
Modeling and Control of Complex and
Self-Organizing Systems

Richard Holzer† (Ed.)

† Department of Informatics and Mathematics, University of Passau
holzer@uni-passau.de

Technical Report, Number MIP-0916
Department of Informatics and Mathematics

University of Passau, Germany
July 2009

Modeling and Control of Complex and
Self-Organizing Systems

Richard Holzer (Ed.)

Faculty of Informatics and Mathematics, University of Passau, Innstrasse 43, 94032
Passau, Germany

Abstract. At the University of Passau, a EuroNF PhD Course on Mod-
eling and Control of Complex and Self-Organizing Systems was held from
March 30th - April 3rd, 2009. This technical report contains the essays
of the participants.

Preface

Not so long ago, computer systems consisted of a single CPU and only a few
peripheral devices directly connected to the CPU. Each system was used by
a single user running only a single application and there was no connection
to other computers. All relevant states of the system could be foreseen and
the desired behavior of the system could be ensured by considering all relevant
states. Today, computer systems consist of many concurrent components and
millions of computer systems are interconnected and influence each other. In
the future, there will be networked systems (like sensors) in most buildings,
cars, streets, and on most persons in a city acting as a single, coherent system
dynamically reallocating resources and priorities. Due to exponential complexity
and incomplete knowledge, the exact state of the overall system can neither be
evaluated nor be controlled centrally. The correctness of the overall network of
systems has to be ensured by local policies applied to each single system.

At the University of Passau, a EuroNF PhD Course on “Modeling and Con-
trol of Complex and Self-Organizing Systems” was held by Richard Holzer from
March 30th - April 3rd, 2009. This PhD course provided insights into build-
ing tractable models for complex and self-organizing systems by covering the
following topics (among others):

– Modeling techniques
– Phase Space
– Continuous time models
– Discrete time models
– Differential equations
– Recurrence equations
– Agent-based modeling
– Bifurcation
– Cellular Automata

1

– Model examples (e.g., Lotka-Volterra Model, Nagel-Schreckenberg Model)

The theoretical sessions were accompanied by practical hands-on tutorials
to illustrate the applicability of the knowledge imparted earlier. This technical
report contains the essays of the participants.

2

Emergence in Complex Systems

Essay

Gerhard Fuchs

University of Erlangen-Nuremberg
Dept. of Computer Science 7 (Computer Networks and Communication Systems)

Martensstr. 3, 91058 Erlangen, Germany
gerhard.fuchs@informatik.uni-erlangen.de

http://www7.informatik.uni-erlangen.de/~fuchs/

Abstract. The number of computers increases up to now. Systems are
becoming more complex with regard to the number of sub systems that
are integrated and interacting. Coming from the field of robot sensor
networks (RSNW), this essay gives short definitions of ”emergence” and
”complex system” (CS) and points out, that the relation between emer-
gence and self-organization (SO) is up to now unclear. Additionally it
contains my bio-inspired thoughts (many control one, dualism system /
signal, description of cycles analog to complex numbers) and my vision to
find a relation between complex numbers / complex systems and a recur-
sive definition of a system. A minimal system, that contains the essence
of an emergent, complex systems would be a step to more understanding.

Introduction. In the frame of my PhD studies I’m engaged in RSNW, which
can be seen as an example for a CS. Parallel to my research in this field, I have
studied some mechanisms in the field of cell biology, for inspiration.

A Wireless Sensor Network (WSN) consists of several interacting sensor notes
(I call it spots). According to Akyildiz [1], a spot has four main parts: a power
unit, a transceiver unit, a processing unit and a sensing unit. At our chair we
additionally use the spots to control a chassis or propellers to get robots. Many
groups are engaged in finding a way, how to handle and control the huge amount
(hundreds, thousands, ten thousands ...) of spots, that should interact in future.
Thereby ”emergence” is one buzzword mentioned in this context.

Also much work has been done in understanding and using emergence for
the purpose of engineering, it still seems to me, that there is no common sens
whether emergence is pane (there is something mystical happening we haven’t
expected) or boon (if we understand this phenomena we can find a new way of
programming CS).

In this essay I give some informal definitions of ”emergence” and ”complex
system”, that I found in literature. I describe a gap between three descriptions
of the relation between emergence and SO, that I have recognized during my
studies. Afterwards I present some of my thoughts in the field of this topic and
give a conclusion.

