
BenchBuild: A Large-Scale Empirical-Research Toolkit

Andreas Simbürger, Floarian Sattler, Armin Größlinger, Christian Lengauer

Department of Informatics and Mathematics, University of Passau
{simbuerg,sattler,groessli,lengauer}@fim.uni-passau.de

Technical Report, Number MIP-1602
Faculty of Computer Science and Mathematics

University of Passau, Germany
June 2016

BenchBuild: A Large-Scale Empirical-Research Toolkit

Andreas Simbürger Florian Sattler Armin Größlinger
Christian Lengauer

Faculty of Informatics and Mathematics
University of Passau

{simbuerg,sattlerf,groessli,lengauer}@fim.uni-passau.de

ABSTRACT
The efficiency of software is commonly evaluated with one
or more suites of experiments at compile time or run time.
The manual preparation of such experiments is tedious and
error-prone, involving tasks such as intercepting the compiler
at hand or the resulting binaries with custom measurements.
This imposes a practical limit on the number of case studies.
We present BenchBuild, a large-scale empirical-research
toolkit that supports 18978 projects for compile-time and
188 projects for run-time testing. BenchBuild automates
most of the tasks involved and provides tools that reduce the
amount of effort required to increase the test coverage.

https://youtu.be/VtXdveMT1Rk

CCS Concepts
•Software and its engineering → Software usability;
Software testing and debugging; Extra-functional prop-
erties; Preprocessors;

Keywords
Benchmarking; compile-time testing; run-time testing; build
systems

1. INTRODUCTION
Automatic benchmarking is not only essential for compiler
writers, but also for software engineering research. Providing
a sound and thorough evaluation of software experiments
always faces the same trade-off: do we focus on comparability,
by using custom-tailored benchmarks, or on generality, by
using a large number of real-world case-studies. The former is
usually easier to implement, while the latter provides insight
into wide-range applicability. However, preparing a large
number of case studies for the setup of an experiment is
a daunting task and, therefore, one often sticks with the
easier-to-handle, ready-to-use benchmark suites.

ACM ISBN -.

DOI: -

Sites like SPEC1 provide ready-to-use test suites that facil-
itate program testing by building and running them with
preselected inputs automatically. Many such suites are widely
accepted inside their respective communities and have the
advantage that the results of different experiments are com-
parable. The downsides are that preselected inputs may
be unsuitable for the hypotheses and, additionally, the test
programs selected may not be representative of real-world
scenarios. The identification of test inputs that address the
given hypotheses is often laborious. In addition, if the test
suite does not provide a suitable input set, the custom gen-
eration of one reduces comparability. If one is interested in
compile-time tests, adjusting the test suites causes further
problems: it becomes necessary to understand the build pro-
cess of all programs in the customized suite and to be able
to intercept it with the customized measurement. One way
to do so is by substituting the compiler with a hand-crafted
script, which performs the compilation and the measurement.
This is a tedious and time-consuming process – time that is
better spent on identifying good test inputs and answering
the research question itself.

Our automated testing tool BenchBuild is meant to lend
support for the latter by providing a highly adaptable and
easy-to-use testing framework and contributes:
• a lightweight toolkit for wrapping compilation and

binary invocation with user-defined measurements,
• tool uchroot for changing the file system root as

unprivileged user.
• customizable support for automatic experiments

– for 18978 software systems at compile time,
– for 188 software systems at run time.

BenchBuild is available at:
https://github.com/simbuerg/benchbuild.git

2. RELATED WORK
BenchBuild is not the only framework and test suite for

automatic test configuration.
SPEC provides different benchmark suites for performance

tests, e.g., for CPUs CPU2006 [5]. Each suite is a collection
of programs with different test inputs. It facilitates the
automatic build all programs, measurement of the run time,
and generation of performance reports.

Another tool for performance testing is the LLVM-based
Codelet Extractor and REplayer (CERE) [1]. The tool takes
applications as input and extracts codelets, i.e., performance-
relevant parts of the program. The REplayer executes

1https://spec.org

the codelet in roughly the context of the normal program
run by rebuilding the memory and bringing the cache into
a similar state. This enables performance prediction and
optimizations of small parts of the program without running
the entire program.

