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Abstract. Comparing and ranking information is an important topic
in social and information sciences, and in particular on the web. Its
objective is to measure the difference of the preferences of voters on a
set of candidates and to compute a consensus ranking. Commonly, each
voter provides a total order of all candidates.
In this work we consider the generalization of total orders and bucket
orders to partial orders and compare them by the nearest neighbor and
the Hausdorff Kendall tau distances. First, we establish an O(n logn)
algorithm for the computation of the nearest neighbor and the Hausdorff
Kendall tau distances of two bucket orders. The computation of the nearest
neighbor Kendall tau distance is NP-complete and 2-approximable for
a total and a partial order. For the Hausdorff Kendall tau distance this
problem is coNP-complete.
Considering rank aggregation problems with partial orders, we establish
a significant discrepancy between the two distances. For the nearest
neighbor Kendall tau distance the problem is NP-complete even for two
voters, whereas the Hausdorff Kendall tau distance problem is in Σp

2 , but
not in NP or coNP unless NP = coNP, even for four voters. However,
both problems are known to be NP-complete for any even number of at
least four total or bucket orders.

1 Introduction

The rank aggregation problem consists in finding a consensus ranking on a set
of candidates, based on the preferences of individual voters. The problem has
many applications including meta search and spam reduction [2, 14], and also
biological databases, similarity search, and classification [11, 18, 21, 23, 25, 30]. It
was mathematically investigated by Borda [7] and Condorcet [12] (18th century)
and even by Lullus [19, 20] (13th century) in the context of voting theory.

The formal treatment of the rank aggregation problem is determined by the
strictness of the preferences. It is often assumed that each voter makes clear
and unambiguous decisions on all candidates, i. e., the preferences are given by
total orders. However, the rankings encountered in practice often have deficits
against the complete information provided by a total order, as voters often
come up with unrelated candidates, which they consider as tied (coequal) or
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incomparable (like apples and oranges). Voters considering all unrelated pairs
of candidates or items as tied are represented by bucket orders, such that ties
define an equivalence relation on candidates within a bucket. Bucket orders are
also known as partial rankings, weak orders or preference rankings [1, 15, 17].
As incomparable pairs of candidates come into play, more general orders are
needed and the voters describe their preferences by partial orders. In this case
unrelatedness (ties and incomparabilities) is not transitive. All voters accept any
order, which does not contradict their preferences without any penalty or cost.
Nevertheless, we will stress the different intuition behind unrelated candidates by
speaking of tied candidates (∼=) in bucket orders and of unrelated ( 6�≺, meaning
tied or incomparable) candidates in partial orders.

One of the common distance measures for two total orders σ and τ is the
Kendall tau distance, K(σ, τ), which counts the number of disagreements between
σ and τ regarding pairs of candidates. There are several other measures for orders
or permutations, such as Spearman’s footrule, Spearman’s rho and the Hamming
distance [13]. Investigations on ranking problems focused on total orders. Its
generalization to bucket orders was considered recently by Ailon [1] and Fagin et
al. [15]. The focus and main result in [15] is the equivalence of several distance
measures, amongst others the Hausdorff Kendall tau distance, introduced by
Critchlow [13]. Ailon [1] studied the nearest neighbor Kendall tau distance for
bucket orders. The rank aggregation problem for total orders under the Kendall
tau distance is NP-complete [3] even for an even number of at least four voters
[6, 14]. The problem for two voters is efficiently solvable, while the complexity
for three voters is an open problem. The NP-hardness also holds for related
problems, such as computing top-k-lists [1] or determining winners [3, 4, 29]. Some
determining winners problems are even known to be Θp

2-complete [17], where
Θp

2 is the class of problems solvable via truth-table reducibility or parallel access
to an NP oracle [9, 26, 28]. 2-approximations are known for the rank aggregation
problem for total orders under the Kendall tau distance [14] and for bucket orders
under the nearest neighbor Kendall tau distance [1]. Betzler et al. [5] provide
results on the fixed-parameter tractability of several rank aggregation problems.
Caragiannis et al. [10] establish the (in)approximability of some determining
winners problems.

In this work we extend the nearest neighbor and the Hausdorff Kendall
tau distances KNN and KH to partial orders. We establish a sharp separation
between efficient algorithms and NP- and coNP-completeness. In particular,
we show that the nearest neighbor Kendall tau distance can be computed in
O(n log n) for two bucket orders on sets of n candidates. The same result is
known for the Hausdorff Kendall tau distance [15]. The O(n log n) computation
of the Kendall tau distance for two total orders has been shown in [6]. In contrast,
the computation of the nearest neighbor resp. Hausdorff Kendall tau distance is
NP-complete resp. coNP-complete for a total and a partial order. These proofs
are based on a reduction from the Oscm-4-star problem [22]. Furthermore,
we show that the computation of the nearest neighbor Kendall tau distance
of a partial and a total order is a special case of the constrained feedback arc
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set problem on tournaments, and establish a 2-approximation. Our results on
distance problems are summarized in Table 1.

Table 1. Distance problems

distance of KNN KH

a total and a total order O(n logn) ([6]) O(n logn) ([6])

a bucket and a bucket order O(n logn) (Th. 1) O(n logn) (Th. 1, [15])

a total and a partial order NP-complete (Th. 2) coNP-complete (Th. 3)
2-approximable (Th. 4)

We then turn to rank aggregation problems. The problem is NP-complete
for many total orders under the Kendall tau distance [3, 6, 14]. We study rank
aggregation problems for voters represented by partial orders. Under the nearest
neighbor Kendall tau distance, this problem is NP-complete even for two voters.
In contrast, under the Hausdorff Kendall tau distance it is NP-hard and coNP-
hard for at least four voters, and thus unlikely to be in NP or coNP unless
NP = coNP. In fact, the problem is in Σp

2 , which is the class of problems
solvable by an NP machine, which has access to an NP oracle. Our results on
rank aggregation problems are summarized in Table 2.