3

What is emergence? Wikipedia says:

”In philosophy, systems theory and science, emergence is the way com-
plex systems and patterns arise out of a multiplicity of relatively simple
interactions.” [2]

There exist many other definitions of emergence beside the verbal definition
presented above. Deguet et al. have written a detailed survey paper [3] that
summarizes and discusses important aspects of this phenomena. Further defini-
tions based on entropy were given by Mnif and Müller-Schloer [4] and Holzer et
al. [5]. The authors introduces a quantitative model for emergence.

What is a complex system? Wikipedia says:

”A complex system is a system composed of interconnected parts that
as a whole exhibit one or more properties (behavior among the possible
properties) not obvious from the properties of the individual parts.” [6]

Furthermore they mentioned the following features for CS: difficult to deter-
mine boundaries; dynamic network of multiplicity; CS may be open, may have
memory, may be nested, may produce emergent phenomena; relationships are
non-linear and contain feedback loops. Ant-colonies and cells are two examples
for CS.

What is the relation between emergence and SO? One special relation,
which is unclear up to now, seems to be between emergence and SO. In the
field of computer science I have found three different points of view. De Wolf
and Holvoet wrote, that emergence and SO are different concepts [7]. Mnif and
Müller-Schloer defined ”emergence as self-organized order” [4]. Finally Holzer et
al. see emergence as one main property of SO [5].

Cell biology. A body of an animal consists of several interacting cells and can
be seen as an example for a CS. Many proteins are used for singling between
cells (many control one). A protein, seen for it self, is a system. At the same
time a protein can be a signal for the cell. I have learnt from these studies,
that a system can be a signal and a signal can be a system (dualism system /
signal). Additionally there is something like a cycle during the development of
a fly. Cells produce signals, that signals influences the cells to produce signals.
Can this cycle be described using a construct like seiωt (s is a system, t a time)
in analogy to complex numbers?

Is there a similarity between ”complex” number and a ”complex”
system? About this aspect I am thinking since I have read an excursus form
Görnitz about the impact of complex numbers to physics in his book [8]. It is
obvious that syntactically ”complex” is a common part in both expressions. Why

4

have mathematicians introduced complex numbers? There was a lack of expres-
siveness using the ”traditional numbers”. Could a real part and a imaginary part
of a system, in analogy to complex numbers, extend the expressiveness of system
descriptions, so that emergence can be covert?

What is a system? I have not found a transfer of Aristoteles sentence: ”The
hole is more than the sum its the parts” like my following recursive definition,
covering two layers, in literature:

Definition 1 (System). A system σ is more ∆ than the set of all parts S.

σ := (S,∆)

S set of sub systems (also a system).
∆ additional properties beyond those of the subsystems, to be clarified.

Definition 2 (elementary system). An elementary system σ� is a system
without sub systems. It is the end of the recursive definition of a system. The
labeling is done using a superior �. � is called the core the elementary system.

Conclusions. I currently recognize a theory driven and an application driven
stream in the field of emergence in CS. One group of researchers analyse and
simulate existing systems in order find an abstract description. Another group
of researchers build more and more complex systems and get confronted with
phenomenas, that are new to them. RSNW and cell biology are two examples
for CS where emergence can occur. But many aspects of these examples are
still unknown. The optimum for further research would be a minimal system
that contains the essence of an emergent, CS. Many activities are done by many
interacting researchers. I am curious about what will emerge in future.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Elsevier Computer Networks 38 (2002) 393–422

2. Wikipedia, The Free Encyclopedia: Emergence [web; 30.04.2009].
3. Deguet, J., Demazeau, Y., Magnin, L.: Elements about the Emergence Issue, A

Survey of Emergence Definitions. ComPlexUs 3 (August 2006) 24–31
4. Moez Mnif and Christian Müller-Schloer: Quantitative emergence. In: Proc. of

the IEEE Mountain Workshop on Adaptive and Learning Systems, IEEE (2006)
(SMCals: Logan, US-WV; July 2006).

5. Holzer, R., de Meer, H., Bettstetter, C.: On Autonomy and Emergence in
Self-Organizing Systems. In: Proc. of the 3rd International Workschop on Self-
Organizing Systems. Vol. 5343 of LNCS., Springer (2008) 157–169 (IWSOS: Vienna,
AT-9; December 2008).