For compiler developers, the LLVM framework provides
its own testing infrastructure lnt2. This aids the developer
in writing compiler tests and benchmarks, but also ties him
to LLVM. The emphasis lies on compile-time testing of a
variety of input programs, ranging from simple unit tests to
multi-file applications in different programming domains.

A useful tool for setting up a testing infrastructure is
docker [3]. It provides a virtual Linux operating system
and eases the setup of lightweight Linux containers. The
user creates a base image for testing, e.g., Ubuntu, and then
different docker containers for each program that is part
of the experiment. Combined with docker, services like
Open Build Systems3 can build packages for different Linux
distributions. This setup enables compile-time and run-time
tests. However, the container setup and the integration of
the experiment with the containers remain complex.

Software mining tools like Boa [2] enable the user to analyze
software projects hosted on SourceForge4. Boa evaluates the
program’s source code to generate information like the churn
rate, i.e., the number of files changed in a revision. In
contrast to BenchBuild, Boa does not compile or run the
program. Additionally, it is currently limited to Java source
code, whereas BenchBuild is language-independent.

3. BENCHBUILD
In the following subsections, we introduce BenchBuild,

our large-scale toolkit for empirical research that aims at rem-
edying the shortcomings of the manual approach described
previously. We focus on the key tools that are necessary to
provide automated wrapping of the compiler and binary with
customized measurement functions offered by a wide variety
of easily extensible case studies.

3.1 The goal of BenchBuild
Frequently, during research, a point arrives at which a new

result has to be evaluated against a set of custom-tailored case
studies, benchmarks, or a large code base of an individual
program – a process that is laborious, tedious and error-
prone. Depending on the kind of measurement setup that is
required, it is necessary to acquire a deep understanding of
each program’s build system and run-time behavior.

A simple setup might just require a script that wraps the
default compiler that translates the program. This seemingly
easy task becomes much more complicated when one has
to consider a variety of build systems such as GNU make,
CMake, or Ninja. All of them support a degree of free-
dom that makes it very error-prone to reliably intercept the
compilation process with custom measurements.

Expanding the experimental setup with run-time tests for
each case-study adds new tasks besides the existing ones that
one has to tackle for compilation wrapping. Formulating
run-time tests for new case-studies always risks to introduce
measurement bias to the experiment setup even if there is a
set of program inputs that domain experts agreed upon.

2http://llvm.org/docs/lnt/
3http://openbuildservice.org/
4https://sourceforge.net/

All these tasks require a deep understanding of the program.
This often leads to a low number of case-studies used during
the evaluation of our research results.

Here is where BenchBuild tries to remedy the current
situation. We remove the need for a deep understanding
of a case-study’s build-system. The user only has to find
representative test-inputs in case he wants conduct run-time
testing on new case-studies.

3.2 Terminology
Observed from the outside, BenchBuild executes experi-

ments on a set of programs. At the inside, it maintains the
configuration necessary for all programs to conduct their ex-
periments. The configuration includes instructions on how to
build the program, where to put the binaries to be measured
and (optionally) a set of representative program inputs to
each of them. Each project itself is treated as an atomic
unit within BenchBuild. However, actual process isolation
is not enforced automatically. The enforcement might in-
troduce unwanted overhead during the measurements and
is, therefore, left to the user-defined experiment. As a first
step, BenchBuild includes support for the Simple Linux
Utility for Resource Management (SLURM) [7]. Besides,
resource management it also enables parallel execution on
remote systems.

Project.
A project in BenchBuild’s terminology aggregates all

information that is necessary to download and build compo-
nents required by the program to be tested, and to execute a
representative set of commands that facilitate the run-time
testing. Like other build systems and package managers,
BenchBuild only provides precise dependency tracking if
specified by the metadata supplied by the user.

