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Abstract

The technical report provides complementary materials and models for the paper
”Quantifying the impact of communication delay on adaptive protection systems.”
The paper investigates modern protection systems in power grids that face new chal-
lenges due to distributed renewable energy sources. Protection issues introduced due
to these distributed renewable energy sources, such as blinding and sympathetic trip-
ping, are discussed. A communication network is used to solve these issues by adapt-
ing the sensitivity of the protection devices. However, the communication network is
subject to strict performance requirements such as communication delay, which are
investigated in the paper. A discrete event simulation-based model is developed to
assess the impact of parameters such as communication delay on the adaptive protec-
tion system. The results demonstrate that using a communication network improves
the performance of the protection system even when subjected to communication de-
lays. The proposed method allows the performance analysis of protection systems.
Consequently, performance thresholds can be determined for various scenarios. Fur-
thermore, the impact of parameters such as fault impedance, protection sensitivity
and renewable energy sources can be investigated using the proposed approach. The
relevant models required for the above analysis are presented in this report.

1 Introduction

Modern Power Systems (PSs) are undergoing drastic changes, particularly in op-
eration and structure. The integration of Distributed Renewable Energy Sources
(DRESs) decentralizes the traditionally centralized energy source. This transition
fundamentally challenges the safe operation of the system, especially its protection
system. The protection system has operated under the assumption of single-source
fault current feed-in from the external grid to the fault location, e.g., in distribution
grid feeders. The presence of DRESs could violate this assumption leading to protec-
tion misoperation. Some protection misoperation scenarios are protection blinding,
e.g., when a DRES exists between a protection device such as a Circuit Breaker (CB)
and the fault location. In this scenario, if the DRES supplies fault current, the up-
stream current through the CB will reduce, blinding the protection device. This may
cause the CB to trip late or not trip at all. Another protection misoperation is sympa-
thetic tripping, e.g., when a CB in fault-free feeder trips due to a DRES in this feeder
supplying fault current. A solution to these issues is adaptive protection. Adaptive
protection schemes use Information and Communication Technology (ICT) to adapt
the settings of protection devices. This adaptation of protection settings is achieved
by sending new settings using a communication network. However, communication
imposes a delay caused due to the transfer of messages. This delay could cost crucial
time, especially in the context of protection, where faults could cause damage to the
system. Therefore, the impact of this delay should be investigated.

This report aims to provide a complete overview of the model used in the main
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paper. The relevant state-of-the-art methodology and results are omitted, while the
list of Stochastic Activity Net (SAN) models used in the paper are described.

2 Stochastic Activity Net models

This section provides an overview of the SAN models used in the main paper. A
short description of the model accompanies each SAN model. The SAN models are
implemented in the Möbius tool [2]. The models are initialized with parameters from
an input binary file [1, 3].

2.1 Composed model

The overall model is composed of ten submodels. The aggregation of all submodels
forms the overall model, known as the ”composed” model. This composed model
accumulates the shared state variables of each submodel. The composed model is
shown in Figure 1. Each block named ”Submodel” indicates a separate SAN model.
Each block named ”Rep” indicates that the connected submodel is replicated a spec-
ified number of times. The ”Join” block indicates the aggregation of all submodels,
specifically the aggregated shared state variables. The following subsections describe
each submodel.

Figure 1: Composed model
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2.2 Initialization model

A simulation starts with the initialization of the model. This is shown in Figure 2,
where the extended places (yellow circles) are assigned with initial values. A binary
file is used for each extended place to input these values. A code excerpt is shown in
listing 1, where the extended place bus OK is initialized with data from file ”bus.dat”.

