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Abstract. A graph is 1-planar if it can be drawn in the plane such that
each edge is crossed at most once. This causes essential distinctions to
planar graphs: planarity can be tested in linear time whereas 1-planarity
is NP-hard [11]. We improve this result and show the NP-hardness for
1-planar graphs with a given rotation system. In addition, the cross-
ing number problem remains NP-hard for 1-planar graphs even with a
rotation system. However, there are tractable cases: 1-planarity can be
tested efficiently for embedded graphs and for maximal graphs with a
given rotation system.

1 Introduction

Planar graphs have attracted researchers since the 1930’s. There are numerous
results on planar graphs such as forbidden minors, duality, efficient planarity
tests and straight line drawings, see [1, 10, 15]. More recently, researchers have
investigated graphs that are “almost” planar; here the number of edges is linearly
bounded by the number of vertices [16]. Almost planar graphs admit crossings
in some controlled way, such that the linear density is preserved. A particular
example is 1-planarity. 1-planar graphs were introduced by Ringel [18] in an
approach to color a planar graph and its dual. 1-planar graphs are not yet fully
explored. A 1-planar graph with n vertices has at most 4n − 8 edges and this
bound is tight [5, 16]. 1-planar graphs do not admit straight-line drawings [4].
They are not closed under edge contraction and there are infinitely many minimal
non-1-planar graphs [12]. Recently, Korzhik and Mohar [11] proved that deciding
whether a given graph G is 1-planar is NP-hard by a sophisticated reduction
from the 3-colorability problem of planar graphs of degree at most four.

A rotation system describes the cyclic ordering of the edges at the vertices as
obtained from a drawing. Planarity tests commonly output a rotation system,
which is used to compute planar embeddings and straight-line planar drawings
in linear time [1, 10,15]. Rotation systems play a crucial role in this work.

The rotation system makes the essential difference for the complexity of up-
ward planarity testing. A directed graph is upward planar if it can be drawn
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in the plane such that the curves of the edges are monotonically increasing in
y-direction. Garg and Tamassia [8] showed that upward planarity testing of a
graph is NP-hard. However, there is a linear time algorithm if a rotation system
is given [1, 2]. In contrast, the NP-hard crossing number problem [7] remains
NP-hard even with a given rotation system [17]. There is a parallel situation for
1-planarity.

We show that 1-planarity testing remains NP-hard with a given rotation
system. Our NP-reduction is general enough to hold without a rotation system
as well, and it can be modified to show that the crossing number problem remains
NP-hard even for 1-planar graphs. Our proof is by a reduction from the planar
3-SAT problem [13] and is an alternative to the one by Korzhik and Mohar [11].

On the other hand, 1-planarity can be tested in linear time if the embedding
is given. Moreover, we show that there is an efficient test whether a graph with
a given rotation system is maximal 1-planar. In a maximal 1-planar graph any
further edge violates 1-planarity. They are of interest in their own rights, since
their density ranges between 45

17n and 4n− 8 edges and between 7
3n and 4n− 8

edges if the rotation system is fixed, as we have explored in our companion paper
on 1-planarity [3].

2 Preliminaries

We consider simple undirected graphs G = (V,E) with n vertices and m edges.
A drawing of a graph is a mapping of G into the plane such that the vertices are
mapped to distinct points and each edge is a Jordan arc between its endpoints.
A drawing is plane if the Jordan arcs of the edges do not cross and it is 1-plane
if each edge is crossed at most once. In 1-plane drawings, crossings of edges with
the same endpoint are excluded.

Each plane (1-plane) drawing of a graph implies a rotation system. The ro-
tation at a vertex is the clockwise order of its incident edges as implied by the
drawing. A rotation system is the list of rotations of all vertices. Note that in
general a given rotation system of a graph may not allow for a plane (1-plane)
drawing. Hence, we call a rotation system planar (1-planar) if it admits a plane
(1-plane) drawing.