A project is identified by a NAME and a DOMAIN – a grouping
attribute that eases mass selection of project groups. Projects
must satisfy the following interface:
def download(): Imports all necessary sources into the

local build directory. This will also download the sources
from remote locations, if possible. All downloads are cached
locally and hashed, to provide stable input for all further
experiments.
def configure(): Prepares the project for a compilation.

Depending on the experiment, this is the place at which the
optional compiler extension is placed in the build directory.
def build(): Builds the project with all its dependences.

All compiler measurements take place during the execution
of this method.
def run_tests(experiment): Executes all run-time tests

of the project. Takes the experiment-specific run function
and creates a wrapped binary that executes it instead of the
actual binary.

Experiment.
An experiment in BenchBuild is characterized by two

concepts. First, there is the flow of actions, i.e., the sequence
of calls to some projects’ API methods. Second, a serialized
compile and/or run function to perform the measurements is
combined with the binaries of interest. These are completely
user-definable and are required to return an execution plan for
each project. Predefined actions are available in BenchBuild
to form an execution plan. Examples include wrappers that

call a project’s API methods or group-actions that require
all contained actions to succeed.

3.3 Database schema
All experiments conducted by BenchBuild are stored in a

simple – extensible – database schema that provides the user
with different levels of precision. Let us go through them
from coarse to fine grain:
experiment: At the coarsest level, BenchBuild keeps

track of the experiment instances to be run. An instance can
be selected via its unique identifier, name, or start/end time.
rungroup: Inside an experiment instance, we can combine

measurements in a rungroup. As soon as a project executes its
run-time tests, all single binary runs are made one rungroup,
i.e., a defined set of – possibly multiple – binary calls.
run: The level of highest precision provides the run. Here

we can analyze every single binary call that executed inside
a BenchBuild measurement.
config: Beside the multiple levels of precision above,

BenchBuild also logs the configuration metadata of each
experiment and rungroup. This way, it keeps track of the
characteristics of the measurement, such as program ver-
sions, host configuration, or low-level information such as
the number of cores used in the execution of an individual
rungroup.

3.4 Compiler and run-time wrapping
To enable BenchBuild to abstract from the tedious task of

manual compile-time and run-time measurements it needs a
way of augmenting the compiler, as well as any other binaries
of interest with a customized measurement extension function.
In BenchBuild, the user can specify custom experiments or
case studies not in a custom domain-specific language but in
the implementation language of BenchBuild, Python. A
binary is augmented with a customized measurement function
is done via generic wrapper scripts that load a serialized form
of the measurement function and execute it instead of the
original binary. Python provides – among others – the
pickle package to perform arbitrary object serialization.

The substitution of the compiler is a common task of any
build system. Even without external measurements wrapped
around the compilation process, build systems provide a
means to choose the compiler that should be used, e.g., via
environment variables (CC, CXX). However, special support for
different compilers needs to be considered inside the project’s
build system itself to accommodate for deviating call syntax
and/or behavior of the compiler.

A custom compiler can be integrated via a simple script
that exposes the same API as a supported compiler. Listing 1
contains a minimal script in shell syntax. It can be used
as the default compiler for any project that supports gcc
and enables the transformation of the incoming arguments
and the invocation of any binary call in place of the call
to the original compiler. The script can be extended to
construct more sophisticated wrappers – a manual and, thus,
error-prone procedure.

Beside our own custom measurement, we need to be able
to complete the compilation process successfully. A simple
way of ensuring a successful compilation is to call the orig-
inally intended compiler for the project as well, liberates
the compiler extension from explicitly invoking the intended
compilation command. In addition, BenchBuild’s compiler
extension includes the capability to fall back to the originally

#!/bin/sh

custom-cc $*

gcc $*

Listing 1: Minimal script to intercept the default compilation
call

intended compilation command in case of error. This strips
away any customizations that may have been configured in
a BenchBuild experiment and attempts completion of the
build without them.

from pprof.compiler import mycflags, myldflags, CC

import sys

def invoke_external_measurement(*args): pass

def custom_cc(*args): pass

def default_cc(*args): pass

flags = sys.argv[1:]

retcode = 0

try:

retcode, _, _ = \

custom_cc(CC, flags,

mycflags, myldflags, input_files)

invoke_external_measurement(fc)

except ProcessExecutionError:

retcode, _, _ = \

default_cc(CC, flags, input_files)

sys.exit(retcode)

Listing 2: Schematic overview of BenchBuild’s compiler
wrapper. First, we run the compiler with all custom flags the
user might have added due to his experiment. On success,
we invoke the external measurement, otherwise we revert
all custom flags and execute the original compiler with its
default flags for the project.

