ ′1(bz+1) + z + 1. Therefore the
contribution of x to F (τ2, σ) might increase by z+ 1 compared to its contribution
to F (τ ′1, σ). On the other hand, as τ2(bz+1) = σ(bz+1), the contribution of bz+1 to
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σ . . .
b1 b2

. . .
bz bz+1

. . .
bn8

. . .

τ1 . . .
bz+1

. . .
b1 b2

. . .
bz x

. . .

X

τ ′1 . . . . . .
bz+1 b1 b2

. . .
bz x

. . .

τ2 . . . . . .
x b1 b2

. . .

bz bz+1

. . .

X

Fig. 5. σ, τ1, τ ′1 and τ2 as they appear in Case 2 of Lemma 6

F (τ2, σ) decreases by z + 1, such that F (τ2, σ) ≤ F (τ ′1, σ) and thus τ2 is optimal,
too. ut

Lemma 7. G contains a clique of size at least k iff FNN (κ, σ) ≤ k′.

Proof. “⇒”: First suppose G contains a clique of size k, i. e., a complete subgraph
G′ = (V ′, E ′) with |V ′| = k and therefore |E ′| =

(
k
2

)
. We now compute a total

order τ∗ on D and show that τ∗ ∈ Ext(κ) and F (τ∗, σ) ≤ k′. Let

τ∗ = [F ] ≺τ∗ [V ′] ≺τ∗ [E ′] ≺τ∗ [B] ≺τ∗ [V \ V ′] ≺τ∗ [E \ E ′]

with B and F being consecutively totally ordered and V ′, E ′, V \ V ′ and E \ E ′
being arbitrarily totally ordered (see Fig. 6).

σ
e1 e2

. . .
em b1 b2

. . .
bn8 v1 v2

. . .
vn f1 f2

. . .
fm−k∗

E B V F

τ∗
f1 f2

. . .

fm−k∗ b1 b2

. . .

bn8

F B

?

k∗

?

n+m− k∗

V ∪ E
V ′, E ′ V \ V ′, E \ E ′

Fig. 6. σ and τ∗ as they appear in Lemma 7.

To show that τ∗ ∈ Ext(κ), we have to verify that τ∗ also has the incidence
property, which means that no edge is ranked before its incident vertices by τ∗.
This immediately follows from the fact that for each e ∈ E ′ both incident vertices
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are within V ′. As both τ∗ and κ consecutively totally order F and rank each
f ∈ F before V ∪ E (which are the only remaining constraints of κ), we conclude
τ∗ ∈ Ext(κ).

Considering F (τ∗, σ), it is easy to see that τ∗ and σ both rank m candidates
before b1. As both consecutively totally order B, we have τ∗(b) = σ(b) for all
b ∈ B and thus the contribution of each b ∈ B to F (τ∗, σ) is zero. Due to its
purpose in the proof, we will refer to B as the blocker in the following.

For all candidates c ∈ {V ∪ E ∪ F} we now distinguish whether they are
ranked before the blocker by both τ∗ and σ (type 1 ), ranked after the blocker
by both τ∗ and σ (type 2 ), or ranked before the blocker by τ∗ and after the
blocker by σ or vice versa (type 3 ). According to the definition of τ∗ and σ
(see again Fig. 6), all e ∈ E ′ are of type 1, all v ∈ V \ V ′ are of type 2 and all
c ∈ {F ∪ V ′ ∪ (E \ E ′)} are of type 3. Summarized there are n− k +

(
k
2

)
≤ n+m

candidates of type 1 and 2, and 2m− 2
(
k
2

)
candidates of type 3. As both τ∗ and

σ rank m candidates before the blocker and n + m − k∗ ≤ n + m candidates
after the blocker, the contribution of a candidate of type 1 or 2 to F (τ∗, σ) is
at most n+m, while the contribution of a single candidate of type 3 is at most
|D| = n8 + n+m+m− k∗ ≤ n8 + n+ 2m. Summing up all these contributions
and making use of the facts that k ≤ n, m ≤ n2 and n ≥ 6, we derive

F (τ∗, σ) ≤ (n+m)(n+m) +

(
2m− 2

(
k

2

))
(n8 + n+ 2m) ≤ k′ .