A rotation system of a graph defines an embedding of a graph on an orientable
surface, [14]. However, in the plane it may be different from a topological embed-
ding. These terms can be identified for planar graphs, since one can be computed
from the other in linear time. A topological embedding can be obtained from a
plane drawing. It specifies the faces, where a face is given by a cyclic sequence
of the edges which forms its boundary.

Similar to planar embeddings, a 1-planar embedding specifies the faces in a
1-planar drawing. A face in a 1-planar embedding is given by a cyclic list of edges
and edge segments, where the latter occurs in the case of a crossing; see Fig. 9(b)
for an example. Hence, in 1-planar embeddings, an edge may occur in up to four
faces. As with planar graphs, a 1-planar embedding uniquely implies a 1-planar
rotation system. However, a 1-planar rotation system does not uniquely define
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a 1-planar embedding nor the edges that cross. In fact, we shall use this “gap”
to show that deciding whether a rotation system is 1-planar is NP-hard.

Let G be a 1-planar embedded graph and denote by G× its planarization.
G× is obtained from G by replacing each pair e = {u, v} and e′ = {u′, v′} of
crossing edges by a new vertex of degree four joined to u, v, u′, and v′. Then,
G× is a planar embedded graph, where its embedding is inherited from G.

A planar graph has a unique planar embedding if it is tri-connected. Similarly,
a 1-planar graph has a unique 1-planar embedding if the following conditions
hold [11]: if two edges e and e′ of G cross in any 1-planar embedding, then they
cross in every 1-planar embedding and the planarization G× of G has a unique
planar embedding. In addition, the uniqueness of a 1-planar embedding has been
established in [3] if the graphs are maximal planar with a given rotation system.
A graph is maximal if no further edge can be added without violating its defining
property.

3 NP-hardness of 1-Planarity Testing

In this section, we reduce planar 3-SAT to 1-planarity using gadgets for literals,
variables and clauses. The key idea is to encode truth values of variables by
crossings. An edge connecting a literal with a clause is crossed if the literal is
assigned false. One basic building block of our reduction is the U-graph which we
adopt from [11]; see Fig. 1 for an example. The vertices labeled 3, 2, 1, b, b−1, b−2
are called boundary vertices and an edge connecting two boundary vertices is
called boundary edge. Korzhik and Mohar [11] proved that a U-graph has a
unique 1-planar embedding if it has at least b ≥ 6 boundary vertices. In our
reduction, we attach barrier edges and gadgets for variables (V-gadgets) and
clauses (C-gadgets) to the boundary vertices and we assume that the number of
boundary vertices is always at least 6 and sufficiently large for the case at hand.

Let G be the planar, embedded graph corresponding to a planar 3-SAT ex-
pression α. In the following, we construct a graph G∗S endowed with a rotation
system that is 1-planar if and only if α is satisfiable (see Fig. 2 for an example).
The rotation system can be obtained directly from the given drawings. Let G∗ be
the dual graph of G. First, we transform G∗ into a U-supergraph G∗S as described
in [12]. The construction replaces every vertex of G∗ with a U-graph. Two adja-
cent vertices of G∗ are connected in G∗S by a set of l edges, called barrier, where
we choose l ≥ 7 for reasons which will be described later. A U-supergraph has a
unique 1-planar embedding [11]. For every vertex v of G that represents a clause
(variable), we add a C-gadget (V-gadget) to G∗S . Let v be a vertex of G, f be the
corresponding face in G∗, and F ′ be the set of vertices of G∗ at the boundary of
f . In G∗S , the vertices in F ′ are replaced by U-graphs F ′U . In our construction,
we “attach” each C- or V-gadget to an arbitrary U-graph in F ′U such that the
gadget lies inside the face of G∗S that corresponds to v in G. Fig. 2(b) shows
an example in which V-gadget X1 is attached to U-graph Uf1 . Finally, for every
edge between a clause and a variable vertex in G, we add a path, called rope,
between the corresponding C- and V-gadgets in G∗S . For the number of edges of
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(b)

3 2 1 b b− 1 b− 2

Fig. 1. The U-graph (a) and its abbreviation (b).

a rope, we choose two more edges than the number of edges of a barrier. As we
will see later, a rope acts as a communication line that “passes” a crossing at a
V-gadget to the C-gadgets at its other end. By our construction, we essentially
obtain a simultaneous embedding of G and its dual G∗ by means of our gadgets
and the U-supergraph, respectively.

