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Abstract. Malleable signature schemes allow altering signed data in a
controlled way while keeping the signature verifiable trusting the signer’s
key. Several constructions exists. They can be grouped in two different
categories: (1) redactable signatures (RSS) and (2) sanitizable signa-
tures (SSS). RSSs allow for removing blocks of a signed document,
while SSSs offer the possibility to change all admissible blocks to ar-
bitrary strings. This paper shows that SSSs with a strenghted security
definition can be transformed into RSSs with a weakened privacy defi-
nition. A transformation from a RSS into a SSS is not possible, even if
we assume accountability for RSS. In particular, no unforgeable RSS
can be transformed into a SSS. This work provides the first rigorous
proof that RSSs and SSSs are two different concepts.

Keywords: Redactable Signatures, Sanitizable Signatures, Privacy, Malleable
Signatures

1 Introduction

Standard digital signature schemes like RSA-PSS [5, 35] become invalid on any
change to the signed data protected. However, this also prohibits a third party
from changing this data in a controlled way. Applications, where such a controlled
is crucial, include secure routing [2] or the anonymization of medical data [24].
It is also of paramount inmportance that the modification of the signed data
requires no interaction between the sanitizer, i.e., the party who changes the
signed data, and the original signer. This addresses constellations where the
original signer is not reachable anymore, e.g., in case of death, or in the case
where the signer may be reachable, but must not know which data is passed to
other third parties. This may happen, if personal data like gender, age or place
of birth is involved. A suitable approach to this so-called “digital document

?The research leading to these results was supported by “Regionale Wettbe-
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sanitization problem” [30] are malleable signature schemes. Malleable signature
schemes allow for certain controlled changes to signed data such that the result-
ing changed message’s authenticity is still verifiable. Let m = (m[1], . . . ,m[`]),
where ` ∈ N+, be a string m split up into ` parts we refer to as blocks. A
redactable signature scheme (RSS) allows everyone to remove blocks m[i] from
m. In particular, a redaction of the block m[i] leaves a blinded message m′ with-
out m[i], i.e., m′ = (. . . ,m[i − 1],⊥,m[i + 1], . . . ). If ⊥ is visible has a major
impact on the security model of the RSS. It also requires that the third party
can derive a signature σ′ which verifies for m′. On the other hand, a sanitizable
signature scheme (SSS) allows that a sanitizer, which has its own secret key,
can change the admissible blocks, defined by the signer, into arbitrary strings
m[i]′ ∈ {0, 1}∗. Hence, the sanitizer can generate a verifiable message/signature
pair (m′, σ′), where σ′ is the corresponding signature and m′ = (. . . ,m[i]′, . . . ).
Obviously, the derived signatures still need to induce trust, i.e., it must be ver-
ifyable that all changes were endorsed by the signer. On the first sight, both
approaches aim for the same goal, i.e., sanitizing signed data. However, SSSs
only allow the alteration of blocks, while RSSs only allow the removal of
complete blocks. Moreover, SSSs require an additional key pair for saniti-
zation, while RSSs allow for public redactions, i.e., no additional key pair is
needed.

Motivation. Sanitizing digitally signed data becomes more and more important
as digital signatures are deployed in business settings and for timestamping or
archiving purposes [33, 39]. However, standard unforgeable digital signature do
not allow any later modification to the data signed. Hence, we need to find
solutions to the “digital document sanitization problem” [30]. Current provably
secure solutions only focus on one specific type of malleable signature scheme,
i.e., RSSs or SSSs, even though they see them as related work. Hence, the
question arises how the relation between both types of malleable signature is.
This paper addresses this gap and proves the minimal set of security definitions
required to transform a SSS into a RSS. We also prove that no transform can
result in a fully private RSS. This shows, that every existing transform is not
secure, as the security models are not sufficient. Hence, we conclude that RSSs
and SSSs must be combined to achieve a maximum amount of flexibility and
security.

1.1 Contribution

This paper rigorously shows that RSSs and SSSs are completely different con-
cepts, with one notable exception: weakening the privacy definition of RSSs,
while altering the security definitions of SSSs, a SSS can be transformed into a
RSS. We provide a general algorithm for the transform and show that an SSS
that is
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– strongly private,

– weakly immutable and

– weakly blockwise non-interactive publicly accountable

can be transformed into a weakly privateRSS. We prove that this is the minimal
set of assumptions required. Strongly private for SSSs requires, that even if the
sanitizing key is known, no statements about the original message can be made.
Weak blockwise non-interactive public accountability prohibits a sanitizer from
accusing the signer for a specific block. A weakly immutable SSS prohibits an
adversary knowing the secret sanitizing key from altering blocks not designated
to be sanitized. However, we also prove that the resulting RSSs are only weakly
private. In a weakly private RSS, a third party can see where the message has
been redacted, i.e., it sees the position of the change, but cannot make any
additional statements, i.e., cannot revert the redaction.

We introduce the required formal security model in Sect. 2. Moreover, we show
that no unforgeable RSS can be transformed into a SSS. This results in the fact
that RSSs and SSSs must be combined to achieve more flexibility in sanitizing
signed data. Hence, our results rule out every existing transformations, as the
existing security models are not suitable. We consider this the main contribution
of this paper.

State-of-the-Art. SSSs have been introduced by Ateniese et al. [2] at ES-
ORICS ’05. Brzuska et al. later formalized the most used security proper-
ties [7]. These have been later extended for unlinkability [9] and (blockwise) non-
interactive public accountability [10]. Moreover, several extensions like limiting-
to-values [11, 22, 31], trapdoor SSSs [13, 41] and multi-sanitizer environments [8,
12] have been considered. Currently, the only work considering SSSs and data-
structures more complex than lists appeared in [31].