As clearly FNN (κ, σ) ≤ F (τ∗, σ), we are done.
“⇐”: Now suppose FNN (κ, σ) ≤ k′. Then there exists a total order τ∗ ∈

Ext(κ) with F (τ∗, σ) ≤ k′ and, according to Lemma 6, τ∗(b) = σ(b) for all b ∈ B.
Therefore, the contribution of each b ∈ B to F (τ∗, σ) is zero. Again we call B
a blocker and classify the candidates of V ∪ E ∪ F into types 1, 2 and 3. Each
candidate of type 3 contributes at least n8 to F (τ∗, σ). As F (τ∗, σ) ≤ k′ =(

2m− 2
(
k
2

))
n8 + n7, there are at most b k

′

n8 c = 2m− 2
(
k
2

)
candidates of type 3.

All m− k∗ candidates of F are of type 3, because τ∗, being in Ext(κ), ranks all
candidates from F before all candidates of V ∪ E , of which some must be ranked
before the blocker. Hence, there are at most m+ k −

(
k
2

)
candidates of type 3

within V ∪ E . Again, according to the definition of κ and σ, we have that each
v ∈ V is of type 3 iff τ∗ ranks it before the blocker, while each e ∈ E is of type 3
iff τ∗ ranks it after the blocker. Let V ′ be the set of candidates from V which
are ranked before the blocker, and E ′ be the set of candidates from E which are
ranked before the blocker by τ∗. As τ∗ ranks m candidates before the blocker, of
which m− k∗ are from F , |V ′|+ |E ′| = k∗.

Case 1: Suppose by contradiction that |V ′| > k and |E ′| <
(
k
2

)
. Then there

are |V ′|+ |E \ E ′| = |V ′|+ |E| − |E ′| > k +m−
(
k
2

)
candidates of type 3, which

yields a contradiction to the fact that there are at most m+ k −
(
k
2

)
candidates

of type 3 within V ∪ E .
Case 2: Suppose |V ′| < k and |E ′| >

(
k
2

)
. As τ∗ ∈ Ext(κ), it has the incidence

property and therefore each edge within E ′ is incident only to vertices within V ′.
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This means that more than
(
k
2

)
edges are only incident to less than k vertices –

clearly a contradiction.
Thus, as |V ′| = k and |E ′| =

(
k
2

)
and as τ∗ has the incidence property, each

of the
(
k
2

)
edges within E∗ is incident to two of the k vertices within V∗ and

therefore G′ = (V∗, E∗) forms a clique of size k in G. ut

Theorem 3 follows, since the above reduction runs in polynomial time and
the containment of the distance problem in NP is straightforward.

4 Rank Aggregation Problem

The rank aggregation problem aims at finding a consensus ranking for a list of
voters represented by partial orders. It is NP-hard for the Kendall tau distance
[3] even for an even number of at least four voters represented by total orders
[5, 12]. The NP-hardness also holds for related problems, such as computing
top-k-lists [1] or determining winners [3, 4, 15, 22]. However, the rank aggregation
problem for total orders under the Spearman footrule distance can be solved by
a weighted bipartite matching, see [12]. We emphasize this result and show the
NP-completeness for bucket orders by a reduction from Maximum Optimal
Linear Arrangement (Max-Ola), which is reduced from Optimal Linear
Arrangement (Ola) [14].