Table 2. Rank aggregation problems

voters represented by

number total orders partial orders partial orders
of voters under KNN under KH

1 O(n) (trivial) O(n) (trivial) open

2 O(n) (trivial) NP-complete (Th. 5) coNP-hard (Th. 6)

3 open NP-complete (Th. 5) coNP-hard (Th. 6)

4 NP-complete ([3, 6, 14]) NP-complete (Th. 5) NP- and coNP-hard
(Th. 6)

This work is organized as follows. In Sect. 2 we introduce orders and distances.
In Sect. 3 we consider the complexity of computing the nearest neighbor and
the Hausdorff Kendall tau distances and establish the 2-approximability of the
computation of the nearest neighbor Kendall tau distance of a total and a partial
order. We address the complexity of rank aggregation problems in Sect. 4 and
conclude with some open problems in Sect. 5.
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2 Preliminaries

For a binary relation R on a domain D and for each x, y ∈ D, we denote x ≺R y if
(x, y) ∈ R and x ⊀R y if (x, y) /∈ R. A binary relation κ is a (strict) partial order
if it is irreflexive, asymmetric and transitive, i. e., x ⊀κ x, x ≺κ y ⇒ y ⊀κ x,
and x ≺κ y ∧ y ≺κ z ⇒ x ≺κ z for all x, y, z ∈ D. Candidates x and y are called
unrelated by κ if x ⊀κ y ∧ y ⊀κ x, which we denote by x 6�≺κ y. The intuition of
x ≺κ y is that κ ranks x before y, which means a preference for x. For a partial
order κ on a domain D and sets X ,Y ⊆ D, if x ≺κ y for all x ∈ X and y ∈ Y,
we write X ≺κ Y . We call X unrelated by κ if x 6�≺κ x′ for all x, x′ ∈ X . A partial
order π is a bucket order if it is irreflexive, asymmetric, transitive and negatively
transitive, which says that for each x, y, z ∈ D, x ≺π y ⇒ x ≺π z∨z ≺π y. Hence,
the domain is partitioned into a sequence of buckets B1, . . . ,Bt such that x ≺π y
if there are i, j with i < j and x ∈ Bi and y ∈ Bj . Note that x and y are unrelated
if they are in the same bucket. Thus, unrelatedness is an equivalence relation on
tied candidates x ∼=π y within a bucket. Finally, a partial order τ is a total order
if it is irreflexive, asymmetric, transitive and complete, i. e., x ≺τ y ∨ y ≺τ x for
all x, y ∈ D with x 6= y. Then τ is a permutation of the elements of D. Clearly,
total ⊂ bucket ⊂ partial, where ⊂ expresses a generalization.

For two total orders σ and τ the Kendall tau distance counts the disagreements
or inversions of pairs of candidates, K(σ, τ) = |{{x, y} ⊆ D : x ≺σ y ∧ y ≺τ x}|.

We consider distances between generalized orders based on their sets of total
extensions. A total order τ is a total extension of a partial order κ if τ does not
contradict κ, i. e., x ≺κ y implies x ≺τ y for all x, y ∈ D. We denote the set of
total extensions of a partial order κ with Ext(κ).

Definition 1. For partial orders κ and µ on a domain D define the nearest
neighbor and the Hausdorff (Kendall tau) distances via their extensions

KNN (κ, µ) = min{K(τ, σ) : τ ∈ Ext(κ), σ ∈ Ext(µ)} , and

KH(κ, µ) = max{ max
τ∈Ext(κ)

min
σ∈Ext(µ)

K(τ, σ), max
σ∈Ext(µ)

min
τ∈Ext(κ)

K(σ, τ)} .

A Hausdorff distance of k says that there is an item in one set such that all items
in the other set have a distance of at most k. In contrast, a nearest neighbor
distance of k says that the closest pair of items has a distance of at most k. The
Hausdorff distance is known to be a metric, but it takes the negative view and
focuses on disagreements. The nearest neighbor distance takes the positive view
and favors agreements. However, it fails the axioms of a metric. It does neither
satisfy the identity of indiscernible d(x, y) = 0 ⇔ x = y nor does the triangle
inequality hold.

The following facts are obtained immediately from Definition 1.

Lemma 1. For total orders τ and σ the nearest neighbor and the Hausdorff
distances coincide with the common Kendall tau distance, i. e., KNN (τ, σ) =
KH(τ, σ) = K(τ, σ).
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For a partial order κ and a total order σ, the nearest neighbor distance is
the distance to a closest neighbor, i. e., KNN (κ, σ) = minτ∈Ext(κ)K(τ, σ), and
the Hausdorff distance is the distance to a farthest neighbor, i. e., KH(κ, σ) =
maxτ∈Ext(κ)K(τ, σ).

Next we state our distance and rank aggregation problems.

Definition 2. Let d ∈ {KNN ,KH}. Given two orders κ and µ on a domain D
and an integer k, the distance problem under d asks whether or not d(κ, µ) ≤ k.

Accordingly, the rank aggregation problem under d asks whether or not for
orders κ1, . . . , κr on D and an integer k, there exists a total order τ such that∑r
i=1 d(κi, τ) ≤ k. A total order τ∗ minimizing k is the consensus ranking.

3 Distance problems

3.1 Nearest Neighbor and Hausdorff Kendall Tau Distances of Two
Bucket Orders

Fagin et al. [15] have characterized the Hausdorff Kendall tau distance of two
bucket orders in terms of refinements. The refinement of a bucket order γ by a
bucket order π is the bucket order π ∗ γ such that x ≺π∗γ y ⇔ x ≺γ y ∨ x ∼=γ

y ∧ x ≺π y holds for all x, y ∈ D. Hence, x and y are tied in π ∗ γ iff they are
tied in γ and in π. Clearly, if π is a total order then π ∗ γ breaks all ties and is a
total order, too. ∗ is an associative operation, so for a third bucket order η on D,
η ∗ π ∗ γ makes sense. Note that the refinement is only defined for bucket orders,
but not for partial orders.

From the definition of the refinement operation Fagin et al. [15] obtain the
following characterization of the Hausdorff distance.

Lemma 2. [15] Let γ and π be bucket orders on the domain D, and let ρ be any
total order on D. Let γR resp. πR be the reversal of γ resp. π, which is obtained
by reversing the order of the buckets, while the buckets are preserved. Hence,
x ≺γ y iff y ≺γR x. Then

KH(γ, π) = max{K(ρ ∗ πR ∗ γ, ρ ∗ γ ∗ π),K(ρ ∗ π ∗ γ, ρ ∗ γR ∗ π)} .

Adapting the proof from [15] we obtain the corresponding characterization
for the nearest neighbor Kendall tau distance. We directly reuse Lemma 3 and
Lemma 4, which we state here without proof, and rephrase Lemma 5 to serve
our purposes.

Lemma 3. [15] Let τ be a total order and let γ be a bucket order on the domain
D. Suppose that τ 6= γ. Then there exist x, y ∈ D such that τ(y) = τ(x) + 1 and
y ≺γ x or y ∼=γ x. If γ is a total order, then γ(y) < γ(x).