On the other hand, RSSs have been introduced in [21], and in a slightly different
way in [38]. Based on their work, many additional research appeared. Several
cover more complex data-structures like trees [6, 24, 34, 31, 36] and graphs [26].
The standard security properties of RSSs have been formalized in [6, 14, 32, 36].
How to force the signer to commit to a given message has been shown in [33],
while Ahn et al. introduce the notion of statistically unlinkable RSSs [1]. Even
stronger privacy notions have been introduced in [3]. However, the scheme by
Ahn et al. only achieves the less common notion of selective unforgeability [1].
There exists many additional work on RSSs. However, most of the schemes are
not private, e.g., [18–20, 27, 29, 40]. Hence, a verifier can make statements about
the original message m, which contradicts the intention of a RSS [6].

Combinations of both approaches appeared in [18–20]. However, as already
pointed out by Samelin et al., their schemes do not preserve privacy [37]. No
other work considering combinations or relations of SSSs and RSSs is known
to the authors.
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1.2 Outline

The rest of the paper is structured as follows. In Sect. 2, we give the required
preliminaries to understand our results. This section also introduces the new no-
tions of strong privacy, weak immutability and weak blockwise non-interactive
public accountability for SSSs. It also provides the new definition of weak pri-
vacy for RSSs. A general transform showing that a SSS with strong privacy,
weak immutability and weak blockwise non-interactive public accountability can
be transformed into an RSS with weak privacy is given in Sect. 3. Based on the
preliminaries, we give formal proofs of the relation between SSSs and RSSs in
Sect. 4. Our resulting scheme is subject to further modifications in Sect. 5. We
conclude our work in Sect. 6. Additional formal proofs of security are found in
the appendix.

2 Preliminaries

For a message m = (m[1], . . . ,m[`]), we call m[i] ∈ {0, 1}∗ a block, while “,”
denotes a uniquely reversible concatenation of blocks or strings. The symbol
⊥ /∈ {0, 1}∗ denotes an error or an exception. For a visible redaction, we use the
symbol � /∈ {0, 1}∗, � 6=⊥.

2.1 Sanitizable Signatures

The used nomenclature is adapted from Brzuska et al. [7], which is also true for
the following definition:

Definition 1 (Sanitizable Signature Scheme). Any SSS consists of at
least seven efficient, i.e., PPT algorithms. In particular, let SSS := (KGensig,
KGensan,Sign,Sanit,Verify,Proof, Judge), such that:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
corresponding public key, based on the security parameter λ:

(pksig, sksig)← KGensig(1
λ)

(pksan, sksan)← KGensan(1λ)

Signing. The Sign algorithm takes as input the security parameter λ, a mes-
sage m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗, the secret key sksig of the signer,
the public key pksan of the sanitizer, as well as a description adm of the
admissibly modifiable blocks, where adm contains the number ` of blocks in
m, as well the indices of the modifiable blocks. It outputs the message m and
a signature σ (or ⊥, indicating an error):

(m,σ)← Sign(1λ,m, sksig,pksan,adm)
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Sanitizing. Algorithm Sanit takes a message m = (m[1], . . . ,m[`]), m[i] ∈
{0, 1}∗, the security parameter λ, a signature σ, the public key pksig of the
signer and the secret key sksan of the sanitizer. It modifies the message m ac-
cording to the modification instruction mod, which contains pairs (i,m[i]′)
for those blocks that shall be modified. Sanit calculates a new signature σ′

for the modified message m′ ← mod(m). Then Sanit outputs m′ and σ′ (or
possibly ⊥ in case of an error).

(m′, σ′)← Sanit(1λ,m,mod, σ,pksig, sksan)

Verification. The Verify algorithm outputs a decision d ∈ {true, false} veri-
fying the correctness of a signature σ for a message m = (m[1], . . . ,m[`]),
m[i] ∈ {0, 1}∗ with respect to the public keys pksig and pksan and the security
parameter λ:

d← Verify(1λ,m, σ,pksig,pksan)

Proof. The Proof algorithm takes as input the security parameter, the secret
signing key sksig, a message m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗ and a sig-
nature σ as well a set of (polynomially many) additional message/signature
pairs {(mi, σi) | i ∈ N+} and the public key pksan. It outputs a string
π ∈ {0, 1}∗ (or ⊥, indicating an error):

π ← Proof(1λ, sksig,m, σ, {(mi, σi) | i ∈ N+},pksan)

Judge. Algorithm Judge takes as input the security parameter, a message m =
(m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗ and a valid signature σ, the public keys of
the parties and a proof π. It outputs a decision d ∈ {Sig, San,⊥} indicating
whether the message/signature pair has been created by the signer or the
sanitizer (or ⊥, indicating an error):

d← Judge(1λ,m, σ,pksig,pksan, π)

To have an algorithm actually able to derive the accountable party for a specific
block m[i], Brzuska et al. introduced the additional algorithm Detect [10]. The
algorithm Detect is not part of the original SSS description by Ateniese et al.,
since it is not required for the purpose of a SSS [2, 7]. However, it is required to
later define (weak) blockwise non-interactive public accountability (See Def. 6).