For a graph G = (V, E) with n vertices and m edges, and for a positive
integer k, Ola asks whether or not there exists a permutation τ on V with∑
{u,v}∈E |τ(u)− τ(v)| ≤ k. Max-Ola is a modified version of Ola, in which we

ask for a τ with
∑
{u,v}∈E |τ(u)− τ(v)| ≥ k. It can be shown by induction that

for a complete graph,
∑
{u,v}∈E |τ(u)− τ(v)| = n3−n

6 for any τ . So we derive a
reduction from Ola to Max-Ola, in which we make use of the complementary

graph and ask for a τ ′ with
∑
{u,v}∈E |τ ′(u)− τ ′(v)| ≥ n3−n

6 − k.

Theorem 4. The rank aggregation problem for an arbitrary number of bucket
orders under the Spearman footrule distance is NP-complete.

For the reduction from Max-Ola to the rank aggregation problem consider
the vertices V as candidates and add two candidates x1, x2 with x1, x2 /∈ V,
forming the domain D = V∪{x1, x2}. Let k′ = 4nm+4m−2k. There are two lists
of bucket orders on D, the edge voters Π1 and the dummy voters Π2. There are
k′ + 1 identical dummy voters πs in Π2. For s ∈ {1, . . . , k′ + 1}, πs = {x1}V{x2}.
For each edge {u, v} ∈ E, Π1 contains two bucket orders πuv and πvu with

πuv = {u}(D \ {u, v}){v} and πvu = {v}(D \ {u, v}){u} .

Let the total order τ∗ on D be any solution of the rank aggregation instance.
The purpose of the dummy voters is to force any τ∗ to rank x1 and x2 at the
extremal positions 1 and |D|. If τ∗(x1) 6= 1 or τ∗(x2) 6= |D|, then for each dummy
voter πs ∈ Π2 and for each total order σ ∈ Ext(πs), we have σ(x1) = 1 and
σ(x2) = |D|, thus F (τ∗, σ) ≥ 1, which results in

∑
πs∈Π2

FNN (τ∗, πs) > k′. Thus
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τ∗ would violate the upper bound k′ solely by considering the costs of the dummy
voters. In the following suppose that τ∗ satisfies the aforementioned necessary
condition by τ∗(x1) = 1 and τ∗(x2) = |D|. Then the dummy voters do not
generate any costs, since τ∗ ∈ Ext(πs), such that FNN (τ∗, πs) ≤ F (τ∗, τ∗) = 0.

Next we consider the costs contributed by the edge voters. Choose any
single pair of edge-voters πuv, πvu ∈ Π1. Following the proof of Theorem 1,
FNN (τ∗, πuv) = F (ρ ∗ πuv ∗ τ∗, ρ ∗ τ∗ ∗ πuv) for an arbitrary total order ρ. As
τ∗ is a total order, we have ρ ∗ πuv ∗ τ∗ = τ∗ and ρ ∗ τ∗ ∗ πuv = τ∗ ∗ πuv.
Therefore FNN (τ∗, πuv) = F (τ∗, τ∗ ∗ πuv). With an analogous argument we get
FNN (τ∗, πvu) = F (τ∗, τ∗ ∗πvu). W. l. o. g. let τ∗(u) < τ∗(v) (otherwise we switch
the roles of u and v). Let A = {w ∈ D : 2 ≤ τ∗(w) < τ∗(u)}, let B = {w ∈ D :
τ∗(u) < τ∗(w) < τ∗(v)} and let C := {w ∈ D : τ∗(v) < τ∗(w) ≤ |D|− 1}. We use
[A] to denote τ∗−1(2), . . . , τ∗−1(τ∗(u)− 1) and use [B] and [C] in an analogous
way. Then according to the definition of πuv and πvu in the above reduction, we
have

τ∗ ∗ πuv = u, x1, [A], [B], [C], x2, v ,
τ∗ ∗ πvu = v, x1, [A], [B], [C], x2, u , and
τ∗ = x1, [A], u, [B], v, [C], x2 .