Lemma 4. [15] Let τ be a total order and let γ be a bucket order on the domain
D. Then the quantity K(τ, σ) taken over all σ ∈ Ext(γ) is minimized for σ = τ ∗γ.
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Lemma 5. Let π and γ be bucket orders and let ρ be a total order on the domain
D. Then the quantity K(σ, σ ∗ γ), taken over all σ ∈ Ext(π), is minimized if
σ = ρ ∗ γ ∗ π.

Proof. Note that for any σ ∈ Ext(π) there is some total order τ such that
σ = τ ∗ π. We now show that ρ ∗ γ is among the best choices for τ with regard to
the minimization of K(σ, σ ∗ γ). That means for all total orders τ ,

K(ρ ∗ γ ∗ π, ρ ∗ γ ∗ π ∗ γ) ≤ K(τ ∗ π, τ ∗ π ∗ γ) ,

from which the lemma follows.
Let S be the set of total orders with S = {τ : K(ρ ∗ γ ∗ π, ρ ∗ γ ∗ π ∗ γ) >

K(τ ∗ π, τ ∗ π ∗ γ)}. If S is empty, we are done, so suppose S is not empty.
Choose τ ∈ S minimizing K(τ, ρ ∗ γ). Since ρ ∗ γ /∈ S, τ 6= ρ ∗ γ. Therefore,

Lemma 3 guarantees that we can find a pair x, y ∈ D such that τ(y) = τ(x) + 1,
but ρ ∗ γ(y) < ρ ∗ γ(x). Construct τ ′ by switching x and y in τ . Clearly, τ ′ has
one inversion less than τ with respect to ρ ∗ γ, so K(τ ′, ρ ∗ γ) < K(τ, ρ ∗ γ). We
now show that τ ′ ∈ S holds, which is a contradiction as τ is supposed to be the
total order in S having the minimum Kendall tau distance to ρ ∗ γ.

Case 1: If x ≺π y or y ≺π x, then τ ′ ∗ π = τ ∗ π. Hence K(τ ′ ∗ π, τ ′ ∗ π ∗ γ) =
K(τ ∗ π, τ ∗ π ∗ γ) and τ ′ ∈ S.

Case 2: If x ∼=π y and x ∼=γ y then switching x and y in τ switches their
positions in both τ ∗ π and τ ∗ π ∗ γ, while leaving all the other candidates in
their position. So we have K(τ ′ ∗ π, τ ′ ∗ π ∗ γ) = K(τ ∗ π, τ ∗ π ∗ γ), and we again
conclude that τ ′ ∈ S.

Case 3: If x ∼=π y and x ≺γ y or y ≺γ x, we have the following situation: First
τ ′ ∗ π is again just τ ∗ π with the adjacent elements x and y switched. Second
τ ′ ∗ π ∗ γ = τ ∗ π ∗ γ as x and y are not tied in γ. Recall that we have chosen
x and y with the property that x ≺τ y and y ≺ρ∗γ x. From x ∼=π y and x ≺τ y
we derive τ ∗ π(x) < τ ∗ π(y). From y ≺ρ∗γ x we derive y ≺τ∗ρ∗γ x. Thus there
is exactly one more inversion between τ ∗ π and τ ∗ π ∗ γ than between τ ′ ∗ π
and τ ′ ∗ π ∗ γ. So we immediately obtain K(τ ′ ∗ π, τ ′ ∗ π ∗ γ) ≤ K(τ ∗ π, τ ∗ π ∗ γ)
from which we conclude that τ ′ ∈ S. ut

To obtain a characterization of the nearest neighbor Kendall tau distance
between two bucket orders in terms of refinements, we combine the results of
Lemmas 4 and 5. Let σ ∈ Ext(γ) be fixed. Then by Lemma 4 the quantity K(σ, τ)
for every τ ∈ Ext(π) is minimized for τ = σ ∗ π.

By Lemma 5 for every σ ∈ Ext(γ), K(σ, σ ∗ π) is minimized for σ = ρ ∗ π ∗ γ.
Therefore

min
σ∈Ext(γ)

min
τ∈Ext(π)

K(σ, τ) = K(ρ ∗ π ∗ γ, ρ ∗ π ∗ γ ∗ π) .

Since ρ ∗ π ∗ γ ∗ π = ρ ∗ γ ∗ π, we obtain

Corollary 1. KNN (γ, π) = K(ρ ∗ π ∗ γ, ρ ∗ γ ∗ π) .
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Theorem 1. For two bucket orders, the distance problems under the nearest
neighbor and the Hausdorff Kendall tau distances can be solved in O(n log n)
time.

Proof. Refinements can obviously be computed in linear time. As established by
Biedl et al. [6], for two total orders σ and τ on a domain D of size n, K(σ, τ)
is the number of crossings of the permutation graph for σ and τ , which can be
counted in O(n log n). ut

3.2 Nearest Neighbor and Hausdorff Kendall Tau Distances of a
Total and a Partial Order

We now turn to the general case including a partial order. This makes the
computation of the Kendall tau distances intractable.

In detail, the computation of the nearest neighbor Kendall tau distance
of a partial and a total order is NP-complete. This is proved by a reduction
from OSCM-4-Star, the one-sided two-level crossing minimization problem
for forests of 4-stars. From this result, we derive the coNP-completeness of the
computation of the Hausdorff Kendall tau distance of a partial and a total order.
The NP-completeness of OSCM-4-Star has been proven by Muñoz et al. [22]
by a reduction from feedback arc set.

Theorem 2. For a total and a partial order, the distance problem under the
nearest neighbor Kendall tau distance is NP-complete.

Proof. We start with the definition of OSCM-4-Star. An instance of OSCM-
4-Star (see Fig. 1) consists of a positive integer k, and an undirected forest of
n 4-stars with its vertices placed on distinct positions on two levels. Each star
i has a set A(i) = {a1(i), a2(i), a3(i), a4(i)} of vertices of degree one placed on
the upper level and one vertex a∗(i) of degree four placed on the lower level. Let
A =

⋃
i∈{1,...,n}A(i) and A∗ =

⋃
i∈{1,...,n} a∗(i). The order of A on the upper

level is fixed by a permutation σ, while the vertices of A∗ can be permuted freely
on the lower level. OSCM-4-Star asks if there is such a permutation τ of A∗
causing at most k edge crossings.

σ

τ

a1(1) a1(2) a2(1) a1(3) a2(2) a3(1) a2(3) a4(1) a3(3) a4(3) a3(2) a4(2)

a∗(1) a∗(2) a∗(3)

Fig. 1. Two-level drawing of 4-Stars.