Listing 2 provides a schematic overview of the generic
compiler wrapper that is generated by BenchBuild. At first,
we run the compiler with all custom flags specified for the
experiment. Upon success, the compiler extension is invoked.
This ensures that the flags added during the experiment do
not trip up the extended compiler. Should the compilation
with customized flags fail, compilation is repeated without
them. Errors encountered during compilation are logged.

Wrapping a binary is – in principle – the same as wrapping
the compiler. The same approach of a simple wrapper script
that takes care of error handling applies, except for fallback
on error, in addition.

Our aim is to be minimally invasive. The approach of
wrapping ensures that the impact of a modification stays
invisible to the environment. Neither the build system nor
a customized test suite can detect the modification without
explicitly validating the binaries that it calls.

3.5 Invoking an external measurement
So far, we are able to wrap any binary with a customized

wrapper script that loads and executes an extension by calling
the def invoke_external_measurement function. A call of
this function loads and executes a serialized version of our

custom extension. Both the configurable compiler and run-
time extension can be implemented likewise. For simplicity,
from here on, we refer to the run-time extension function
when we mention an extension.

An extension is required to obey the following signature:
def fn(cmd, args, **kwargs)

Here, cmd is the command that actually needs to run, args
are the program arguments, and **kwargs are any keyword
arguments supplied by the wrapper script.

Any function whose signature matches this interface can
be used as a BenchBuild run-time extension.

The user only needs to provide this one run-time extension
that performs the measurement and stores the results in any
desired format. BenchBuild provides additional tools to
identify each binary run in the scope of the entire experiment
for further analysis.

3.6 Switching the root file system
Unix-like operating systems have long offered a mechanism

for multiple installations that can be used in parallel: change
root (chroot) environments. A chroot environment is a file
system directory which, for a certain process to be started,
becomes the new base of the file system hierarchy (i.e., the
directory “/”) after the chroot operation. Unfortunately,
performing a chroot operation requires superuser privileges
and is, therefore, usually not available to users in a multi-user
environment. A more heavy-weight alternative is to run a
virtual machine (VM), which can be allowed for users without
security risks. The drawback of using virtual machines is that
the management of the VM’s file systems is less convenient
(usually, a big image file serves as the VM’s storage device)
and running a separate operating system kernel in the VM
incurs overhead.

A third option that has become available recently in Linux
is to use containers. Containers are similar to chroot envi-
ronments. In addition to chroots, the kernel offers more
isolation between the main system and containers by (option-
ally) virtualizing additional resources, e.g., the space of user
IDs and the space of process IDs. Due to the virtualization
of user IDs, the superuser (user ID 0) in the container need
not actually be privileged on the system. These so-called
unprivileged containers allow users to execute processes in
such containers with any user ID (including 0) inside the
container but, from the outside perspective, the process runs
with some unprivileged user ID. The relation between inner
and outer user IDs is given by an ID mapping which has
to be set during the initialization of the container. For an
easy use of unprivileged containers in BenchBuild, we have
implemented a tool called uchroot (“user change root”)
which allows a user to perform a change root operation to
a new base directory B. In detail, uchroot performs the
following steps:

1. Create an unprivileged container.
2. Mount /dev, /proc and /sys file systems under B.
3. As root in the container perform a chroot syscall to

change the container’s file system base to B.
4. Establish the mapping between the container’s user and

group IDs and outside user and group IDs, respectively.
5. Execute a user-supplied command with a given user

and group ID in the container.
Note that none of these operations require that the user
invoking uchroot have superuser privileges (nor does uch-
root need to be installed with setuid or setgid rights). There

are two options (both supported by uchroot) of defining
the user and group ID mappings. The simple option is that
only one user ID (for example, ID 0) is necessary inside the
container. In this case, the inner ID (e.g., 0) can simply be
mapped to the ID of the invoking user (outside the container).
The second option is that more than one user ID are neces-
sary inside the container. This requires so-called subordinate
user and group IDs that the system administrator can assign
by configuring the files subuid and subgid in /etc.