Definition 2 ((SSS) Detect). On input of the security parameter λ, a mes-
sage/signature pair (m,σ), the corresponding public keys pksig and pksan, and
the block index 1 ≤ i ≤ `, Detect outputs the accountable party (San or Sig) for
block i (or ⊥, indicating an error):

d← Detect(1λ,m, σ,pksig,pksan, i), d ∈ {San, Sig,⊥}
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We require the usual correctness properties to hold. In particular, all genuinely
signed or sanitized messages are accepted, while every genuinely created proof
by the signer leads the judge to decide in favor of the signer. For a formal
definition of correctness, refer to [7, 10]. It is also required by every SSS that adm
is always correctly recoverable from any valid message/signature pair (m,σ).
Jumping ahead, we want to emphasize that a SSS with weak non-interactive
public accountability has an empty Proof algorithm and a Judge that detects
any sanitization, based on any proof π ∈ {0, 1}∗∪ ⊥. We give formal definitions
of the security properties in a game-based manner after introducing RSSs.

2.2 Redactable Signatures

The following notation is derived from [6] and [37].

Definition 3 (Redactable Signature Schemes). A RSS consists of four
efficient algorithms. In particular, let RSS := (KeyGen,Sign,Verify,Redact) such
that:

KeyGen. The algorithm KeyGen outputs the public key pk and private key sk of
the signer, where λ is the security parameter:

(pk, sk)← KeyGen(1λ)

Sign. The algorithm Sign gets as input the security parameter λ, the secret key
sk and the message m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗:

(m,σ)← Sign(1λ, sk,m)

Verify. The algorithm Verify outputs a decision d ∈ {true, false}, indicating
the correctness of the signature σ, w.r.t. pk, protecting m = (m[1], . . . ,m[`]),
m[i] ∈ {0, 1}∗:

d← Verify(1λ,pk,m, σ)

Redact. The algorithm Redact takes as input the message m = (m[1], . . . ,m[`]),
m[i] ∈ {0, 1}∗, the public key pk of the signer, a valid signature σ, a list of
indizes mod of blocks to be redacted and the security parameter λ. It returns
a modified message m′ ← mod(m) (or ⊥, indicating an error):

(m′, σ′)← Redact(1λ,pk,m, σ,mod)

We denote the transitive closure of m as span�(m). This set contains all
messages derivable from m w.r.t. Redact

As for SSSs, the correctness properties for RSSs are required to hold as well.
Thus, every genuinely signed or redacted message must verify. Refer to [6] for a
formal definition of correctness.
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Security Models. In this section, the needed security properties and models
required for our proofs are introduced. They are derived from [7, 17, 37]. The
requirement that adm is always correctly reconstructable is captured within
the unforgeability and immutability definitions. Note, following [7], a SSS must
at least be unforgeable, immutable, accountable and private to be meaningful.
Hence, we assume that all used SSSs fulfill these four fundamental security re-
quirements; if these requirements are not met, the construction is not considered
a SSS and the results of this paper may differ. For the following definitions of
security properties, we merge descriptions of SSSs and RSSs where possible,
allowing to see the parallels.

Definition 4 ((RSS) Unforgeability). No one should be able to compute a
valid signature on a message not previously queried without having access to any
private keys [6]. That is, even if an outsider can request signatures on different
documents, it remains hard to forge a signature for a document not previously
signed. This is analogous to the standard unforgeability requirement for standard
signature schemes [16], except that it excludes valid redactions from the set of
forgeries. We say that a RSS is unforgeable, if for any efficient (PPT) adversary
A the probability that the game depicted in Fig. 1 returns 1, is negligible (as a
function of λ).

Experiment UnforgeabilityRSSA (λ)

(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← ASign(sk,·)(pk)
let i = 1, . . . , q index the queries

return 1, if
Verify(pk,m∗, σ∗) = 1 and
∀i, 1 ≤ i ≤ q : m∗ /∈ span�(mi)

Fig. 1. Unforgeability for RSSs

Definition 5 ((SSS) Unforgeability). As before, no one should be able to
generate valid signatures on new documents not queried before without having
access to any private keys. For SSSs, we also have to take the sanitization and
proof oracles into account [7]. Again, this is analogous to the standard unforge-
ability requirement for standard signature schemes [16], except that it excludes
valid sanitizations from the set of forgeries. We say that a SSS is unforgeable,
if for any efficient (PPT) adversary A the probability that the game depicted in
Fig. 2 returns 1, is negligible (as a function of λ).

Definition 6 ((SSS) Weak Blockwise Non-Interactive Public Account-
ability). A sanitizable signature scheme SSS is weakly non-interactive publicly
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Experiment UnforgeabilitySSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(m∗, σ∗)← ASign(·,sksig,··· )Proof(·,sksig,··· )
Sanit(··· ,sksan) (pksig, pksan)

return 1, if
Verify(m∗, σ∗, pksig, pksan) = true and
(admi 6= adm∗ or
m∗ has not been returned by an oracle)

Fig. 2. Unforgeability for SSSs

Experiment WBlockPubAccSSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(pk∗,m∗, σ∗)← ASign(·,sksig,pksan,·)
Proof(·,sksig,·,·,pksan)

(pksan, sksan, pksig)

Let (mi,admi, pksan) and σi for i = 1, . . . , k

be the queries/answers to/from OSign

return 1, if

Verify(1λ,m∗, σ∗, pksig, pk
∗) = true, and

for all mi with pksan,i = pk∗, ∃q, s.t.