Figure 2: Initialization model

using namespace std;

std:: ofstream ondata;

std:: ifstream indata;

indata.open("C:\\ Input\\bus.dat", ios::in|ios:: binary);

for( i = 0; i < num_bus; i++)

{

indata >>bus_OK ->Index(i)->bus_index ->Mark();

indata >>bus_OK ->Index(i)->disconnected ->Mark();

indata >>bus_OK ->Index(i)->state_ok ->Mark();

indata >>bus_OK ->Index(i)->fault_exists ->Mark();

indata >>bus_OK ->Index(i)->feeder_index ->Mark();

indata >>bus_OK ->Index(i)->num_line ->Mark();

indata >>bus_OK ->Index(i)->num_mu ->Mark();

l = bus_OK ->Index(i)->num_line ->Mark();

m = bus_OK ->Index(i)->num_mu ->Mark();

for( int j = 0; j < l; j++)

indata >>bus_OK ->Index(i)->line_index ->Index(j)->Mark();

for( int j = 0; j < m; j++)

indata >>bus_OK ->Index(i)->mu_index ->Index(j)->Mark();

}

indata.close ();

Listing 1: C++ code to initialize SAN model using binary files.

The main part is the for loop which iterates num bus times. The variable num bus
represents the number of buses in the system. Inside the loop, information such as
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bus index, state flags of the bus, number of lines connected to the bus etc. is loaded.
This process is performed for each extended place that requires initialization.

2.3 Bus model

After initialization, the indexing of each submodel takes place. The indexing is done
to allocate one unique index to each submodel. For example, each bus will have a
unique index for identification purposes. The indexing of replicas is based on the
approach of Chiaradonna et al [1]. Once the initialization and indexing are complete,
the Discrete Event Simulation (DES) to solve the SAN models starts. The first event
in the DES is a fault (fault occurs), which occurs at a bus. The fault may be cleared by
activating the relevant protection device (line disconnects). If the protection device
fails, the fault may be cleared naturally (fault clears natural) or a maintenance crew
may be sent to clear the fault manually(maintenance crew). The bus model is shown
in Figure 3. The properties of these events, modeled as activities, are shown in
Table 1. The line disconnects and line reconnects are instantaneous as the time delays
associated with these events are in the circuit breaker model.

The impact of communication delay on the protection system is studied by mea-
suring the fault clearing time. The fault clearing time is measured as the time from
when the fault occurs to when the fault is cleared or isolated. Therefore, these times
are recorded to calculate the fault clearing times. The listing 2 shows the code to
record when the fault occurs. This is done using the library function LastActionTime.
The fault clearing time is then calculated when the fault is cleared. The time when
the fault occurs is stored in extended place time. When the fault is cleared, the fault
clearing time is calculated as shown in listing 3.

Figure 3: Bus model
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Activity name Type Time distribution Parameters
line disconnects Instantaneous - -
line reconnects Instantaneous - -
fault occurs Timed Exponential 50 hours

fault cleared natural Timed Exponential 2 hours
maintenance crew Timed Exponential 4 hours

Table 1: Activities of bus model shown in Figure 3 and its properties

ondata.open("C:\\ output \\ line_fail.dat", ios::out|ios:: binary|std

:: ios_base ::app);

ondata << LastActionTime << endl;

ondata.close ();

double time_t;

time_t = LastActionTime;

time ->Mark() = time_t;

Listing 2: C++ code to calculate and store fault clearing times in binary files.

time ->Mark() = LastActionTime - time ->Mark();

ondata.open("C:\\ output \\line.dat", ios::out|ios:: binary|std::

ios_base ::app);

ondata << time ->Mark() << endl;

ondata.close ();

Listing 3: C++ code to calculate and store fault clearing times in binary files.

2.4 Merging unit model

The fault impacts the voltage and current magnitudes at the bus. These values are
measured using a merging unit. The state of a merging unit can be impacted by the
communication link(communication link fail), a software failure(mu software failure),
random hardware failure(random failure) or loss of power supply(bus failure). The
model of a merging unit is shown in Figure 4. The properties of these activi-
ties are shown in Table 2. The communication link fail, communication link repair,
bus failure and bus repair are instantaneous as the time delays associated with these
events are in the radio link and bus models respectively.
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Figure 4: Merging unit model