Thus we have a contribution of 2 to F (τ∗, τ∗ ∗ πuv) +F (τ∗, τ∗ ∗ πvu) for each
w ∈ A ∪ C ∪ {x1, x2}, a contribution of 0 for each w ∈ B, and a contribution of
|D| − 1 for each u and v. Observe that |A| = τ∗(u)− 2, |B| = τ∗(v)− τ∗(u)− 1
and |C| = |D| − τ∗(v)− 1.

Summing those quantities, considering τ∗(u) < τ∗(v) and |D| = n+ 2, yields

FNN (τ∗, πuv) + FNN (τ∗, πvu) = 2 |A|+ 2 |C|+ (|D| − 1) |{u, v}|+ 2 |{x1, x2}|
= 4 |D| − 4 + 2(τ∗(u)− τ∗(v))

= 4 |D| − 4− 2 |τ∗(u)− τ∗(v)|
= 4n+ 4− 2 |τ∗(u)− τ∗(v)| .

Summing over all m pairs πuv, πvu ∈ Π1 gives us∑
π∈Π1

FNN (τ∗, π) = 4nm+ 4m− 2 ·
∑

πuv,πvu∈Π1

|τ∗(u)− τ∗(v)| .

Next we proof the correctness of the reduction.
“⇒”: Suppose there is a permutation τ ′ on V such that

∑
{u,v}∈E |τ ′(u)− τ ′(v)| ≥

k. From τ ′ we construct the permutation τ∗ = x1, τ
′−1(1), . . . , τ ′−1(n), x2. As

τ∗(x1) = 1 and τ∗(x2) = |D|,
∑
πs∈Π2

FNN (τ∗, πs) = 0. Therefore,∑
π∈Π

FNN (τ∗, π) =
∑
π∈Π1

FNN (τ∗, π) = 4nm+4m−2 ·
∑

πuv,πvu∈Π1

|τ∗(u)− τ∗(v)| .

Considering that τ∗(u) = τ ′(u) + 1 and that τ∗(v) = τ ′(v) + 1, and according to
our assumption that

∑
{u,v}∈E |τ ′(u)− τ ′(v)| ≥ k, we derive∑

π∈Π1

FNN (τ∗, π) = 4nm+ 4m− 2 ·
∑

{u,v}∈E

|τ ′(u)− τ ′(v)| ≤ 4nm+ 4m− 2k .
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“⇐”: Suppose there is a total order τ∗ on D such that
∑
π∈Π FNN (τ∗, π) ≤

4nm + 4m − 2k. Due to the dummy voters, τ∗(x1) = 1 and τ∗(x2) = |D| and
thus

∑
πs∈Π2

FNN (τ∗, πs) = 0 and
∑
π∈Π FNN (τ∗, π) =

∑
π∈Π1

FNN (τ∗, π). We
now construct a permutation τ ′ on V by setting τ ′(u) = τ∗(u)− 1 for each u ∈ V .

As τ∗(x1) = 1 and τ∗(x2) = |D|,∑
π∈Π1

FNN (τ∗, π) = 4nm+ 4m− 2 ·
∑

πuv,πvu∈Π1

|τ∗(u)− τ∗(v)| .

According to our assumption on τ∗ we derive

4nm+ 4m− 2 ·
∑

πuv,πvu∈Π1

|τ∗(u)− τ∗(v)| ≤ 4nm+ 4m− 2k

and from that ∑
πuv,πvu∈Π1

|τ∗(u)− τ∗(v)| ≥ k .

Considering that τ∗(u) = τ ′(u) + 1 and that τ∗(v) = τ ′(v) + 1, we conclude∑
{u,v}∈E

|τ ′(u)− τ ′(v)| ≥ k .

From that we derive the correctness of the reduction.
Theorem 4 follows, since the reduction clearly runs in polynomial time and

the containment of the rank aggregation problem in NP is straightforward.