Detect(1λ,m∗, σ∗, pksig, pk
∗, q) = Sig

and (q,mi[q]) ∈ modi.
return 0

Fig. 3. Weak Blockwise Non-Interactive Public Accountability for SSSs

accountable, if Proof = ⊥, and if for any efficient algorithm A the probability
that the experiment given in Fig. 3 returns 1 is negligible (as a function of λ).
The basic idea is that an adversary, i.e., the sanitizer, has to be able to make the
Detect algorithm, accuse the signer, if it did not sign the specific block. Please
note, the sanitizer key is not generated by the adversary. An example for a weakly
blockwise non-interactive publicly accountable SSS is the scheme introduced by
Brzuska et al. [10]. Note, in our definition the signer is not considered adversar-
ial, contrary to Brzuska et al. [10]. Hence, we do not need to consider the case
where the signer accuses the sanitizer, as done in [10]. We explain the reasons
for our adversary model after the introduction of all required security properties.

Definition 7 ((SSS) Standard Privacy). No one should be able to gain any
knowledge about sanitized parts without having access to them [7]. This is similar
to the standard indistinguishability notion for encryption schemes [15]. The basic
idea is that the oracle either signs and sanitizes the first message or the second,
while the resulting message must be the same for each input. The adversary
must not be able to decide which input message was used. We say that a SSS is
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strongly private, if for any efficient (PPT) adversary A the probability that the
game depicted in Fig. 4 returns 1, is negligibly close to 1

2 (as a function of λ).

Experiment PrivacySSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASign(sksig,··· ),Proof(sksig,··· )

LoRSanit(...,sksig,sksan,b),Sanit(··· ,sksan)
(pksig, pksan)

where oracle LoRSanit on input of:
m0,mod0,m1,mod1,adm
if mod0(m0) 6= mod1(m1), return ⊥
let (m,σ)← Sign(mb, sksig, pksan,adm)
return (m′, σ′)← Sanit(m,modb, σ, pksig, sksan)

return 1, if a = b

Fig. 4. Standard Privacy for SSSs

Definition 8 ((SSS) Strong Privacy). The basic idea remains the same: no
one should be able to gain any knowledge about sanitized parts without having
access to them, with one exception: the adversary is given the secret key sksan of
the sanitizer. Hence, the adversary must not be able to decide which input mes-
sage was used. We say that a SSS for documents is private, if for any efficient
(PPT) adversary A the probability that the game depicted in Fig. 5 returns 1, is
negligibly close to 1

2 (as a function of λ). This notion extends the definition of
standard privacy [7] to also account for parties knowing the secret sanitizer key
sksan. Examples for strongly private SSSs are the scheme introduced by Brzuska
et al. [10], as both of their schemes are information-theoretically private.

The privacy definition in [7] only considers outsiders as adversarial. However, we
require that even insiders, i.e., sanitizers, are not able to win the game. This is
similar to the game given in [12], with the notable exception that the key sksan
is not generated by the adversary, only known to it. We explain the need for
this alteration after the next definitions.

Definition 9 ((RSS) Weak Privacy). In a weakly private RSS, a third party
can derive which parts of a message have been redacted without gathering more
information, as redacted blocks are replaced with ⊥. The basic idea is that the
oracle either signs and sanitizes the first message or the second. As before, the re-
sulting redacted message m′ must be the same for both inputs, with one additional
exception: the length of both inputs must be the same, while ⊥ is considered part
of the message. For strong privacy, this constraint is not required. We say that
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Experiment SPrivacySSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASign(sksig,··· ),Proof(sksig,··· )

LoRSanit(...,sksig,sksan,b)
(pksig, pksan, sksan)

where oracle LoRSanit on input of:
m0,mod0,m1,mod1,adm
if mod0(m0) 6= mod1(m1), return ⊥
let (m,σ)← Sign(mb, sksig, pksan,adm)
return (m′, σ′)← Sanit(m,modb, σ, pksig, sksan)

return 1, if a = b:

Fig. 5. Strong Privacy for SSSs

Experiment WPrivacyRSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·)
LoRRedact(...,sk,b)(pk)

where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) 6= mod1(m1), return ⊥
Note, visible redacted parts are denoted �,
which are considered part of the message
(m,σ)← Sign(sk,mb)
return (m′, σ′)← Redact(pk,m, σ,modb).

return 1, if b = d

Fig. 6. Weak Privacy for RSSs

a RSS for documents is weakly private, if for any efficient (PPT) adversary A
the probability that the game depicted in Fig. 6 returns 1, is negligibly close to 1

2
(as a function of λ). We want to emphasize, that Lim et al. define weak privacy
in a different manner, i.e., they prohibit access to the signing oracle [27]. Our
definition allows such adaptive queries. Summarized, weak privacy just makes
statements about blocks, not the complete message. See [24] for possible attacks.
Weakly private schemes, following our definition, are, e.g., [18–20, 24, 25, 27].
In their schemes, the adversary is able to pinpoint the indices of the redacted
blocks, as ⊥ is visible.

Definition 10 ((RSS) Strong Privacy). This definition is similar to weak
privacy. However, redacted parts are not considered part of the message. We say
that a RSS for documents is strongly private, if for any efficient (PPT) adver-
sary A the probability that the game depicted in Fig. 7 returns 1, is negligibly
close to 1

2 (as a function of λ). This is the standard definition of privacy [6, 37].
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Experiment SPrivacyRSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·)
LoRRedact(...,sk,b)(pk)

where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) 6= mod1(m1), return ⊥
redacted blocks are not
considered part of the message
(m,σ)← Sign(sk,mb)
return (m′, σ′)← Redact(pk,m, σ,modb).

return 1, if b = d

Fig. 7. Strong Privacy for RSSs

Definition 11 ((RSS) Transparency). Another well-known security defini-
tion is transparency [6, 32]. Interpreting the formal definition, which is depicted
in Fig. 8, transparency is the anonymity of the signer, i.e., a third party cannot
decide whether a given message/signature pair (m,σ) originates from the signer
or the sanitizer. A redactable signature scheme RSS is transparent, if for any
efficient algorithm A the probability that the experiment given in Fig. 8 returns
1 is negligibly close to 1

2 (as a function of λ). The basic idea is that an adver-
sary has access to an oracle which either signs and then sanitizes the message
or vice versa. Following the argumention and proofs given in [10], we can de-
rive that no weakly blockwise non-interactive publicly accountable scheme can be
transparent [10].