We now reduce OSCM-4-Star to an instance of the distance problem,
consisting of a partial order κ, a total order σ′ on D and a positive integer k′.
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Assume we are given an instance of OSCM-4-Star. We split each vertex a∗(i)
into four vertices of degree one as shown in Figure 2 and identify each of them
with its adjacent vertex on the upper level such that each vertex from A now
appears once on the upper and once on the lower level. We regard the resulting
two-level drawing as a permutation graph, where two permutations σ and τ̂ are
drawn as a two-level bipartite graph with the vertices (candidates) A on each
level in the order given by σ and τ̂ and a straight-line edge between the two
occurrences of each candidate v ∈ A on the two levels [6].

σ

τ̂

a1(1) a1(2) a2(1) a1(3) a2(2) a3(1) a2(3) a4(1) a3(3) a4(3) a3(2) a4(2)

A(1) A(2) A(3)

Fig. 2. Splitting the a∗ star centers yields a permutation graph.

Note that the number of edge crossings in the permutation graph is equal to
the Kendall tau distance of σ and τ̂ .

Our objective is that the four candidates a1(i), a2(i), a3(i), a4(i) appear
consecutively in τ̂ for each i ∈ {1, . . . , n} as then there is a direct correspondence
between the number of crossings in the original OSCM-4-Star problem and
K(σ, τ̂). This is equivalent to

SCC ∀
i,j∈{1,...,n}

i 6=j

A(i) ≺τ̂ A(j) ∨ A(j) ≺τ̂ A(i) ,

which we call the separated candidate condition (SCC).
We set k′ = 32n2 + 24n + k. To enforce SCC, we extend σ to σ′ (and,

correspondingly, solutions τ̂ to τ ′) by adding blockers. The nearest neighbor
distance problem we reduce to then asks if there is a total order τ ′ ∈ Ext(κ)
with K(τ ′, σ′) ≤ k′. The blockers enforce that violating SCC causes the cost
K(σ′, τ ′) to exceed the upper bound k′. All solutions separating the gadgets,
i. e., each A(i) together with the corresponding blockers, satisfy SCC. The
blockers then incur a cost of 32n2 + 24n, such that only the crossing number
k of the OSCM-4-Star instance determines whether or not the total cost
maintains the upper bound k′. For each i ∈ {1, . . . , n} and j ∈ {1, 2} we introduce
the candidates lj(i), l

′
j(i), rj(i) and r′j(i). Let L1(i) = {l1(i), l′1(i)}, L2(i) =

{l2(i), l′2(i)}, R1(i) = {r1(i), r′1(i)}, R2(i) = {r2(i), r′2(i)}, L(i) = L1(i) ∪ L2(i),
R(i) = R1(i) ∪ R2(i), L1 =

⋃
i∈{1,...,n} L1(i), L2 =

⋃
i∈{1,...,n} L2(i), R1 =⋃

i∈{1,...,n}R1(i), and R2 =
⋃
i∈{1,...,n}R2(i). We call B(i) = L(i) ∪ R(i), A(i)

and G(i) = L(i)∪A(i)∪R(i) the blockers of i, the inner elements of i and gadget
i respectively. Let D =

⋃
i∈{1,...,n} G(i) be the set of candidates. Given n 4-stars,

D has 12n candidates.
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Now define the partial order κ on D as follows:

∀
i∈{1,...,n}

a1(i) ≺κ a2(i) ≺κ a3(i) ≺κ a4(i)

∀
x∈{l,r}

∀
i∈{1,...,n}

x1(i) ≺κ x′1(i) ≺κ x2(i) ≺κ x′2(i)

∀
i∈{1,...,n}

L(i) ≺κ A(i) ≺κ R(i)

∀
i,j∈{1,...,n}

∀
gi∈G(i)

∀
gj∈G(j)

i 6= j ⇒ gi 6�≺κ gj

Thus each gadget G(i) is totally ordered by κ, while elements of different
gadgets are unrelated. Let the total order σ′ on D be defined by

∀
x∈{l1,l2,r1,r2}

∀
i∈{1,...,n}

x(i) ≺σ′ x′(i)

∀
i,j∈{1,...,n}

i < j ⇒ L1(i) ≺σ′ L1(j) ∧R2(i) ≺σ′ R2(j)

∀
i,j∈{1,...,n}

i > j ⇒ L2(i) ≺σ′ L2(j) ∧R1(i) ≺σ′ R1(j)

∀
a,a′∈A

a ≺σ a′ ⇒ a ≺σ′ a′ , and

R2 ≺σ′ R1 ≺σ′ A ≺σ′ L2 ≺σ′ L1 .

Before formally proving the correctness of our reduction, we analyse the
solutions of the distance problem with respect to the number of crossings caused
by blockers and inner elements. We use the following notation. For subsets
X,Y ⊆ D, let

χσ
′

τ ′ (X,Y ) = |{(x, y) ∈ X × Y : (σ′(x)− σ′(y))(τ ′(x)− τ ′(y)) < 0}|

and let χσ
′

τ ′ (X) = 1
2χ

σ′

τ ′ (X,X). χσ
′

τ ′ (X,Y ) counts the number of pairs (x, y) ∈
X × Y , where τ ′ and σ′ disagree, i. e., where τ ′ ranks x before y and σ′ ranks y
before x or vice versa. Note that K(σ′, τ ′) = χσ

′

τ ′ (D).
The total number of crossings in the permutation graph consists of the

crossings

– within each gadget, χσ
′

τ ′ (G(i)),

– between the blockers of one and the blockers of another gadget, χσ
′

τ ′ (B(i),B(j)),
– between the inner elements of one and the blockers of another gadget,
χσ

′

τ ′ (A(i),B(j)), and
– between the inner elements of one and the inner elements of another gadget,
χσ

′

τ ′ (A(i),A(j)).

Claim 1. χσ
′

τ ′ (G(i)), the number of crossings within each gadget i, is fixed to 56.
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σ′

τ ′

r2(i) r′2(i) r1(i) r′1(i) a1(i) a2(i) a3(i) a4(i) l2(i) l′2(i) l1(i) l′1(i)

l1(i) l′1(i) l2(i) l′2(i) a1(i) a2(i) a3(i) a4(i) r1(i) r′1(i) r2(i) r′2(i)

Fig. 3. χσ
′
τ ′ (G(i)) = 56 for each i ∈ {1, . . . , n}.

As each gadget i is totally ordered by κ, χσ
′

τ ′ (G(i)) = 56, as can be seen in
Figure 3.