A further feature of uchroot is file system attribute
emulation. Not every file system can deal with subordinate
user IDs; in particular, NFS does not support them at present,
so the processes running under subordinate user IDs would
not be able to create files on the file system. To allow
users to store files that have arbitrary user IDs and file
access modes inside the container, uchroot also provides a
virtual file system, implemented using FUSE (File System in
Userspace) which emulates user IDs and access modes. When
this emulation is activated, the virtual file system is mounted
on a temporary mount point. This mount point becomes the
new base of the file system hierarchy in the container after
the chroot operation. All accesses to the virtual file system
are redirected transparently to the directory B (provided by
the user) with access modes and user IDs stored in additional
files (in directory B). All files created under B are owned
by the invoking user, i.e., the user does not need elevated
privileges on this file system.

Putting all these ingredients together, uchroot (by ex-
ploiting Linux’s unprivileged containers) allows an unpriv-
ileged user to create and use a change root environment
without the need for special privileges, setuid binaries5 or
file system access for user IDs other than the user’s normal
ID.

3.7 Available projects
Up to this point, we have described all tools necessary to

infuse an arbitrary measurement into any case study, enabling
the user to add any software system to BenchBuild’s project
registry. The downside is that it still remains a – one-time
– task to resolve all dependencies and understand the build
system. On the upside, BenchBuild already provides 18978
ready-to-use software systems.

BenchBuild provides compile-time and run-time test sup-
port for LLVM’s test suite lnt, the SPEC benchmark suite
and a specialized suite of real-world programs used by us [4].
Together, they consist of 188 software systems.

In addition, BenchBuild also comes with support for all
software systems that are included in the highly customiz-
able Linux distribution Gentoo Linux6 that, on package
installation, compiles all software packages from source by
default [6]. Other Linux distributions, e.g., Debian-based
can be used too, but are not implemented at present.

Via the uchroot environment introduced in Section 3.6,
BenchBuild provides a means to set up a base image that
contains a minimal Gentoo Linux installation and all de-
pendencies necessary to conduct experiments. The user can
extend this image, if additional dependencies are required for
the experiment at hand. All that has to be done is to unpack
the base image and invoke the Gentoo package manager

5apart from the standard utilities newuidmap and newgidmap
(which are installed with setuid rights) when more than one
user ID is needed in the container.
6https://www.gentoo.org/

Portage for the given project. This compiles the project
and all its’ dependences inside the uchroot environment
with our customized compiler extension.

BenchBuild offers a single template to compile any of
18978 Gentoo packages. Listing 3 shows a simplified version
of project AutoPortage. The resulting list of dynamically
generated projects can be filtered further by arbitrary prop-
erties such as the source code language used, e.g., ”only select
projects written in C/C++“.

class AutoPortage(GentooGroup):

def build(self):

with local.cwd(self.builddir):

emerge = uchroot()["/usr/bin/emerge"]

unmask = emerge["--autounmask-only=y",

"--autounmask-write=y"]↪→

atom = package_name(self.DOMAIN, self.NAME)

with local.env(CONFIG_PROTECT="-*"):

unmask(atom, retcode=None)

run(emerge[atom])

Listing 3: The template for the compilation of Gentoo
projects. Gentoo’s package manager Portage is invoked
twice. First, all necessary configuration changes required for
a successful package installation are applied. Second, the
actual installation is carried out.