Experiment TransparencyRSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),Sign/Redact(...,sk,b)(pk)
where oracle Sign/Redact for input m,mod:

if mod(m) /∈ span�(m), return ⊥
if b = 0:(m,σ)← Sign(sk,m),

(m′, σ′)← Redact(pk, σ,m,mod)
if b = 1:m′ ← mod(m)

(m′, σ′)← Sign(sk,m′),
finally return (m′, σ′).

return 1, if b = d

Fig. 8. Transparency for RSSs
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Experiment ImmutabilitySSSA (λ)

(pksig, sksig)← KeyGen(1λ)

(m∗, σ∗, pk∗san)← ASign(·,sksig,·,·),Proof(sksig,··· )(pksig)
return 1, if:

Verify(m∗, σ∗, pksig, pk
∗
san) = true and

∃i : m∗[ji] 6= mi[ji] for some ji /∈ admi or
pk∗san 6= pksan, i
shorter messages are padded with ⊥ or
admi 6= adm∗

Fig. 9. Immutability for SSSs

Definition 12 ((SSS) Immutability). A sanitizable signature scheme SSS
is immutable, iff for any efficient algorithm A the probability that the experiment
given in Fig. 9 returns 1 is negligible (as a function of λ) [7]. The basic idea is
that an adversary generating the sanitizer key must be able to sanitize a block
not designated to be sanitized. Note, the sanitizer key is created by the adversary.
In other words, immutability is the unforgeability requirement for the sanitizer.

Definition 13 ((SSS) Weak Immutability). A sanitizable signature scheme
SSS is weakly immutable, iff for any efficient algorithm A the probability that
the experiment given in Fig. 10 returns 1 is negligible (as a function of λ). The
basic idea is that an adversary knowing the sanitizer key must be able to sanitize
a block not designated to be sanitized. Note, the sanitizer key is not created by
the sanitizer, only known.

Experiment WImmutabilitySSSA (λ)

(pksig, sksig)← KeyGen(1λ)

(pksan, sksan)← KeyGen(1λ)

(m∗, σ∗, pk∗san)← ASign(·,sksig,pksan,·),Proof(sksig,··· ,pksan)(pksig, pksan, sksan)
return 1, if:

Verify(m∗, σ∗, pksig, pk
∗
san) = true and

∃i : m∗[ji] 6= mi[ji] for some ji /∈ admi
shorter messages are padded with ⊥ or
admi 6= adm∗

Fig. 10. Weak Immutability for SSS

Interestingly, weak immutability is enough for our construction to be unforge-
able, while for a SSS used in the normal way, this definition is obviously not
suitable at all.
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2.3 Implications and Separations.

Let us formulate our first theorems:

Theorem 1. Every RSS which is strongly private, is also weakly private.

Proof. The game for strong privacy is less restrictive for the adversary than weak
privacy. Hence, weak privacy is implied by strong privacy.

Theorem 2. There exists a RSS which is weakly private, but not strongly pri-
vate.

Proof. See [18–20, 27] for examples. Additionally, we show that our scheme is
not strongly private, i.e., only weakly, in App. A.

Theorem 3. Every SSS which is immutable is also weakly immutable.

Proof. The game for immutability is less restrictive for the adversary than weak
immutability. Hence, immutability implies weak immutability.

Theorem 4. There exists a SSS which is private, but not strongly private.

Proof. We show this theorem by modifying an arbitrary existing strongly pri-
vate SSS. Let SSS = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) be an
arbitrary private SSS. We alter the scheme as follows:

– KGen′sig := KGensig, i.e., the key generation algorithm for the signer remains
unchanged.

– KGen′san := KGensan, while an additional key pair for a IND-CCA2-secure
encryption scheme [4] ENC is generated.

– Sign′ is the same as Sign with one exception; it appends the encryption e
of a digest of original message to the final signature, i.e., σ′ = (σ, e), where
e← ENC(pksan,H(m)) and H some standard cryptographic hash-function.

– Sanit′ is the same as Sanit with one exception; it first removes the encrypted
digest from the signature, while it appends it to the resulting signature.

– Verify′ is the same as Verify with one exception; it removes the encrypted
digest from the signature before verifying.

– Proof′ and Judge′ work essentially the same as their original counterparts,
while cutting of e from the signature before proceeding.

Clearly, a sanitizer, holding the corresponding secret key for ENC, can distin-
guish between messages generated by the signer and the sanitizer with over-
whelming probability using the information contained in the signature σ. With-
out sksan, this information remains hidden due to the IND-CCA2 encryption.
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2.4 Definition of a Secure RSS and a Secure SSS.