A simple example for G∗S is given in Fig. 2. The graph is obtained from
a planar 3-SAT instance consisting of two clauses C1, C2 and three variables
X1, X2, X3 with the corresponding planar graph G; see Fig. 2(a). The vertices of
G are depicted as circles and the edges as straight-line segments, the vertices of
the dual graph G∗ as squares and the edges as curled lines. Fig. 2(b) shows G∗S ,
which is obtained from G and G∗. The shaded rectangles represent the U-graphs,
which are connected by the barriers, drawn as a bundle of lines. The semi-ellipses
are the C- and V-gadgets with the according labels. The ropes are depicted as
dashed lines. For the following argumentation, we need that no boundary edge
is crossed.

Lemma 1. In a 1-planar drawing of G∗S respecting the given rotation system, a
boundary edge, which is an edge between two boundary vertices of a U-graph, is
never crossed.

Since we need the structure of the C- and V-gadgets in order to prove Lemma 1,
we postpone the proof until all the necessary definitions are made.

First we consider C-gadgets used for the clauses; see Fig. 3 for an example.
The gadget is attached to boundary vertices b1, . . . , b6 of a U-graph. These ver-
tices form the clause base. The vertices v1, v2, v3 are the variable vertices, where
each vertex corresponds to a literal in the clause. Hence, there are always three
variable vertices. A variable vertex is connected to two vertices of the clause base
by anchor edges. Additionally, a variable vertex is connected to the correspond-
ing V-gadget via a rope. The edge from a variable vertex to the rope is called
variable edge ({vi, ti} for i = 1, 2, 3 in Fig. 3(a)). We introduce a path from
b1 to b6, called membrane, which consists of the membrane vertices m1, . . . ,m4

connected by membrane edges.
In the following lemma, we need that the rope crosses at least one edge of a

V-gadget. By Lemma 4, we will show that this precondition is always fulfilled.

Lemma 2. In every 1-planar drawing of G∗S respecting the given rotation sys-
tem, at least one incident edge of each vertex v1, v2, v3 of a C-gadget is crossed by
a membrane edge if the rope crosses at least one edge of the attached V-gadget.
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(a)

X1 X2 X3

C1

C2

f1 f2

f3

(b)

X1 X2 X3

C1

C2

Uf1 Uf2

Uf3

Fig. 2. Example for the 1-planar graph constructed in the reduction. (a) The plane
drawing of a planar 3-SAT expression and its dual graph. (b) The corresponding U-
supergraph G∗S with the clause and variable gadgets

Proof. W. l. o. g., we consider v1. The first possibility to avoid a crossing of an
adjacent edge of v1 with a membrane edge is to cross a different edge of the
rope other than {v1, t1}. A rope connects the C-gadget with a V-gadget with a
barrier in between. In a 1-planar drawing, every edge of the rope must cross an
edge of the barrier and an edge of the attached V-gadget by assumption. The
size of a rope is the size of a barrier plus two. Hence, there is only one rope edge
left to cross, namely {v1, t1}. Thus, to avoid a crossing of v1’s edges with the
membrane, the membrane needs to be drawn “around” the whole rope of v1, i. e.,
the face enclosed by the membrane and the clause base must include the whole
rope. Then, the membrane, consisting of five edges, must be routed through at
least one barrier, consisting of at least seven edges, which is impossible. ut