Claim 2. χσ
′

τ ′ (B(i),B(j)), the number of crossings between the blockers of one
and the blockers of another gadget, is 32 if τ ′ separates G(i) and G(j), i. e.,
G(i) ≺τ ′ G(j) ∨ G(j) ≺τ ′ G(i). Otherwise χσ

′

τ ′ (B(i),B(j)) > 32.

Assume i < j. As each gadget is totally ordered, χσ
′

τ ′ (B(i),B(j)) solely depends
on the “interleaving” of the two gadgets, i. e., which blocker of gadget i is placed
in which sector (between which blockers) of gadget j (see Fig. 4). The sectors of
gadget j are defined as follows.

sector description
S0 left of l1(j)
S1 between l1(j) and l′1(j)
S2 between l′1(j) and l2(j)
S3 between l2(j) and l′2(j)
S4 between l′2(j) and r1(j)
S5 between r1(j) and r′1(j)
S6 between r′1(j) and r2(j)
S7 between r2(j) and r′2(j)
S8 right of r′2(j)

The number of crossings can be computed independently for each pair of
blocker and sector.

We model the interleavings as a path problem (see Fig. 5). Taking an edge
(Sm, b) in a selected path means placing b in sector Sm. The number of additional
crossings is w(Sm, b) if b is placed in sector Sm instead of sector S0. If, for
example, r′1(i) is placed in sector S2, i. e., l′1(j) ≺τ ′ r′1(i) ≺τ ′ l2(j), it has
χσ

′

τ ′ ({r′1(i)},B(j)) = 6 crossings, while it has χσ
′

τ ′ ({r′1(i)},B(j)) = 4 crossings if it
is placed in sector S0, i. e., r′1(i) ≺τ ′ l1(j). Thus we have w(S2, r

′
1(i)) = 6− 4 = 2.

Each path in the graph corresponds to an interleaving of the gadgets i and j. If all
blockers of gadget i are placed to the left of gadget j, we have χσ

′

τ ′ (B(i),B(j)) = 32.
There are two shortest paths in the interleaving graph, which correspond to the
interleavings where G(i) and G(j) are separated by τ ′, completing the proof of
the claim.
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Claim 3. χσ
′

τ ′ (A(i),B(j)), the number of crossings between the inner elements
of one and the blockers of another gadget, is 16 if τ ′ separates A(i) and B(j).
Otherwise χσ

′

τ ′ (A(i),B(j)) > 16.

Each inner element of A(i) crosses all elements of either L(j) or R(j), which
implies χσ

′

τ ′ (A(i),B(j)) = 16. Each inner element a ∈ A(i) which is not separated
from A(j), implies L(j) ≺τ ′ a ≺τ ′ R(j), and causes an additional cost of 4, since
it intersects with the elements of both L(j) and R(j).

8 8 0 0 −4 −4 −4 −4

7 7 1 1 −3 −3 −3 −3

6 6 2 2 −2 −2 −2 −2

5 5 3 3 −1 −1 −1 −1

4 4 4 4 0 0 0 0

3 3 3 3 1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

s

t

r2(i) r′2(i) r1(i) r′1(i) l2(i) l′2(i) l1(i) l′1(i)

S0

S1

S2

S3

S4

S5

S6

S7

S8

Fig. 5. Graph modeling the cost of interleaving two gadgets. The red (dashed) path
corresponds to the interleaving shown in Figure 4. The red (dashed) and the green
(dotted) paths are the only paths of minimal length and correspond to G(i) ≺τ ′ G(j)
and G(j) ≺τ ′ G(i) respectively.

With the help of the above claims, we now establish the correctness of the
reduction.

First, suppose there exists a solution τ for OSCM-4-Star with at most k
crossings. From τ we derive a total order τ ′ ∈ Ext(κ) on D with K(τ ′, σ′) ≤ k′.
In detail, let τ ′ be the total order that separates the gadgets and orders them
according to the corresponding star centers in τ . The total number of crossings
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between τ ′ and σ′ is exactly

χσ
′

τ ′ (D) =
∑

i∈{1,...,n}

χσ
′

τ ′ (B(i)) +
∑

i,j∈{1,...,n}
i<j

χσ
′

τ ′ (B(i),B(j))+

+
∑

i,j∈{1,...,n}
i 6=j

χσ
′

τ ′ (A(i),B(j)) +
∑

i,j∈{1,...,n}
i<j

χσ
′

τ ′ (A(i),A(j)) .

We now make use of our claims, taking into account that for each i, j ∈
{1, . . . , n}, i 6= j, τ ′ separates G(i) and G(j). Thus∑

i∈{1,...,n}

χσ
′

τ ′ (B(i)) = 56n ,

∑
i,j∈{1,...,n}

i<j

χσ
′

τ ′ (B(i),B(j)) = 32
n(n− 1)

2
, and

∑
i,j∈{1,...,n}

i 6=j

χσ
′

τ ′ (A(i),B(j)) = 16n(n− 1) .

Additionally, SCC holds, and thus, according to our assumption that τ causes
at most k crossings in OSCM-4-Star,∑

i,j∈{1,...,n}
i<j

χσ
′

τ ′ (A(i),A(j)) ≤ k.

Summing the above yields

KNN (κ, σ′) ≤ K(τ ′, σ′) = χσ
′

τ ′ (D) ≤ 56n+ 32
n(n− 1)

2
+ 16n(n− 1) + k =

= 32n2 + 24n+ k = k′ .

Secondly, suppose that KNN (κ, σ′) ≤ k′. In detail, let ρ ∈ Ext(κ) be a total
order on D with K(ρ, σ′) ≤ k′. If ρ satisfies SCC, we are done, as then the
solution of the original instance of OSCM-4-Star corresponding to τ had∑

i,j∈{1,...,n}
i<j

χσ
′

ρ (A(i),A(j)) ≤ k′ − 32n2 − 24n = k

crossings by applying our claims. However, if ρ does not satisfy SCC, we derive
a total order τ ′ ∈ Ext(D) from ρ as follows. τ ′ separates the gadgets and orders
them as ρ ordered the respective a1 candidates, i. e.,

∀
i,j∈{1,...,n}

i 6=j

G(i) ≺τ ′ G(j)⇔ a1(i) ≺ρ a1(j) .
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τ ′ clearly satisfies SCC. If we show that K(τ ′, σ′) ≤ K(ρ, σ′) ≤ k′ then the
solution of the original OSCM-4-Star instance corresponding to τ ′ had at
most k crossings. ρ has more crossings between pairs of blockers and at least
as many crossings between blockers and inner elements as τ ′. Therefore ρ must
have fewer crossings between inner elements than τ ′. Let a be any inner element
and j be any gadget with a /∈ A(j). In comparison to τ ′, ρ can save at most
χσ