5 Approximation algorithms

For total orders σ and τ , the Kendall tau and the Spearman footrule distances
are related by the Diaconis-Graham inequality [11], which says that K(σ, τ) ≤
F (σ, τ) ≤ 2K(σ, τ). Fagin et al. [13] have extended this inequality to the Hausdorff
distances on arbitrary sets (and thus for partial orders). With a proof similar
to [13] we show that this inequality also holds for nearest neighbor distances of
partial orders.

Theorem 5. The Diaconis-Graham inequality holds for partial orders κ and µ
under the nearest neighbor distances.

KNN (κ, µ) ≤ FNN (κ, µ) ≤ 2KNN (κ, µ) .

Proof. Consider κ′, κ′′ ∈ Ext(κ) and µ′, µ′′ ∈ Ext(µ), such that FNN (κ, µ) =
F (κ′, µ′) and KNN (κ, µ) = K(κ′′, µ′′). Then

KNN (κ, µ) = K(κ′′, µ′′) ≤ K(κ′, µ′) ≤ F (κ′, µ′) = FNN (κ, µ) .

where K(κ′′, µ′′) ≤ K(κ′, µ′) follows from the fact that KNN (κ, µ) = K(κ′′, µ′′)
and K(κ′, µ′) ≤ F (κ′, µ′) is derived from the Diaconis-Graham inequality for
total orders. Accordingly,

FNN (κ, µ) = F (κ′, µ′) ≤ F (κ′′, µ′′) ≤ 2K(κ′′, µ′′) = 2KNN (κ, µ) .

Combining these inequalities completes the proof. ut
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Theorem 6. Computing the nearest neighbor Spearman footrule distance between
a partial and a total order is 6-approximable.

Proof. We first consider the problem of computing the nearest neighbor Kendall
tau distance between a partial order κ and a total order τ . Here, we intuitively ask
for the total extension of κ, where as many ties as possible are broken according
to τ . Thus, we transform κ and τ into a tournament graph as follows: For each
candidate introduce a vertex and for each pair of vertices u, v ∈ V introduce an
edge (u, v) ∈ E if u ≺κ v (κ-edges), or if u 6�≺κ v and u ≺τ v (τ -edges). Clearly
determining, whether the nearest neighbor Kendall tau distance of κ and τ is
less or equal than k corresponds to asking whether there is a subset E′ with
|E′| ≤ k of the τ -edges, such that removing E′ makes G acyclic. This is a special
case of the constrained feedback arc set problem on tournament graphs, which is
3-approximable [21]. Theorem 5 now yields the result. ut

Theorem 7. The rank aggregation problem for bucket orders using the near-
est neighbor Spearman footrule distance is 4-approximable by a deterministic
algorithm and 3-approximable by a randomized algorithm.

Proof. This follows immediately from Theorem 5 and a result of Ailon [1], who
shows that the rank aggregation problem for bucket orders under the nearest
neighbor Kendall tau distance is 2-approximable by a deterministic algorithm
and 1, 5-approximable by a randomized algorithm. ut

6 Conclusion and Open Problems

In this work we have investigated the nearest neigbor Spearman footrule distance
on rankings with incomplete information. The incompleteness is expressed by
bucket, interval and partial orders. The step from interval to partial implies a
jump in the complexity from linear time to NP-completeness for the computation
of the distance to a total order. Still open is the distance problem between two
interval or an interval and a bucket order. Furthermore, there is the jump to
NP-completeness for the rank aggregation problem from total to bucket orders.
Our new NP-complete problems have good approximations. Our linear time
algorithms, the NP-reductions, and the approximations used quite different
techniques. It is left open to improve the given approximation ratios and to
establish an approximation e.g., for the rank agregation problem for the general
case with partial rankings. A further area of investigations addresses the Kendall
tau distance and other measures, such as the Hausdorff distance [13].
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7. W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. Journal of

Artificial Intelligence Research (JAIR), 10:243–270, 1999.
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