From the proof of Lemma 2 we obtain that there are only two possibilities
for a variable vertex v: (A) Both anchor edges of v are crossed by a membrane
edge and its variable edge is not crossed by a membrane edge. (B) The variable
edge of v is crossed by a membrane edge and none of its two anchor edges is
crossed by a membrane edge. If (B) holds, we say that a variable vertex lies
inside, as seen in Fig. 3(a), where vertices v1 and v2 lie inside. If (A) holds, a
variable vertex lies outside, e.g., vertex v3 lies outside in Fig. 3(a). As a direct
consequence of (A) and (B), in a 1-planar drawing it is not possible that all
three variable vertices of a C-gadget lie outside at the same time, as this would
require six membrane edges to be crossed. We exploit this property to encode if
a clause represented by the C-gadget is satisfied, i. e., it is satisfied if and only
if at least one variable vertex lies inside, which holds if and only if a 1-planar
drawing is possible.
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U

b1 b2 b3 b4 b5 b6

v1 v2

v3

m1 m2 m3 m4

t1 t2

t3

(a) U

C

(b)

Fig. 3. A clause gadget (a) and its abbreviation (b).

The V-gadget for a variable consists of several literal gadgets (L-gadgets).
L-gadgets are similar to C-gadgets and come in two flavors, namely, a positive
and a negative version; Fig. 5(a) depicts a positive L-gadget. The truth value
of a single literal is encoded by a crossing of a certain edge of an L-gadget. An
L-gadget has a positive literal vertex l+ and negative literal vertex l− that are
connected to three and two boundary vertices, respectively, of a U-graph via
anchor edges. Vertex l+ is connected to a rope vertex via a clause edge (named
“Clause” in Fig. 5(a)). Additionally, l+ is adjacent to the negative literal vertex
of a neighboring L-gadget of the same V-gadget (“In” in Fig. 5(a)). Similarly,
vertex l− is connected to the positive literal vertex of another neighboring L-
gadget (“Out” in Fig. 5(a)). As in C-gadgets, in an L-gadget the boundary
vertices b1 and b7 are connected by a membrane, consisting of the membrane
vertices m1,m2,m3. In a negative L-gadget the clause edge is incident to the
negative literal vertex l− instead of the positive literal vertex l+. Intuitively, the
clause edge propagates the truth assignment of the literal via a rope to the clause
in which the literal occurs, i. e., if the edge crosses the membrane, the literal is
assigned false; true otherwise. The edges marked “In” and “Out” propagate the
truth assignment of the literal to the other L-gadgets of the same variable to
ensure a consistent truth value, i. e., either all positive or all negative L-gadgets
cross their membranes. To ensure a consistent truth value, we additionally need
the terminal L-gadget which is an L-gadget with no connection to a rope. The
terminal L-gadgets are placed at the beginning and end of a series of L-gadgets;
hence, the name.

As in Lemma 2, in Lemma 3, we again need that the rope crosses at least
one edge of a V-gadget.

Lemma 3. In every 1-planar drawing of G∗S respecting the given rotation sys-
tem, at least one incident edge of each vertex l+, l− of an L-gadget is crossed by
a membrane edge if the rope crosses at least one edge of the respective V-gadget.

Proof. The proof for vertex l+ is analogous to the proof of Lemma 2. As a
result of this, one edge of the membrane is already crossed, which leaves three
membrane edges to consider. Vertex l− is adjacent to the l+ vertex of another
L-gadget now to referred as l+. In order to avoid a crossing between any edge
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(a)

U1

U2

U4

U3X

a

d

b

c

Fig. 4. How the ordering of L-gadgets for a V-gadget representing variable X can be
obtained from the rotation system of X.

adjacent to l− and a membrane edge, the membrane has to be drawn such that
it encloses l+. However, this is not possible, since every l+ vertex of an L-gadget
has at least four incident edges. ut

Similar to the variable vertices in C-gadgets, a literal vertex lies inside if its
“In” edge is crossed by a membrane edge, which implies that its clause edge
(if existent) is crossed by another membrane edge (l+ in Fig. 5(c)). A literal
vertex lies outside if all its anchor edges are crossed by membrane edges (l+ in
Fig. 5(a)).