6. Wikipedia, The Free Encyclopedia: Complex System [web; 29.04.2009].
7. Wolf, T.D., Holvoet, T.: Emergence Versus Self-Organisation: Different Concepts

but Promising When Combined. Vol. 3464 of LNAI. Springer (May 2005) 1–15
8. Thomas Görnitz: Der kreative Kosmos. Elsevier GmbH, Spektrum Akademischer

Verlag, Heidelberg, DE-BW (2007)

5

Autonomy in Self-Organizing Systems

Nafeesa Bohra

Chair of Computer Networks and Computer Communications, Faculty of Informatics and Mathematics, ITZ/IH, University of
Passau, Innstr. 43, D - 94032, Passau, Germany. bohra@fmi.uni-passau.de

Abstract: Autonomy means self-governing, while a system is said to be autonomous if and only if the
organization of internal aspect of the system processes are the dominant factor in the system’s self-preservation,
making both the system itself and the processes that constitute to autonomy functional. It means that autonomy is an
organizational property constituted of processes with some degree of closure, though the closure to external forces
need not be complete. Autonomic Computing is a challenging new paradigm in system development whose basic
aim is to develop a system which on one hand self-protecting and self-healing while on the other hand it must be
self-configuring and self-optimizing. The essay discusses the basic fundamentals of autonomy in self-organizing
systems.

The basic design goal of future computing and networking paradigm is to minimize the administrative requirements
not only for the users but also for the ISPs (Internet Service providers). In order to increase the
functionality/usability it is required that the system should be developed in such a way that it must not only easy to
use but also successfully configure itself according to the changing circumstances. Another requirement is that the
system should detect and may be able to correct the failures automatically. All the above mentioned facts have lead
towards the development of Self-Organizing System (SOS). Self-organization is a process of attraction and
repulsion in which the internal organization of a system, normally an open system, increases in complexity without
being guided or managed by an outside source. Self-organizing systems typically (but not always) display emergent
properties.

A system is said to be self-organized when:

� It evaluates in an organized form without the presence of external pressure/forces.
� It exhibits emergent properties.
� It can be seen as the increase of coherence or decrease of statistical entropy.
� It possess the following main properties:

Emergence, Adaptability, Decentralization, and Autonomy,

Emergence: The appearance of a property or feature that have not previously observed as a functional
characteristic of the system. Or properties/pattern appears in a system as a complete unit but disappear in the single
component. For example: An automobile is an emergent property of its interconnected parts. That property
disappears if the parts are disassembled and just placed in a heap.

Adaptability: It refers to a systems’ ability to change itself in order to accommodate changes, especially the
changes, in its environment that have very little influence upon the overall behaviour of the system.

Decentralization: A single entity or a group of entities are not responsible for the control of the entire system, in
fact the system is controlled by all the entities of the system.

Autonomy: It means self-governing. i.e. Almost no external control is required for the system.

Autonomy means self-governing, and it comes from a Greek word which means independent. Functionality,
intentionality, and meaning are the basic building blocks of Autonomy. A system is said to be autonomous if it uses
its own information to modify itself and its environment in order to enhance its survival. An autonomous system
accommodates itself through unexpected self-organizing processes, together with some constraints that maintain
autonomy. OR

6

A system is said to be autonomous if and only if the organization of internal aspect of the system processes are the
dominant factor in the system’s self-preservation, making both the system itself and the processes that constitute to
autonomy functional. Hence, it can be said that autonomy is an organizational property constituted of processes with
some degree of closure, though the closure to external forces need not be complete. Hence, it can be said that
autonomy in self-organizing systems has yield towards the development of Autonomic Computing (AC).

AC was first introduced by IBM in 2001. The basic aim behind this initiation was to develop a computing system
capable of self-management, in order to overcome the rapidly growing complexity of the computing system
management and also to reduce the barrier that complexity poses towards further growth. In other words AC can be
defined as the self-managing characteristics of distributed computing resources, which must be able to adapt
unpredictable changes while limiting the administrative requirements for the users and the operators.

AC aims towards the following main concepts:

� A system must be self-protected and self-healing so that the reliability can be increased while on the other
hand;

� A system must be able to utilize self-optimizing and self-configuring mechanisms so that the autonomy and
performance will be increased by enabling the system to adapt to changing circumstances.

From the above discussion it is concluded that an autonomic system is self-managing which means that it must
possess the four functional properties defined by IBM, namely:

Self-healing: Automatic discovery, and correction of faults/failures;

This basically means that a system not only be capable of identifying the failures
successfully but also be able to repair them with minimum disruption to the users while
avoiding loss of data and delays.

Self-configuring: Automatic configuration of components;

Alternatively it is system’s ability to accommodate itself according to the changing
circumstances.

Self-protecting: Proactive identification and protection from arbitrary attacks;

System will be able to defend itself from accidental and malicious attacks, which means
that the system must be aware of potential threats and must know how to handle such
threats.