′

τ ′ ({a},A(j)) ≤ 4 crossings by placing a between the elements of A(j), but

then we have χσ
′

ρ ({a},B(j)) = χσ
′

τ ′ ({a},B(j)) + 4 as shown above. Thus ρ cannot
achieve a total of fewer crossings than τ ′ even by the best possible placement of
inner elements, completing our proof. ut

Summarizing the above, we have proven that, given an instance of the OSCM-
4-Star problem, we can construct an instance of the distance problem, such
that there is a solution to OSCM-4-Star with at most k crossings iff there is
a permutation τ ′ ∈ Ext(κ) with K(σ′, τ ′) ≤ 32n2 + 24n+ k. Thus the distance
problem is NP-hard. As one can guess a permutation τ ′ and check if τ ′ ∈ Ext(κ)
and K(σ′, τ ′) ≤ k in polynomial time, the problem also is in NP. ut

Theorem 3. For a total and a partial order, the distance problem under the
Hausdorff Kendall tau distance is coNP-complete.

Proof. Let a total order σ, a partial order κ on a domain D, and a positive
integer k be an instance of the distance problem under the nearest neighbor
distance, which we have shown to be NP-complete (Theorem 2). From that
we immediately obtain the NP-completeness of a modified distance problem.
Here we are also given a total order σ′, a partial order κ′ on a domain D, and
a positive integer k′, but now ask if there exists a total order τ ′ in Ext(κ′)
with K(τ ′, σ′) ≥ k′. The modified distance problem is NP-complete as we set

κ′ = κ, σ′ = σR and k′ =
(|D|

2

)
− k, where σR means the reverse of σ. Observe

that for each τ ′ ∈ Ext(κ), each of the
(|D|

2

)
pairs of candidates will contribute

exactly one either to K(τ ′, σ) or to K(τ ′, σR). Thus there exists a total order
τ ∈ Ext(κ) with K(τ, σ) ≤ k iff there exists a total order τ ′ ∈ Ext(κ′) with

K(τ ′, σ′) = K(τ ′, σR) ≥
(|D|

2

)
− k, as we can simply set τ = τ ′.

From the NP-completeness of the modified distance problem, the coNP-
completeness of the distance problem under the Hausdorff distance of a total
and a partial order follows. Let a total order σ′′, a partial order κ′′ on a domain
D, and a positive integer k′′ be an instance of the distance problem under the
Hausdorff distance. Since KH(κ′′, σ′′) = maxτ ′′∈Ext(κ′′)K(τ ′′, σ′′) (Lemma 1), we
ask if K(τ ′′, σ′′) ≤ k′′ holds for all τ ′′ ∈ Ext(κ′′). Therefore the distance problem
under the Hausdorff distance of a total and a partial order is the complementary
problem of the modified distance problem. The NP-completeness of a problem
implies the coNP-completeness of the complementary problem [16]. ut

Theorem 4. For a total and a partial order, the distance problem under the
nearest neighbor Kendall tau distance is 2-approximable.

Proof. Considering the problem of computing the nearest neighbor distance of a
partial order κ and a total order σ, we intuitively ask for the total extension τ of
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κ where as many pairs i 6�≺κ j as possible are ordered according to σ. Thus, we
transform κ and σ into a tournament graph G = (V,E), i. e., a directed graph
with either (i, j) ∈ E or (j, i) ∈ E for each i, j ∈ V : We introduce a vertex
for each candidate, and for each pair of vertices i, j ∈ V we introduce an edge
(i, j) ∈ E if i ≺κ j (κ-edges), or if i 6�≺κ j ∧ i ≺σ j (σ-edges). Observe that each
σ-edge (i, j) ∈ E corresponds to two candidates i and j that are unrelated by κ,
while the direction of the edge indicates in which way to break the unrelatedness
according to σ. Then a total order τ ∈ Ext(κ) minimizing K(τ, σ) corresponds
to a permutation of the vertices, such that there is no κ-edge (i, j) with j ≺τ i
and such that the number of σ-edges (i, j) with j ≺τ i is minimized. Clearly,
determining a τ ∈ Ext(κ) which minimizes K(τ, σ) corresponds to finding the
smallest subset of σ-edges whose removal makes G acyclic. This is a special
case of the constrained feedback arc set problem on tournaments, where we are
given a tournament graph containing a partial order κ and ask for the smallest
subset of edges not belonging to κ whose removal makes the graph acyclic. This
problem is 3-approximable according to van Zuylen et al. [27]. Observe, that [27]
also presents 2-approximable cases of the problem, but these demand different
preconditions. The general idea of [27] is to derive a second tournament from an
optimal solution of a linear program, which is a lower bound for the constrained
feedback arc set problem. This tournament is then turned into the total order τ
by the pivoting algorithm described below.

We now refine the analysis of the proof of [27], taking into account that in our
special case the σ-edges are acyclic, since they are obtained from a total order,
and obtain a 2-approximation. The remainder of this section thus is mostly due
to [27], we just make some own refinements at the end of the proof.

We define edge weights for each distinct i, j ∈ V . If (i, j) ∈ E, let wij = 1
and wji = 0. If, in contrast, (j, i) ∈ E, let wij = 0 and wji = 1. The input of the
pivoting algorithm is another tournament G′ = (V,E′), which we obtain from
the following linear program (LP). LP contains variables xij and xji for each
distinct i, j ∈ V , which we use to determine E′.

LP: min
∑
i<j (xijwji + xjiwij)

st. (1) xij + xjk + xki ≥ 1 for all distinct i, j, k
(2) xij + xji = 1 for all i 6= j
(3) xij = 1 for all i ≺κ j
(4) xij ≥ 0 for all i 6= j

Given an optimal solution x of LP we construct G′, where (i, j) ∈ E′ only if
xij ≥ 1

2 . We will break ties in such a way as to ensure that there are no (directed)
triangles containing a κ-edge, i. e., there is no {(i, j), (j, k), (k, i)} ⊆ E′ such
that (i, j) is a κ-edge. Therefore use an arbitrary ρ ∈ Ext(κ) and in case that
xij = 1

2 = xji, let (i, j) ∈ E′ iff i ≺ρ j. Now suppose for contradiction, there
is a triangle {(i, j), (j, k), (k, i)} ⊆ E′ such that (i, j) is a κ-edge. As (i, j) is a
κ-edge, xij = 1 and xji = 0 due to conditions (2) and (3) of LP. Furthermore,
xjk, xki ≥ 1

2 , because (j, k), (k, i) ∈ E′. As condition (1) must also hold for
the reverse triangle (i, k), (k, j), (j, i) and xji = 0, xik + xkj = 1. Thus both
xjk and xki exactly take the value 1

2 . As the ties are broken according to ρ,
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{(i, j), (j, k), (k, i)} ⊆ E′ implies j ≺ρ k and k ≺ρ i. But this would imply j ≺ρ i,
which contradicts i ≺ρ j as ρ ∈ Ext(κ). Thus we have ensured that no κ-edge is
contained in a triangle of E′.