Let X be a variable of a planar 3-SAT expression and v ∈ V be the vertex
in G that corresponds to X. We construct the V-gadget of X as follows (see
Fig. 6(a) for the result). The V-gadget is attached to a U-graph U that is adjacent
to the face corresponding to v in G∗S . First attach a terminal gadget t1 to U .
Then, subsequently attach a positive or negative L-gadget depending on the
occurrences of X according to a total order obtained from the rotation system
of v such that ropes which are attached to the V-gadget do not cross. Fig. 4
shows an example of how the ordering of L-gadgets in the V-gadget for variable
X is obtained from the rotation system of the vertex representing X. Suppose
the V-gadget is attached to U2 (shown by the dotted semi-ellipses in Fig. 4),
then the ordering of the L-gadgets from left to right is a, d, c, d. If it is attached
to U4 (shown by the dashed semi-ellipses in Fig. 4), then the ordering is d, a, b, c.

Intuitively, the planarity of G is preserved in G∗S . Append the second termi-
nal t2. For each L- and terminal gadget, connect its “In” edge with the “Out”
edge of its immediate neighbor where “In” of t1 is connected to “Out” of t2 by
a path, called outer membrane. The number of edges of the outer membrane is
the number of occurrences of X plus 1.
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(a)

U

b1 b2 b3 b4 b5 b6 b7

l+

l−

m1 m2 m3

In(I) Clause(C)

Out(O)

(b)

I C

O (c)

U

b1 b2 b3 b4 b5 b6 b7

l+

l−

m1 m2 m3

In(I) Clause(C) Out(O)

Fig. 5. 1-planar embedding of a positive literal gadget if the variable is true (a) or false
(c), respectively. (b) Abbreviation for the “true state” of a positive literal gadget.

I

O

I

O

I

O

I

O

I

O

I

O

C C C C

p1 p2 p3 p4

t1 x x′ ¬x ¬x′ t2

(a)

(b)

X

C
C C

C

Fig. 6. (a) A variable gadget consisting of two positive, two negative and two terminal
gadgets. The value of the variable is true. (b) Its abbreviation.

The last part of our reduction are the barriers and ropes. By the size of a
barrier or rope we refer to the number of their edges. Korzhik and Mohar [11]
proved that barriers of size at least 7 result in unique 1-planar embedded U-
supergraphs. Let l be the maximum number of occurrences of a variable in the
given SAT expression. For the size of the barriers, we choose max{7, l+2}. Note
that the size of the outer membrane of a V-gadget is the number of times the
corresponding variable occurs in the expression plus 1. Consequently, an outer
membrane has strictly fewer edges than a barrier. Thus, an outer membrane
can never cross a barrier. For every edge of G, a rope connecting the V-gadget
with the C-gadget is introduced in G∗S . More exactly, a rope always connects
one of the literal vertices of an L-gadget with one of the variable vertices of
a C-gadget such that the planar rotation system of G is respected. The size
of a rope is the size of a barrier plus 2. Figure 7 shows an example for a rope
r = {l+, r1}, {r1, r2}, . . . , {r8, v} with size 9. A rope crosses each edge of a barrier
exactly once. Then, the rope crosses either two edges of a V-gadget (Fig. 7(b))
or one edge of a V-gadget and one edge of a C-gadget (Fig. 7(a)). Crossings
of the first and last edge of a rope (e. g., {l+, r1}, {r8, v} of r) propagate the
truth assignment of the literal at the one end to the clause at the other end.
Consider again Fig. 7(a), where the positive L-gadget x, belonging to the V-
gadget of variable X, is connected to C-gadget C. In the figure, X is assigned
true as l+ lies outside. The rope propagates the truth assignment to the clause,
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where variable vertex x can then lie inside and, hence, the clause is satisfied by
X. Consider now Fig. 7(b), where the variable X is assigned false and, hence,
l+ lies inside. Consequently, edge {l+, r1} is crossed by the membrane of x and
edge {r1, r2} is crossed by the outer membrane ({p, p′}). Hence, every remaining
edge of r is crossed by the barrier and, therefore, the variable vertex of C must
lie outside, representing that the clause is not satisfied by x. Now suppose that
every literal of the clause is assigned false. Thus, all three variable vertices of
C lie outside. However, then there is no 1-planar drawing of C and, hence, no
1-planar drawing of G∗S . Hence, C and, thus, the whole 3-SAT expression is not
satisfiable.