Activity name Type Time distribution Parameters
communication link fail Instantaneous - -

communication link repair Instantaneous - -
bus failure Instantaneous - -
bus repair Instantaneous - -

mu software failure Timed Exponential 1 428 hours
image patched Timed Exponential 1 hour
random failure Timed Exponential 9 000 hours

random failure repair Timed Exponential 2 hours

Table 2: Activities of merging unit model shown in Figure 4 and its properties

2.5 Radio link model

The measurements obtained from a merging unit are communicated using a commu-
nication link, which are radio links in the system considered (see original paper). The
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model of a radio link is shown in Figure 5. The model of the radio link is based
on the work of Tesfaye et al. [4]. A key extension to their model is the addition of
communication delay, modeled by the communication delay activity. The state of
a radio link may be impacted by the failure of a connected device device fail, fad-
ing radio link fadingand failure of the radio interface at the connected device equip-
ment failure, but the device remains operational. The all links failed models the
case where all redundant links have failed, leading to a complete failure of the radio
link. The properties of these activities are shown in Table 3. The device fail and
device repair are instantaneous as the time delays associated with these events are in
the respective device models.

Figure 5: Radio link model

Activity name Type Time distribution Parameters
device fail Instantaneous - -

device repaired Instantaneous - -
radio link fading Timed Exponential 64.8 hours
all links failed Instantaneous - -

equipment failure Timed Exponential 10 000 hours
fading repair Timed Exponential 100 milliseconds
repair process Timed Exponential 4 hours

communication delay Timed Exponential Input dependent

Table 3: Activities of radio link model shown in Figure 5 and its properties
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2.6 Base station model

The radio links interface the field devices with the base station. The base station
communicates with the edge server using a physical communication link. The model
of a base station is shown in Figure 6. The base station may fail (failure) or be
overloaded by traffic (overload). Correspondingly, the base station may be repaired
(repair) or be relieved (relief ). The properties of these activities are shown in Table 4.

Figure 6: Base station model

Activity name Type Time distribution Parameters
overload Timed Exponential 1 200 hours
relief Timed Exponential 5 hours
failure Timed Exponential 5 000 hours
repair Timed Exponential 10 hours

Table 4: Activities of base station model shown in Figure 6 and its properties

2.7 Edge server model

The edge server hosts the VMs required for the protection functions. The model of
an edge server is shown in Figure 7. The edge server is connected to the base station
via physical communication links, which may fail (communication link fail) and be
repaired (communication link repair). The edge server may lose power (power loss),
leading to a no-power state. The edge server may be overloaded due to omission fail-
ures (omission timing fail) and consequently relieved. The edge server may also suf-
fer a crash failure, which could be predicted (edge predicted crash fail) or unpredicted
(edge unpredicted crash fail). There are relevant mechanisms to continue operation
in these scenarios: VM migration (migration delay) for predicted failures and deploy
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a snapshot (snapshot deploy delay), if available, for unpredicted failures. A backup
edge server is used in both cases until a repair action is completed. The properties of
these activities are shown in Table 5. The power loss and power restore are instan-
taneous as the time delays associated with these events are in the respective device
models.

Figure 7: Edge server model

Activity name Type Time distribution Parameters
power loss Instantaneous - -

power restore Instantaneous - -
communication link fail Timed Exponential 9 000 hours

communication link repair Timed Exponential 6 hours
omission timing fail Timed Exponential 1200 hours
edge load relief Timed Exponential 5 hours

edge predicted crash fail Timed Exponential 4 000 hours
edge unpredicted crash fail Timed Exponential 8 333 hours

backup crash recovery Timed Exponential 4 hours
restore edge Timed Exponential 2 hours

migration delay Timed Exponential 15 minutes
snapshot deploy delay Timed Exponential 15 minutes

crash repair Timed Exponential 4 hours
edge crash reset Timed Exponential 15 minutes
overload reset Timed Exponential 15 minutes

Table 5: Activities of edge server model shown in Figure 7 and its properties
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2.8 Virtual machine model

The edge server hosts the Virtual Machines (VMs) required for protection functions.
These VMs are modeled using the SAN in Figure 8. The VM may stop functioning
due to a hardware failure (edge hw failure) if the edge server fails or if the VM software
crashes (vm crash failure). If the VM crashes, a snapshot could be used to maintain
service (use snapshot). The snapshot can only be used if available ( a token in place
VM snapshot ). The VM receives measurements from the merging units, based on
which it detects and locates the fault (detect locate). The new protection settings
are sent if the fault is detected and located (power flow decision). The output gate
after this activity sets the flags in the relevant extended places to trigger events in
other submodels, e.g., communication delay for new settings. When the next set
of measurements is obtained, the VM checks if the fault is cleared (cleared check).
The properties of these activities are shown in Table 6. The edge hw failure and
edge hw repair are instantaneous as the time delays associated with these events are
in the respective device models.