4. WORKFLOW
This section illustrates the typical workflow of Bench-

Build by an example of conducting a new experiment that
evaluates the applicability and performance of PolyJIT, our
own just-in-time compiler. PolyJIT provides a clang plu-
gin for the generation of compile-time statistics on a potential
run-time applicability. The preparation of the experiment
consists of three steps: (1) select suitable candidates for
run-time evaluation by running a compile-time experiment,
(2) generate a set of representative run-time tests for each
project, (3) conduct the run-time experiment for all selected
candidates. Step 3 is reduced to project bzip2 with a sub-
set of its default run-time tests, which is derived from the
reference input given by the SPEC benchmark suite.

A new compile-time experiment.
As stated previously, the selection of suitable projects

from all available projects is guided by a new compile-time
experiment.

Listing 4 shows a (simplified) experiment skeleton that exe-
cutes the following actions in order: MakeBuildDir, Prepare,
Download, Configure, Build, and Clean. Each project re-
quires an experiment-specific configuration returned by cus-

tom_cflags() and custom_ldflags() which, in the example
given, are the settings required for PolyJIT.

The compile-time experiment is completed with the defini-
tion of the compiler extension collect_compilestats(*args)

in Listing 5. The existing compiler command clang is ex-
tended to output additional compilation statistics before its
invocation run(clang, project, experiment.name). The
output is then postprocessed (details encapsulated in call
get_compilestats(...)) and the final values of all statistic
variables are stored (store_compilestats(...)).

from pprof.experiment import Experiment

def collect_compilestats(*args): pass

def custom_cflags(): pass

def custom_ldflags(): pass

class CompileStats(Experiment):

def configure(self, p):

p.cflags = project.cflags + custom_cflags()

p.ldflags = project.ldflags + custom_ldflags()

p.compiler_extension = collect_compilestats

return p

def actions_for_project(self, p):

p = self.configure(p)

return [MakeBuildDir(p),

Prepare(p),

Download(p),

Configure(p),

Build(p),

Clean(p)]

Listing 4: Compile-time experiment skeleton that compiles
all projects of BenchBuild with customized compilation con-
figuration. The implementation of structurally unimportant
methods is omitted.

from pprof.utils.run import guarded_execution

from pprof.utils.db import persist_compilestats

def get_compilestats(*args): pass

def collect_compilestats(

project, experiment, config, clang, **kwargs):

clang = clang["-mllvm", "-stats"]

with guarded_execution() as run:

run_result = run(

clang, project, experiment.name)

if run_result == 0:

stats = get_compilestats(run_result.stderr)

persist_compilestats(run_result, stats)

Listing 5: Compiler extension for the generation and collec-
tion of all compilation statistics provided by clang. Bench-
Build stores the serialized version next to the wrapped
clang compiler, which then invokes the compiler extension
after successful compilation.

A run of the experiment reveals that, of the 1558 projects
available in BenchBuild that are supported by PolyJIT,
284 projects are suitable for PolyJIT.

The compile-time experiment CompileStats identifies Gen-
too packages suitable for run-time performance evaluation
with PolyJIT. For each package, one project must be in-
stantiated from the AutoPortage template, which already
provides a project definition that lacks only the definition of
run-time tests. An example definition for bzip2 is shown in
Listing 6. The binary to be tested (bzip2_path) is wrapped
with the run-time extension function (rt_extension) and a
new command is generated that calls the wrapped binary
("/bin/bzip2") inside a user-change-root environment. The

def run_tests(self, rt_extension):

from pprof.run import uchroot

from pprof.project import wrap

bzip2_path = self.builddir + "/bin/bzip2"

wrap(bzip2_path, experiment, self.builddir)

bzip2 = uchroot()["/bin/bzip2"]

opts = ["-f", "-k"]

run(bzip2[opts, "-z", "-9", "text.html"])

run(bzip2[opts, "-d", "text.html.bz2"])

Listing 6: Run-time test method for Gentoo project bzip2.
This method extends the generic AutoPortage class found
in Listing 3. The preparation of the input files for compres-
sion/decompression is omitted for brevity.

actual measurement compresses and decompresses one file
using the generated command. Such a run-time test must
be defined for each selected project candidate.