We are now ready to prove Lemma 1:

Proof. Denote by f a triangular face adjacent to a boundary edge of G∗S . The
lemma holds for the U-supergraph, i. e., G∗S without C- and V-gadgets, and ropes
as the U-supergraph has a unique 1-planar embedding. Let f be a triangular face
adjacent to a boundary edge. Due to the unique embedding, no U-graph of the
U-supergraph can be drawn inside of f (cf. Fig. 1(a)). The same also holds
true for every vertex v of a C- and V-gadget, or a rope as in each case v has
at least degree two. If v lies inside of f , it would cause at least two crossings
of a boundary edge. Consequently, a boundary edge can only be crossed if a
whole C- or V-gadget, or rope lies inside f . In the case of C- and V-gadgets,
this is impossible even for the membrane or outer membrane of V-gadgets as
the rotation system forces the first and last edges of the membrane to leave one
of its endpoints outside of f . These two edges alone would already cause two
crossings of the boundary edge. Similarly, as a rope connects a V-gadget with a
C-gadget, it cannot be drawn inside of f . ut

Before we can prove the main theorem, we need two additional lemmata.

Lemma 4. Let x be an L-gadget of a V-gadget X. Then, in every 1-planar
drawing of G∗S respecting the given rotation system, the rope attached to x is
crossed by the outer membrane of X.

Proof. In order to avoid a crossing of the rope, the outer membrane of X has to
be drawn “around” the C-gadget that is connected to x, i. e., the outer membrane
encloses the C-gadget. However, then the outer membrane needs to cross at least
one barrier, which is impossible since the size of the outer membrane is less than
the size of a barrier. ut

Lemma 5. Let X be a V-gadget. In every 1-planar drawing of G∗S respecting the
given rotation system, all positive literal vertices l+ of X’s L-gadgets lie inside
if and only if all negative literal vertices l− of X’s L-gadgets lie outside.

Proof. Let x1 and x2 be any positive or negative L-gadget part of X and l+1 , l
−
1

(l+2 , l
−
2 ) be the literal vertices of x1 (x2). By Lemma 3, each of these literal

vertices lie either inside or outside. It is not possible that both a positive and
a negative literal vertex lie outside since a membrane of an L-gadget has size
4, whereas the literal vertices have a total of 5 anchor edges. Now suppose for
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(a)

x . . .

. . .

l+
p

p′

v

r1 r2 r7 r8

C

(b)

. . .

. . .

x

l+
l− p

p′
v

r1 r2 r3 r8

C

Fig. 7. From left to right: Fragment of a variable gadget that shows a literal gadget
and a part of its outer membrane; A barrier drawn as curled lines; A clause gadget.
(a) The literal x is true, hence the clause represented by the C-gadget on the right is
satisfied by v. (b) The literal x is false, hence the clause is not satisfied by v.

contradiction that both l+1 and l−2 lie outside. As l+1 lies outside, l−1 lies inside
and, consequently, the “Out” edge of l−1 is crossed by the membrane of x1. Let
l+3 be the positive literal vertex connected to l−1 via its “Out” edge. Vertex l+3 is
“tugged” outside, i. e., l+3 cannot lie inside as its “In” edge (which is the same
edge as the “Out” edge of l−1 ) is already crossed. If l+3 = l+2 , then l+2 lies outside
and, hence, l−2 must lie inside; a contradiction. Otherwise, l+3 belongs either to a
terminal gadget or to another L-gadget. If l+3 belongs to a terminal gadget t, then
the negative literal vertex l−3 of t must lie inside. Via the outer membrane, the
information that l−3 lies inside is propagated to the other terminal gadget t′ by
the same mechanism that governs the ropes. Hence, the negative literal vertex of
t′ lies inside and the positive one lies outside. If l+3 belongs to another L-gadget,
then also the negative literal vertex lies inside and the positive one lies outside.
By subsequently applying these arguments, we eventually arrive at x2 and can
conclude that l−2 must also lie inside; a contradiction. The reasoning if l−1 and
l+2 lie outside is similar, as is the reasoning if both lie inside. ut

Theorem 1. 1-planarity is NP-hard for a graph with a given rotation system.