The pivoting algorithm now recursively computes τ using G′ to repeatedly
find a pivot vertex. Later we will refer to the chosen vertex. Given a pivot vertex
k, the algorithm puts vertex j to the left or right of k depending on (j, k) ∈ E′
or (k, j) ∈ E′. It then recurses on the set of vertices to the left and right of k.
Note that G′ is kept during the whole execution of the algorithm and LP is not
solved again in the recursive calls.

For a pair of vertices i, j with (i, j) ∈ E′ the only way to have j ≺τ i is being
in the same recursive call, and a pivot k must be chosen such that (j, k) ∈ E′ and
(k, i) ∈ E′. In other words, (i, j), (j, k) and (k, i) form a triangle in E′. Hence,
τ ∈ Ext(κ) as we have ensured that there are no triangles in E′ containing a
κ-edge.

Now we analyse the cost of our solution τ compared to the optimal solution
of LP, which is a lower bound. Observe that for the sake of clarity, we consider
the cost that occurs in the first call of the recursive algorithm. However, the
analysis of the cost is analogous in the later recursive calls. The main idea of the
analysis is to consider pairs {i, j} ∈ V and compare the cost of {i, j} in τ , i. e.,
wji if i ≺τ j or wij if j ≺τ i, with the cost cij = xijwji + xjiwij of {i, j} in the
optimal solution of LP.

Let k be the pivot vertex. In this call, we consider the cost for pairs {j, k} and
for pairs {i, j} such that i and j do not both end up on the same side of k. Note
that if a cost is incurred for a pair of vertices, then no other cost is incurred for this
pair in later iterations. Clearly, the cost we incur for a pair {j, k} when k is the
pivot, is at most 2cjk = 2(xjkwkj+xkjwjk). Similarly, if {(i, k), (k, j), (i, j)} ⊆ E′,
then the cost for the pair {i, j} is at most 2cij = 2(xijwji + xjiwij). Hence, the
only problematic pairs are the critical edges (j, i) that are in a triangle with k
in E′, i. e., pairs such that {(i, k), (k, j), (j, i)} ⊆ E′ and the algorithm orders i
before j, even though (j, i) ∈ E′. For the pivot k, let Tk(E′) denote the set of its
critical edges, so Tk(E′) = {(j, i) : (i, k), (k, j), (j, i) ∈ E′}. We now show that in
each iteration it is possible to choose a pivot vertex k such that

∑
(j,i)∈Tk(E′) wji∑
(j,i)∈Tk(E′) cji

≤ 2 ,

which implies that the cost of τ is at most twice the cost of the optimal solution
of LP. We consider if

∑
k∈V

∑
(j,i)∈Tk(E′) wji ≤ 2 ·

∑
k∈V

∑
(j,i)∈Tk(E′) cji holds.

If the desired ratio between the cost of τ and the cost of the optimal solution
holds for the sum over all pivot elements, then, in particular, there is a pivot
with the desired ratio. We observe that each edge contained in a triangle in E′ is
a critical edge for exactly one possible pivot k. Thus, instead of summing over all
pivot elements and over all their critical edges, we may sum over all edges in all
triangles in E′. Formally, let T be the set of triangles {(i, k), (k, j), (j, i)} ⊆ E′,
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and for a triangle t ∈ T , let w(t) =
∑
e∈t we and let c(t) =

∑
e∈t ce. Then∑

k∈V

∑
(j,i)∈Tk(E

′)

wji =
∑
t∈T

∑
(j,i)∈t

wji =
∑
t∈T

w(t) ,

∑
k∈V

∑
(j,i)∈Tk(E

′)

cji =
∑
t∈T

∑
(j,i)∈t

cji =
∑
t∈T

c(t) .

We will show that for any t ∈ T , w(t) ≤ 2c(t), which ensures the existence of an
eligible pivot element and completes the proof.

Let t = {e1, e2, e3}. For e = (i, j), let we = wij , xe = xij , we = wji, and
xe = xji. Thus we have to show

w(t) = we1 + we2 + we3 ≤

≤ 2

xe1we1 + xe1we1︸ ︷︷ ︸
ce1

+xe2we2 + xe2we2︸ ︷︷ ︸
ce2

+xe3we3 + xe3we3︸ ︷︷ ︸
ce3

 = 2c(t) .

t consists solely of σ-edges, which do not form a cycle. Thus the initial tournament
G = (V,E) contains at least one and at most two of e1, e2, and e3. W. l. o. g.
suppose e1 /∈ E and e3 ∈ E and thus we1 = 0 and we3 = 1. We derive the
simplified inequality

w(t) = we2 + 1 ≤ 2 (xe1 + xe2we2 + xe2we2 + xe3) = 2c(t) .

Now we distinguish the two cases whether or not e2 ∈ E.
Case 1: First e2 ∈ E, and therefore we2 = 1, yields

w(t) = 2 ≤ 2 (xe1 + xe2 + xe3) = 2c(t) .

We observe that xe1 ≥ 1
2 as e1 ∈ E′. Furthermore xe2 +xe3 ≥ 1

2 , due to condition
(1) of LP and to xe1 ≤ 1

2 . Thus the inequality holds.
Case 2: Secondly e2 /∈ E, and therefore we2 = 0, yields

w(t) = 1 ≤ 2 (xe1 + xe2 + xe3) = 2c(t) .

Observe that xe1 ≥ 1
2 . Thus the inequality holds. ut

4 Rank Aggregation Problems

In this section we address the rank aggregation problems for partial orders under
the nearest neighbor and the Hausdorff distances.