Figure 8: Virtual machine model
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Activity name Type Time distribution Parameters
edge hw failure Instantaneous - -
edge hw repair Instantaneous - -
take snapshot Timed Exponential 15 minutes
vm crash repair Timed Exponential 12 hours
vm crash failure Timed Exponential 1 923 hours
use snapshot Timed Exponential 10 minutes
detect locate Timed Exponential 50 milliseconds

power flow decision Instantaneous - -
cleared check Timed Exponential 100 milliseconds

Table 6: Activities of virtual machine model shown in Figure 8 and its properties

2.9 Circuit breaker model

The protection device is modeled as a circuit breaker. The circuit breaker receives
new settings using a radio link. The circuit breaker model is shown in Figure 9. The
circuit breaker may fail (cb failure) and consequently repaired (cb repair). The cir-
cuit breaker may also lose connectivity if the radio link fails (communication link fail).
The connectivity is restored when the radio links are repaired (communication link repair).
The state of the circuit breaker may change from closed to open if the current through
the device is high enough to trigger the device. The opening of a circuit breaker is
modeled by (cb opening), and the closing is modeled by (cb closing). The properties
of these activities are shown in Table 7. The communication link fail and communica-
tion link repair are instantaneous as the time delays associated with these events are
in the respective device models. As in the paper, fault clearing times are measured,
and the simulated times of events are stored. This model stores the simulated time
the circuit breaker opens and closes. This code is shown in listing 4.

Figure 9: Circuit breaker model
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using namespace std;

std:: ofstream ondata;

ondata.open("C:\\ output \\ cb_open.dat", ios::out|ios:: binary|std::

ios_base ::app);

ondata << LastActionTime << endl;

ondata.close ();

Listing 4: C++ code to store simulated time of cb opening activity in binary files.

Activity name Type Time distribution Parameters
communication link fail Instantaneous - -

communication link repair Instantaneous - -
cb repair Timed Exponential 2 hours
cb failure Timed Exponential 3 636 hours
cb opening Timed Investigated in paper -
cb closing Timed Investigated in paper -

Table 7: Activities of circuit breaker model shown in Figure 9 and its properties

2.10 Lines model

Figure 10 shows the model of a power system line. A line in a power system re-
mains connected until a protection device, a circuit breaker in this model, remains
closed. The line is disconnected if the circuit breaker opens (cb opened). When the
line reconnects ((cb closed), the line is reconnected. This model includes a possible
extension of the model from the paper. In this version, a fault could occur at a line
as well. The fault modeling in the SAN model is similar to the fault modeling at
a bus. A fault may occur; in this case, a low-impedance fault would cause the line
to disconnect quickly. In contrast, a high-impedance fault may be cleared naturally
or by a maintenance crew. The properties of these activities are shown in Table 8.
As the line fault scenario was not analyzed in the main paper, these parameters are
not set. The cb opened and cb closed are instantaneous as the time delays associated
with these events are in the respective device models.

Activity name Type Time distribution Parameters
cb opened Instantaneous - -
cb closed Instantaneous - -

fault occurs Timed Exponential x hours
hif cleared natural Timed Exponential x hours
maintenance crew Timed Exponential x hours

Table 8: Activities of line model shown in Figure 10 and its properties
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Figure 10: Line model

2.11 Converters model

Activity name Type Time distribution Parameters
communication link fail Instantaneous - -

communication link repair Instantaneous - -
bus failure Instantaneous - -
bus repair Instantaneous - -
cb opened Instantaneous - -
cb closed Instantaneous - -

inject fault current Instantaneous - -
communication gateway fail Timed Exponential 5 000 hours

communication gateway repair Timed Exponential 2 hours
PLC fail Timed Exponential 7 000 hours