We want to explicitly emphasize that accountability, as defined for SSSs in [7],
has not been defined for RSSs yet, as Redact is a public algorithm. Hence, no
secret sanitizer key(s) are required to allow any modifications. To circumvent this
inconsistency, we utilize a standard SSS and let the signer generate the sanitizer
key sksan, attaching it to the signature, i.e., σ′ = (σ, sksan). If any alteration
without sksan would be possible, the underlying SSS is obviously forgeable. As
we have defined that this is a non-secure SSS, we omit this case. By doing
so, the secret sksan becomes public knowledge and can be used by every party.
This makes redacting a public operation. Hence, the secret key sksan for the
sanitization becomes known to every party, including the signer to remain in the
model defined for RSSs. This is the reason for our modifications of the existing
security notions. We require these, on first sight very unnatural, restrictions to
stay consistent with the standard model of SSSs as formalized in [7]. Moreover,
the signer is generally not considered an adversarial entity inRSSs [33] . If other
notions or adversary models are used, the results may obviously differ. In Sect. 4,
we show that any SSS which only achieves standard privacy is not enough to
construct a weakly private RSS and additional impossibility results. We show,
without giving formal definitions, how one can derive an accountable RSS with
explicitly denoted sanitizers in Sect. 5. How to formalize accountability forRSSs
is an open question and is not answered within this paper.

As we aim to transform a SSS into a RSS, which by definition allows pub-
lic redactions, we stick with the second approach, i.e., we require that KGensan
is called by the signer and the resulting sksan is distributed by being publicly
reconstructable from the signature. Since we have also dropped the require-
ment of an SSS to be accountable, we require weak blockwise non-interactive
public accountability only for detecting (admissible) changes of blocks, twist-
ing up the meaning its name implies.1 Vice versa, i.e., for the proof that no
unforgeable RSS can be transformed into an unforgeable SSS, we neither re-
quire any additional security definitions nor any multi-sanitizer environments as
introduced in [12]. In particular, we only need the unforgeability requirements
of RSSs. Obviously, unforgeability is the most basic requirement, essential for
every meaningful cryptographic construction.

We conclude this section with two final definitions:

Definition 14 (Secure SSS). We call a SSS secure, if, and only if, it
is strongly private, weakly immutable, unforgeable and weakly blockwise non-
interactive public accountable.

Definition 15 (Secure RSS). We call a RSS secure, if, and only if, it is
weakly private and unforgeable.

1 To be more precise: [10] uses this feature to derive if the message has been sanitized:
if this is the case, the sanitizer must be responsible and is therefore accountable
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3 Generic Transformation of an SSS into an RSS

This section presents the generic transform. In particular, we give a generic
algorithm to transform any unforgeable, strongly private, and weakly blockwise
non-interactive publicly accountable SSS into an unforgeable and weakly private
RSS.

Outline. The basic idea of our transform is that every party, including the
signer, is allowed to alter all given blocks. The verification procedure accepts
sanitized blocks, if, and only if, the altered blocks are �. � is then be treated as
a redacted block. Hence, redaction is altering a given block to a special symbol.
As we have to defined that a SSS only allows strings m[i] ∈ {0, 1}∗, we need to
define � := ∅ and

m[i] 7→

{
0 if m[i] = ∅
m[i] + 1 else

to codify the additional symbol ⊥, where ∅ expresses the empty string. Hence, we
remain in the model defined. Moreover, this is where weak blockwise non-public
interactive public accountability comes in: the changes to each block need to be
detectable to allow a meaningful result, as a SSS allows arbitrary alterations. As
⊥ is still visible, the resulting scheme can only be weakly private, as statements
about the original message m can be made, contradicting our definition of strong
privacy. Moreover, as a RSS allows that every party can redact blocks, we
require that the sanitizing key sksan is known to every party, including the signer.
Therefore, we need a strongly private SSS to achieve our definition of weak
privacy for our RSS, as we prove in Sect. 4.

The Transform. In this section, we give a generic algorithm to actually perform
the transform.

Construction 1 Let SSS := (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge,
Detect) be a secure SSS. Let the message space contain no � symbol. Define the
redactable signature scheme RSS := (KeyGen,Sign,Verify,Redact) as follows:

Key Generation: Algorithm KeyGen generates on input of the security pa-
rameter λ, a key pair (pksig, sksig) ← SSS.KGensig(1λ) of the SSS, and

also a sanitizer key pair (pksan, sksan) ← SSS.KGensan(1λ). It returns
(sk,pk) = (sksig, (sksan,pksan,pksig))

Signing: Algorithm RSS.Sign on input m ∈ {0, 1}∗, sk,pk, sets adm =
(1, . . . , `) and computes σs ← SSS.Sign(1λ,m, sksig,pksan,adm). It outputs:
(m,σ), where σ = (sksan, σs)

Redacting: Algorithm RSS.Redact on input message m, modification instruc-
tions mod, a signature σ = (sksan, σs), keys pksig and pksan first checks if
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σ is a valid signature for m under the given public keys using RSS.Verify.
If not, it stops outputting ⊥. Afterwards, it sets mod′ = {(i,�) | i ∈ mod}.
In particular, it generates a modification description for the SSS which
sets block with index i ∈ mod to �. Finally, it computes (m′, σ′s) ←
SSS.Sanit(1λ,m,mod′, σs,pksig, sksan) and outputs (m′, σ′), where σ′ =
(sksan, σ

′
s)

Verification: Algorithm RSS.Verify on input a message m ∈ {0, 1}∗, a signature
σ = (sksan, σs) and public keys pksig, pksan first checks that adm = (1, . . . , `)
and that σs is a valid signature for m under the given public keys us-
ing SSS.Verify. If not, it returns false. Afterwards, for each i for which
SSS.Detect(1λ,m, σs,pksig,pksan, i) returns San, it checks that m[i] = �. If
not, it returns false. Else, it returns true. Note, one may also check if the
given sanitizer key sksan is correct

Obviously, the secret sanitizer sksan must be known to alter a block. That is
the reason why it must be part of the signature to allow public redactions, as
required byRSSs. Every redaction becomes visible as a message block containing
the special symbol �.