Theorem 5. The rank aggregation problem for a partial and a total order under
the nearest neighbor Kendall tau distance is NP-complete.
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Proof. We show the NP-completeness by a reduction from the distance problem
under the nearest neighbor distance of a partial order and a total order (The-
orem 2), in which we ask if KNN (κ, σ) ≤ k for a partial order κ and a total
order σ on a domain D, and an integer k. We reduce to an instance of the rank
aggregation problem by simply taking κ and σ as voters, keep k unchanged, and
ask if there exists a total order τ∗ on D with KNN (κ, τ∗) +KNN (σ, τ∗) ≤ k.

First suppose KNN (κ, σ) ≤ k. We now set τ∗ = σ and have KNN (κ, τ∗) +
KNN (σ, τ∗) = KNN (κ, σ) +KNN (σ, σ) ≤ k.

Conversely, suppose there exists a total order τ with KNN (κ, τ)+KNN (σ, τ) ≤
k. Then let τ ′ be a total order having KNN (κ, τ ′) +KNN (σ, τ ′) ≤ k and minimiz-
ing K(τ ′, σ). If τ ′ = σ, we are clearly done, so suppose for contradiction τ ′ 6= σ.
Then there are x, y ∈ D with τ ′(y) = τ ′(x)+1 and σ(y) < σ(x), as shown, e. g., in
[15]. Now derive τ∗ from τ ′ by switching x and y. Then KNN (τ∗, σ) = K(τ∗, σ) =
K(τ ′, σ) − 1. Additionally, K(κ′, τ∗) ≤ K(κ′, τ ′) + 1 for each κ′ ∈ Ext(κ),
thus KNN (κ, τ∗) ≤ KNN (κ, τ ′) + 1 and KNN (κ, τ∗) + KNN (σ, τ∗) ≤ k. As
K(σ, τ∗) < K(σ, τ ′), we obtain a contradiction.

The above reduction clearly runs in polynomial time. The problem is solv-
able by an NP machine even for an unbounded number of voters κ1, . . . , κr
as we can guess a solution τ∗ and total orders κ′1, . . . , κ

′
r and then verify

that κ′1 ∈ Ext(κ1), . . . , κ′r ∈ Ext(κr) and
∑r
i=1K(κ′i, τ

∗) ≤ k, which implies∑r
i=1KNN (κi, τ

∗) ≤ k.
From the rank aggregation problem with two voters we can immediately

reduce to the corresponding problem with any finite number of voters by adding
additional voters π represented by a bucket order, which consists of one bucket
containing all candidates. These voters then have KNN (π, τ∗) = 0 for any τ∗

and thus do not affect the solution. ut

Theorem 6. The rank aggregation problem for a partial and a total order under
the Hausdorff Kendall tau distance is coNP-hard. The problem is in Σp

2 , i. e.,
solvable by an NP machine which has access to an NP oracle [26, 28].

Proof. We show the coNP-hardness by a reduction from the distance problem
under the Hausdorff distance of a partial order and a total order (Theorem 3).
The reduction is completely analogous to the one in the proof of Theorem 5.

The problem is solvable by an NP machine which has access to an NP oracle,
even for an unbounded number of voters κ1, . . . , κr as we can guess a solution τ∗

and integers k1, . . . , kr with
∑r
i=1 ki ≤ k and then use the oracle to verify that

KH(κ1, τ
∗) ≤ k1, . . ., and KH(κr, τ

∗) ≤ kr.
From the rank aggregation problem with two voters we again reduce to the

corresponding problem with any finite number of voters by adding additional
voters π represented by a bucket order, which consists of one bucket containing
all candidates. These voters have KH(π, τ∗) =

(|D|
2

)
for any τ∗ and thus do not

affect the solution. ut

As the rank aggregation problem for partial orders under the Hausdorff
distance is coNP-hard for two or more voters (Theorem 6) and NP-hard for
four or more voters ([6, 14]), we obtain:
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Corollary 2. The rank aggregation problem for partial orders under the Haus-
dorff Kendall tau distance is not in NP or coNP unless NP = coNP.

5 Conclusion and Open Problems

In this work we have studied the nearest neighbor and Hausdorff versions of
the Kendall tau distance for bucket and partial orders and established efficient
computations and hardness results. The approximability of the distance problem
for two partial orders and of the rank aggregation problem under the nearest
neighbor Kendall tau distance are on our agenda of open problems.

In a companion paper [8] we have investigated related problems for the
Spearman footrule distance, which takes the L1-norm on total orders. The
Kendall tau and Spearman footrule distance show differences on related problems.
Also interval orders with intervals for each candidate and irrational voters, which
may contain cycles of strict preferences, shall be considered in our future work.

An interesting problem is the rank aggregation problem with only one voter
whose preferences are specified by a partial order. On the one hand it is solvable
in linear time for the nearest neighbor Kendall tau distance since any total
extension of the given partial order is a consensus ranking and an extension
can be computed by topological sorting. On the other hand it remains open for
the Hausdorff Kendall tau distance. Here we must compute the center of all
extensions of the partial order.

A challenging problem is the precise placement of the rank aggregation
problem of many partial orders in the polynomial hierarchy. The problem seems
harder than winner and election problems [17], which are complete for the class
Θp

2 . It has the flavor of a Σp
2-complete problem as its structure (“Does there

exist a consensus ranking, such that for all extensions . . .?”) resembles typical
Σp

2-complete problems (see [24] for an overview). We therefore conjecture:

Conjecture 1. The rank aggregation problem for partial orders under the Haus-
dorff distance is Σp

2-complete.
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22. X. Muñoz, W. Unger, and I. Vrto. One sided crossing minimization is NP-hard for
sparse graphs. In Proceedings of the 9th International Symposium on Graph Drawing,
volume 2265 of Lecture Notes in Computer Science, pages 115–123. Springer, 2002.

23. M. E. Renda and U. Straccia. Web metasearch: Rank vs. score based rank aggrega-
tion methods. In Proceedings of the 2003 ACM Symposium on Applied Computing
(SAC), pages 841–846. ACM, 2003.

24. M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy: A
compendium. SIGACT News, 33:32–49, September 2002.

25. J. Sese and S. Morishita. Rank aggregation method for biological databases. Genome
Informatics, 12:506–507, 2001.



22 Franz J. Brandenburg, Andreas Gleißner, Andreas Hofmeier

26. L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1976.

27. A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Research,
34:594–620, 2009.

28. K. W. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846,
1990.

29. L. Xia and V. Conitzer. Determining possible and necessary winners under common
voting rules given partial orders. In Proceedings of the 23rd AAAI Conference on
Artificial Intelligence, pages 196–201. AAAI Press, 2008.

30. R. R. Yager and V. Kreinovich. On how to merge sorted lists coming from different
web search tools. Soft Computing Research Journal, 3:83–88, 1999.