Proof. A planar 3-SAT expression α is satisfiable if and only if the graph G∗S
obtained from α is 1-planar.

“⇒”: Draw the V-gadgets according to a satisfying truth assignment of the
variables, i. e., the positive literal vertices of a variable gadget lie outside if
and only if the corresponding variable is assigned true. Then, every C-gadget
has a variable vertex that can lie inside and, thus, has a 1-planar drawing due
to (A) and (B).

“⇐”: We obtain a truth assignment of the variables from a 1-planar drawing
of G∗S as follows. A variable is assigned true if and only if the positive literal
vertices of the corresponding V-gadget lie outside. The so obtained assignment is
consistent by Lemma 5. In each C-gadget, at least one variable vertex lies inside.
This vertex is connected, via a rope, to a literal vertex of a V-gadget which
necessarily lies outside. Thus, the corresponding variable satisfies the clause at
hand. Hence, the obtained truth assignment satisfies the 3-SAT expression. ut
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In contrast, 1-planarity is solvable in linear time for embedded graphs. Given
an embedding of a graph G we first check whether an edge occurs in more than
two faces. Then, we compute the planarization G× of G and check its planarity.

Theorem 2. 1-planarity can be solved in linear time for a graph with a given
embedding.

When we developed the NP reduction, we already had in mind that the reduc-
tion also works without a fixed rotation system. The terminal gadgets have the
sole purpose that the literal vertices are inside the outer membrane. Otherwise,
their “In” and “Clause” edges could avoid a crossing with the outer membrane
by swapping their positions in the rotation system of the literal vertex. Also note
that the given rotation system is optimal in the sense that a 1-plane drawing
of G∗S would imply the defined rotation system, at least at the crucial parts,
i. e., the gadgets. Our construction for the NP-hardness proof also holds if the
rotation system is ignored, and we have an alternative proof to [11].

Corollary 1. 1-planarity is NP-hard

Next we address the crossing number problem, which asks whether there
is a drawing of a graph in the plane with at most k edge crossings. The NP-
hardness of this problem was first proved by Garey and Johnson [7] using graphs
with parallel edges and vertices of very high degrees. This problem has been
addressed from various sides since then. Hliněný [9] improved the NP-hardness
result to simple cubic graphs.

Here, we add another improvement and show that the crossing number re-
mains NP-hard even if each edge is crossed at most once and the rotation system
is given. To this effect we must only modify our V- gadgets.

Theorem 3. Crossing number is NP-hard for 1-planar graphs, even with a
given rotation system.

Proof. We reduce from the NP-complete planar vertex cover problem [6]. Its
input is a planar graph G = (V,E) and a non-negative integer k and it asks
whether there is a subset V ′ ⊆ V with |V ′| ≤ k such that every edge of G is
incident to at least one vertex in V ′. V ′ is then called a vertex cover of G.

Fix any planar embedding of G. As in Sect. 3, we start by transforming G
into a U -supergraph G∗S . Again, each pair of U-graphs corresponding to adjacent
vertices of G∗ is connected by l = 7 barrier edges. In the following we describe
the single type of gadget which is attached to the U-graphs of G∗S for every
vertex of G in the same way as C- and V-gadgets were attached in the reduction
of Sect. 3. Let v ∈ V , and d be the degree of v. See Fig. 8 for an example of the
gadget in the case of d = 3. The gadget for v is attached to boundary vertices
b1, . . . , bd+3 of a U-graph and contains the membrane vertices m1, . . . ,md and
the connector vertex cv. There is a path called the membrane going from b1
via m1, . . . ,md to bd+2. We introduce d + 1 anchor edges connecting cv to the
vertices b2, . . . , bd+2. For every edge {u, v} ∈ E we add a path from cu to cv
consisting of exactly l + 1 edges, called the rope. We can choose the rotation
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(a)

b1 b2 b3 b4 b5 b6

cv

m1 m2 m3

b1 b2 b3 b4 b5 b6

cv

m1 m2 m3

(b)