The run-time experiment.
The run-time experiment completes the definition of our

example. We have chosen to extend the already existing
compile-time experiment CompileStats (an independent ex-
periment would be another option). The run-time extension
shown in Listing 7 performs three tasks: (1) create a new
command (cmd) that wraps the original binary command
(passed in as function argument rt_call) with the binary
time, (2) invoke the measurement and capture its output, (3)
postprocess the output and store all extracted measurement
results.

5. FUTURE WORK
The research prototype BenchBuild comes with 18978

projects for compile-time tests via its Gentoo project tem-
plate AutoPortage. One interesting question answered easily
with BenchBuild is how the Gentoo and the Debian
versions of packages like, e.g., bzip2 compare.

It is often of interest how a project’s experimental results
evolve between different versions. BenchBuild is able to con-
duct such experiments conceptually, but offers no integrated
support as of yet.

With SLURM support, BenchBuild has access to a re-
source manager that is capable of guaranteeing resource con-
straints for running experiments. However, beside resource
management, SLURM is also targeted at large parallel com-
pute clusters. Integrating support for the Linux cgroup
subsystem in our uchroot tool can provide a lightweight
alternative to SLURM on lower-performance processing en-
vironments.

6. CONCLUSIONS
We propose BenchBuild, our tool for compile-time and

run-time testing of arbitrary case studies. Conducting compile-
time and run-time experiments successfully involves tedious
and error-prone tasks such as the substitution of the compiler
used by a project’s build system, or the wrapping of bina-
ries with hand-written scripts. With BenchBuild’s tools for
wrapping any binary with customized measurements, all steps
other than the definition of the experiment and the selection

def run_with_time(project, experiment, rt_call):

from pprof.utils.db import persist_time

from pprof.utils.run import guarded_execution

from plumbum.cmd import time

def get_time_output(*args): pass

cmd = time["-f", "%U-%S-%e", rt_call]

with guarded_execution() as run:

run_result = run(

cmd, project, experiment.name)

timings = get_time_output(

"{:g}-{:g}-{:g}", stderr)

persist_time(run_result, timings)

Listing 7: Test function to measure all BenchBuild projects
that support run-time tests with time.

of representative run-time test inputs can be performed au-
tomatically. With 18978 projects available for compile-time
testing and 188 projects available for both compile-time and
run-time testing, potential users have an effective device for
running large case studies without burden.

7. ACKNOWLEDGEMENTS
Financial support was received from the German Research

Foundation (DFG), project PolyJIT, grant no. LE 912/14.

8. REFERENCES
[1] P. D. O. Castro, C. Akel, E. Petit, M. Popov, and

W. Jalby. CERE: LLVM-based Codelet Extractor and
REplayer for piecewise benchmarking and optimization.
ACM Trans. Architectural Code Optimimization
(TACO), 12(1):6:1–6:24, Apr. 2015.

[2] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: Ultra-large-scale software repository and
source-code mining. ACM Trans. Software Engineering
Methodology (TOSEM), 25(1):7:1–7:34, Dec. 2015.

[3] D. Merkel. Docker: Lightweight Linux containers for
consistent development and deployment. Linux J.,
(239):76–91, Mar. 2014.

[4] A. Simbürger, S. Apel, A. Größlinger, and C. Lengauer.
The potential of polyhedral optimization: An empirical
study. In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 508–518. IEEE Computer
Society, Nov. 2013.

[5] C. D. Spradling. SPEC CPU2006 benchmark tools.
SIGARCH Computer Architecture News, 35(1):130–134,
Mar. 2007.

[6] G. K. Thiruvathukal. Gentoo Linux: The next
generation of Linux. Computing in Science &
Engineering, 6(5):66–74, Sept. 2004.

[7] A. B. Yoo, M. A. Jette, and M. Grondona. SLURM:
Simple Linux utility for resource management. In D. G.
Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,
Job Scheduling Strategies for Parallel Processing
(JSSPP), LNCS 2862, pages 44–60. Springer, 2003.