PLC repair Timed Exponential 2 hours
DSP fail Timed Exponential 5 000 hours

DSP repair Timed Exponential 2 hours

Table 9: Activities of converters model shown in Figure 11 and its properties

The fault current is provided by the DRESs that are converter coupled into the
system. Figure 11 shows the SAN model for a converter. The converter is capable of
communication. However, the converter’s role is primarily to provide the fault current.
Once a fault occurs, the converter detects the fault due to the voltage change and
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Figure 11: Converters model

supplies fault current (inject fault current). The fault current flow is calculated in
a Python program outside SANs and updated in SANs. However, external events
may impact the state of the converter. The converter may go offline if the connected
bus fails (bus failure), if the upstream circuit breaker disconnects (cb opened), or
if a relevant communication component fails. The properties of these activities are
shown in Table 9. Except (inject fault current), the instantaneous activities depend
on events in the respective device models.

1

2

3 print(’Python function ’)

4 fault_location = fault_bus_index #Store fault location

5

6 def powerflow(conv_state):

7

8 net = nw.case33bw () #Initialize 33 bus system

9 net.ext_grid["s_sc_min_mva"] = 25

10 net.ext_grid["s_sc_max_mva"] = 25

11 net.ext_grid["rx_min"] = 0.2

12 net.ext_grid["rx_max"] = 0.35

13 net.ext_grid["r0x0_max"] = 0.4

14 net.ext_grid["x0x_max"] = 1.0

15

16 net.line["endtemp_degree"] = 20
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17 net.line["r0_ohm_per_km"] = 0.244

18 net.line["x0_ohm_per_km"] = 0.336

19 net.line["c0_nf_per_km"] = 2000

20

21 # Place converter -coupled generators in grid; b is the bus index

while p is the short circuit capacity of the converter -coupled

generator in mva

22 for b, p in [(10, 10), (20, 10), (23, 10), (28, 10)]:

23 pp.create_sgen(net , b, sn_mva=p, k=1.3)

24

25 #Update the state of each generator based on state variables

from SANs

26 for i in range(len(conv_state)):

27 if( conv_state[i] == 1):

28 net.sgen.loc[[i], [’in_service ’]] = True

29 else:

30 net.sgen.loc[[i], [’in_service ’]] = False

31

32 # Perform short circuit calculation

33 sc.calc_sc(net , fault="1ph", topology="radial", case="max", ith=

True , ip=True , branch_results=True , return_all_currents=True ,

r_fault_ohm=r, x_fault_ohm=x)

34

35 #Extract fault current flow for a fault at a specific bus and

store in a file , which is fed back to SANs

36 first = net.res_line_sc.loc[fault_location]

37 output_df = pd.DataFrame ({’current ’: round(first[’ikss_ka ’], 3)

*1000})

38 output_df.to_csv(’D:\\ output \\ current.dat’, index=False , header=

False)

39

40

41 def myfunction ():

42 #Read converter state from a file created during SAN simulation

43 file = open(’D:\\ output \\ converter.dat’, ’r+’)

44 lst = []

45 for line in file:

46 lst += [line.split()]

47 converter = [float(x[0]) for x in lst]

48 file.seek (0)

49 file.truncate ()

50 conv_state = [int(item) for item in converter]

51

52 powerflow(converter)

53 return(’powerflow complete ’)

54

55

56 print(’State: ’, myfunction ())

Listing 5: Python code to calculate and store fault current flow.

Listing 5 shows the Python code required for short circuit calculation. Once a
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fault occurs, the SAN model calls this Python code, which returns the current flow for
a fault with a certain impedance at a specific bus. The Python code writes the results
to an external file, from which the SANs read the current values. Those current values
are allocated to line and circuit breakers, based on which the protection devices may
or may not operate.

3 Concluding remarks

This report provides complementary information and models to the paper ”Quan-
tifying the impact of communication delay on adaptive protection” . The report
details the SAN models used for the analysis in the main paper. The details about
the model, structure, time distribution assumptions and parameters are included. A
brief description of each model is included to describe the modeling of the system and
its relevance in the adaptive protection scenario.
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