Fig. 8. The gadget used instead of variable gadgets for proving that crossing number
is NP-hard for 1-planar graphs.

system at cv according to the embedding of G such that the ropes do not cross.
In general, a gadget has two possible 1-planar embeddings, where cv is either
placed inside, i. e., the membrane is crossed by the d ropes, or outside, i. e., the
membrane is crossed by the d+ 1 anchor edges. Note that the latter case yields
one more crossing. Given a 1-planar embedding of G∗S , we define the set V ′ ⊆ V
by containing exactly those vertices v, whose corresponding connector vertices
cv are placed outside. For every edge {u, v} ∈ E, the rope connecting cu with
cv has to cross l barrier edges. As it consists of only l + 1 edges, it has only
one edge left for crossing a membrane. Thus, at least one of the vertices cu or
cv must be placed outside and V ′ is a vertex cover of G. As the U-graphs have
a unique 1-planar embedding, let C be the constant number of crossings they
contain. The total number of crossings of all membranes is

∑
v∈V deg(v) = 2m

plus the number of connector vertices placed outside. Additionally, each of the
l·m barrier edges are crossed by a rope. Now let k′ = C + (2 + l)m+ k.

If there is a 1-planar embedding of G∗S with at most k′ crossings, at most k
connector vertices can be placed outside, i. e., V ′ is a vertex cover with |V ′| ≤ k.
Conversely suppose there is a vertex cover V ′ with |V ′| ≤ k. Specify the 1-planar
embedding by placing exactly those connector vertices cv outside with v ∈ V ′.
Then the resulting embedding of G∗S has exactly C + (2 + l)m+ k crossings. ut

4 Maximal 1-Planarity Testing

As 1-planarity is NP-complete, we are interested in cases with efficient solutions.
Where is the room between an embedding and a rotation system? Maximality
bridges the gap.

Theorem 4. There is an efficient algorithm to test whether a graph with a given
rotation system is maximal 1-planar.
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(a)

a b

c

d

(b)

a b

c d

Fig. 9. The (a) planar and (b) non-planar drawing of the K4.

Proof. Suppose the edges (a, c) and (b, d) cross. Then G, being maximal, con-
tains the edges (a, b), (b, c), (c, d), (d, a). Hence, there is a K4 implied by the
crossing (see also [19]). Conversely, consider a K4 with the vertices a, b, c, d
as a subgraph of a 1-planar graph. There are two drawings: planar and non-
planar; see Figs. 9(a) and 9(b). These drawings are distinguished by the rota-
tion system, which is a : (dcb), b : (acd), c : (adb), d : (abc) in the planar and
a : (cdb), b : (acd), c : (adb), d : (acb) in the non-planar case. Replace every
non-planar K4 by a planar subgraph with a crossing point at the intersection of
the crossing edges, and run an adapted planarity test which tests if the given
rotation system is planar.

Since there are at most 4n − 8 edges, all K4s can be searched in quadratic
time by testing all pairs of disjoint edges if the remaining four edges are present.
After the planarized embedding has been obtained, we can check for each pair
of non-adjacent vertices if they can be joined by a new edge. Two vertices can
be joined, if they are adjacent to a common face or if they are adjacent to faces
with a common uncrossed edge. ut

5 Conclusion and Perspectives

1-planar graphs are not well explored, in particular, in relation to planar graphs.
We have added some tractable and some intractable instances. For instance,
the classification of 1-planarity in parameterized complexity is open. Here the
canonical parameter is the number of pairs of crossing edges. Also, we would like
to find more instances where 1-planarity is efficiently solvable. Finally, we are
interested in ’nice’ drawings of 1-planar graphs.
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