Theorem 5 (Our Construction is Secure). If the utilized SSS is weakly
blockwise non-interactive publicly accountable, weakly immutable and strongly
private, the resulting RSS is weakly private and unforgeable, i.e., secure.

Proof. Th. 5 is proven in App. A.

Theorem 6 (Our Construction is not Strongly Private). Our construc-
tion is only weakly private, but not strongly private.

Proof. Due to Th. 5, we already know that our scheme is weakly private. Hence,
it remains to show that it is not strongly private. As a redaction leaves a visible
special symbol, i.e., �, an adversary can win the strong privacy game in the
following way: Generate two messages m0,m1, where m1 = (m0, 1). Hence, `0 <
`1, while m0 is a prefix of m1. Afterwards, it requests that m1[`1] is redacted,
i.e., mod1 = (`1) and mod0 = (). Hence, if the oracle chooses b = 0, it will
output m2 = m0 and for b = 1, m2 = (m1,�). Obviously, the adversary can
always win the game, as (m1,�) 6= m0.

Note, in the strong privacy game,⊥ is not considered part of the message m.
Hence, the scheme cannot be strongly private.

As RSSs allow every block to be removed, we require that adm = (1, . . . , `).
This rules out cases where a signer prohibits alterations of blocks, i.e., in our
case, what we require for redaction. We show in Sect. 5 how this constraint
can be transformed into the useful notion of consecutive disclosure control. In
particular, there exists security models for RSSs, where prohibiting redactions
is allowed and claimed to be useful, e.g., in [28, 37].
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4 Minimum Requirements for a SSS to be Transformed

In this section, we show that standard private SSSs are not enough to build
weakly private RSSs. Moreover, we prove that weak blockwise non-interactive
public accountability is required to build an unforgeable RSS. To formally ex-
press this intuitive goals we need the next theorems:

Theorem 7 (Any non strongly private SSS, results in a non-weakly
private RSS). If the transformed SSS is only private, but not strongly private,
the resulting RSS is not weakly private.

Proof. Let A be an adversary winning the strong privacy game as defined in
Fig. 5. We can then construct an adversary B, which wins the weak privacy
game as defined in Fig. 6, using A as a black-box in the following way:

1. The challenger generates sksig, sksan, pksig, pksan and passes all but sksig to B

2. B passes all received keys toA. Note, sksan is required to for public redactions

3. B simulates the signing oracle using the oracle provided by the challenger

4. Eventually, A returns its guess b∗

5. B outputs b∗ as its own guess

Following the definitions, the success probability of A is non-negligible, the suc-
cess probability of B is non-negligible. In particular, the success probability of
B equals the one of A. This proves the theorem.

Theorem 8 (No Transform can Result in a Strongly Private RSS).
There exists no algorithm which transforms a weakly immutable SSS into a
strongly private RSS.

Proof. Once again, every meaningful SSS must be immutable, which implies
weak immutability due to Th. 3. Hence, we do not make any statements about
schemes not weakly immutable. We show that any transform T achieving this
property uses a SSS ′ which is not weakly immutable. Also, our definition of a
SSS requires that adm is always recoverable. Let RSS ′ denote the resulting
RSS. We can then derive an algorithm which uses RSS ′ to break the weak
immutability requirement of the underlying SSS in the following way:

1. The challenger generates the two key pairs of the SSS. It passes all keys but
sksig to A

2. A transforms the SSS into RSS ′ given the transform T

3. A calls the oracle SSS.Sign with a message m = (1, 2) and simulates
RSS ′.Sign

4. A calls RSS ′.Redact with mod = (1)
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5. If the resulting signature σ does not verify, abort

6. Output the resulting signature σSSS of the underlying SSS

As `m 6= `mod(m), (mod(m), σSSS) breaks the weak immutability requirement
of the SSS, as adm is altered, contradicting our definition of a secure SSS.
Moreover, as hiding redacted parts of a message is essential for strong privacy,
no algorithm exists, which transforms a weakly immutable SSS into a strongly
private RSS, as adm needs to be correctly recoverable. This proves the theorem.
Note, we can give a concrete counterexample as we only use required behavior.

Theorem 9 (Weak Blockwise Non-Interactive Accountability is Re-
quired for any Transform T ). For any transformation algorithm T , the uti-
lized SSS must be weakly blockwise non-interactive publicly accountable to result
in an unforgeable RSS.

Proof. Let RSS ′ be the resulting RSS. Perform the following steps to show that
the resulting RSS is forgeable. In particular, let A winning the weak blockwise
non-interactive accountability game, which is used by B to break the unforge-
ability of the resulting RSS.

1. The challenger generates the two key pairs of the SSS. It passes all keys but
sksig to B

2. B forwards all received keys to A

3. Any calls to the signing oracle by A are answered genuinely by B using its
own signing oracle

4. Eventually, A returns a tuple (m,σSSS) to B

5. If the resulting signature does not verify or does not win the weak blockwise
non-interactive accountability game, A and therefore also B abort

6. A transforms the SSS into RSS ′ given the transform T

7. If the resulting signature does not verify, B aborts

8. B outputs the resulting (m′, σRSS′) of the resulting RSS ′

Following our definition in Fig. 3, (m′, σRSS′) breaks the unforgeability require-
ment of theRSS, as there exists a block which has not been signed by the signer.
Moreover, the success probabilities are equal.

Theorem 10 (No Unforgeable RSS can be Transformed into a SSS).
There exists no transform T , which converts an unforgeable RSS into a SSS.

Proof. Let SSS ′ be the resulting SSS. Now perform the following steps to ex-
tract a valid forgery of the underlying RSS:

1. The challenger generates a key pair for a RSS. It passes pk to A.
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2. A transforms RSS into SSS ′ given the transform T

3. A calls the oracle RSS.Sign with a message m = (1, 2) and simulates
SSS ′.Sign with adm = (1)

4. A calls SSS ′.Sanit with mod = (1, a)

5. If the resulting signature does not verify, abort

6. Output the resulting signature σRSS of the underlying RSS

As (a, 2) /∈ span�(m), ((a, 2), σRSS) is a valid forgery of the underlying RSS.
Note, this concrete counterexample is possible, as only required behavior is used.

5 Extensions

This section introduces additional modifications to our transform, which results
in new properties not considered yet in previous works.

5.1 Consecutive Disclosure Control

We require adm = (1, . . . , `), i.e. all message blocks are admissible to change.
However, as already pointed out by Miyazaki et al. and Samelin et al., pro-
hibiting consecutive redactions is a very useful feature [28, 29, 37]. In their case,
the signer or an intermediate recipient is able to prohibit consecutive redac-
tion. With our method, we achieve something different but related: we can pro-
hibit that any consecutive party is able to prohibit sanitization. In particular, if
adm 6= (1, . . . , `), i.e., adm = (1, . . . , `) \adm, a consecutive redaction is limited
to blocks which are part of adm. Obviously, this feature relies on the weak im-
mutability property of the underlying SSS. Moreover, an intermediate recipient
is able to remove the secret key sksan from the signature to prohibit any further
redactions. To disallow this possibility, the sanitizing key must be signed and
not just appended to the signature. If a different sanitizing key for each block is
used, this allows a blockwise consecutive redaction control. We leave it as open
work to formally define these properties.

5.2 Restricting to Sanitizers and Accountability

All RSSs allow everyone to redact blocks. To limit redaction to explicitly de-
noted sanitizers, the signature σ is extended to hold an additional signature σ2.
Let σ2 ← SIGN(sk, CH(pkCH,m)), where CH is a chameleon hash [23]. The val-
ues required to calculate CH need to be delivered with σ. Hence, only sanitizers
who possess the secret key skCH for CH can sanitize the message m without
invalidating the signature. This can be enriched further to achieve sanitizer and
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signer accountability [7]: CH could be replaced with a tag-based chameleon-hash
CHTAG, i.e., the construction of Brzuska et al. [7]. This idea has already been
proposed by Samelin et al. [36, 37], but can also be applied for our scheme.
However, a formal definition is still missing and thus as open work.

6 Conclusion

This paper presents how a SSS can be transformed into a RSS, if the cor-
responding security models are slightly adjusted. We gave a generic transform
and proved the resulting RSS to be weakly private and unforgeable. Hence, all
existing transforms are not suitable, as their security model is not strong enough
to give sufficient privacy guarantees. We introduced the minimal set of security
properties for an SSS that are required to yield a secure RSS. These strong
notions have not been considered in previous work. Moreover, we give a rigor-
ously argument that no RSS can be transformed into an unforgeable SSS. This
implies, that SSSs and RSSs are completely different concepts.

It remains an open question, how to formally define accountability for RSSs and
how RSSs and SSSs can be combined to yield a more flexible, yet fully private,
sanitizable and redactable signature scheme. It also remains open, if unlinkable
SSSs result in unlinkable RSSs.
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A Proofs

Proof. This will prove Th. 5. We have to show that the resulting RSS is un-
forgeable and weakly private. We prove each property on its own.
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I) Unforgeability. Let A be an algorithm breaking the unforgeability of the
resultingRSS. We can then construct an algorithm B which breaks the weak
blockwise non-interactive publicly accountability of the utilized SSS. To do
so, B simulates A’s environment in the following way:

1. B receives the following keys: pksan, sksan, pksig and forwards them to A

2. For every query to the signing oracle, B forwards the query to its own
signing oracle and therefore is able to perfectly simulate the signing
oracle for A

3. Eventually, A outputs a tuple (m∗, σ∗)

4. If (m∗, σ∗) does not verify or is trivial, abort

B outputs (m∗, σ∗) as its own forgery. Following the definition of unforge-
ability, m cannot be derived from any queried message to the signature
oracle, with the notable exception of m[i] =⊥ for any index i. Hence, there
must exist at least one block m[i] 6=⊥, which has not been signed by the
signer. Following our verification algorithm, the accepting verification re-
quires that Sig = Detect(1λ,m∗, σ∗, pksig, pksan, i). Hence, (m∗, σ∗) breaks
the weak blockwise non-interactive publicly accountability by outputting
(m∗, σ∗).

II) Weak Privacy. To show that our scheme is weakly private, we only need to
show that an adversary A can derive information about the prior content of a
contained block m[i], as � is considered part of the resulting message m′ and all
other modifications result in a forgeable RSS. Let A winning the weak privacy
game. We can then construct an adversary B which breaks the strong privacy
game in the following way:

1. B receives the following keys: pksan, sksan, pksig and forwards them to A

2. For every query to the signing oracle, B forwards the query to its own signing
oracle and therefore is able to perfectly simulate the signing oracle for A

3. B also forwards any queries to its own LoRSanit oracle. It passes the answers
to A

4. Eventually, A outputs its guess b∗

B outputs b∗ as its own guess. As defined, the oracle requires that mod1(m1) =
mod(m2), including any redacted blocks, i.e., �. In particular, the messages are
the same. Hence, the success probability of B is the same as A’s. This proves
the theorem.