Self- optimizing: Automatic monitoring and control of resources to ensure the optimal functioning with
respect to the defined requirements;

From the above discussion it is summarized that in order to achieve the above mentioned objectives it is necessary
that the system must possess a self-awareness property and it must be aware about its current external operating
conditions. A system must possess self-monitoring property in order to detect changes i.e. what’s going on in its
circumstances and then adapt it accordingly. Precisely, it can be said that a system must have knowledge about its
resources; components, what are their desired performance characteristics, their current status, and what is the status
of inter connection with other system.

References

[1] Roy Sterritt and Dave Bustard: Towards an Autonomic Computing Environment: In Proc. of the 14th Int.

7

 Workshop on Database and Expert systems Applications (DEXA ‘03): IEEE Computer Society, 2003.

[2] Hermann de Meer: self-Organization in Peer-to-Peer Systems: Dagsthule Seminar Proc 04411: Service

 Management and Self-Organization in IP-based Networks:

 http://drops.dagsthule.de/opus/volltexte/2005/86

[3] Richard Holzer and Hermann de Meer: On modeling of Self-Organizing systems: In Proc. Autonomics

 2008, Sep 23 – 25, 2008, Turin, Italy.

[4] Richard Holzer and Hermann de Meer and Christian Bettstetter: On Autonomy and Emergence in Self-

 Organizing Systems: IWSOS 2008 - 3rd International Workshop on Self-Organizing Systems: Vienna,

 Austria, December 10-12, 2008, Springer Verlag 2008.

[5] Autonomic Computing Concepts, IBM White Paper, 2001.

[6] Jeffery O. Kephart and David M. Chess: The Vision of Autonomic Computing: IBM TJ, Watson Research

 Center: Published by IEEE Computer Society: 2003: ISBN: 0018-9162/03.

[7] Roy Sterritt and Dave Bustard: Autonomic Computing- A Means of Achieving Dependability: In Proc. of

 IEEE Int. Conf. on the Engineering of Computer Based systems (ECBS ’03): Huntsville, Alabama, USA,

 April 7 – 11 2003, pp 247 – 251.

8

Stability of Equilibria for Continuous Systems

Jennifer Mylosz

University of Hamburg, Department of Mathematics, Center of Mathematical
Statistics and Stochastic Processes, Bundesstrasse 55, 20146 Hamburg, Germany

Abstract. To analyze a continuous system’s behavior trajectories and
equilibria of its differential equation can be investigated, then the equilib-
ria can be checked for stability. The needed definitions will be given and
ways to derive the equilibria and their stability type will be presented
and discussed.

1 Continuous Systems

This essay about the analysis of dynamic systems with a continuous time variable
is based on [1, pp. 1-65] and on the part of macro level modeling of continuous
systems in [2]. Since this essay is supposed to be a summary, proofs are omitted
throughout and the interested reader finds more information in the mentioned
literature. At first, the continuous systems considered here will be introduced by

Definition 1. A continuous system is a system which consists of a state space
S (here S = R

n), a time variable t ∈ R and an evolution rule which describes
the change of the state during the time in terms of a differential equation

dx

dt
= ẋ = X(x)

where x ∈ R
n is a vector and X : R

n → R
n is a vector field.

To analyze the behavior of a continuous system defined above, one can have
a look at the trajectories of the system and, moreover, derive equilibrium points
of the according differential equation and analyze their stability.

1.1 Trajectories

Every differential equation modeling a real system should have a unique solu-
tion. We assume that the solution is uniquely determined by the initial condition
x(t0) = x0. We shortly write x(t, t0, x0) for the according solution of the differ-
ential equation at time t. Setting t0 = 0, the solution x(t, 0, x0) describes the
state of the system t time units after starting in state x0.
The solution of the differential equation can be drawn as an orbit or trajectory
in R

n. The set of all maps x(t, t0, x0) : R
n → R

n, t ∈ R, forms the trajectory
(orbit) for the initial condition x(t0) = x0. Consequently, we get an orbit for each
initial condition. Considering all possible initial conditions the according orbits
are either equal or disjoint. The plot of typical orbits is a helpful representation
of the flow of the considered system.

9

1.2 Equilibria and their Stability

A more detailed analysis of a system can be done by searching for equilibria of
its differential equation.

Definition 2. A point x∗ ∈ S is called equilibrium point of the differential
equation ẋ = X(x), if X(x∗) = 0.

If x∗ is an equilibrium point, then x(t, t0, x∗) = x∗ for all t ∈ R with t ≥ t0.
Thus each equilibrium point is a fixed point of the flow and its orbit is the fixed
point itself.

There are several classifications of equilibria. A distinction is made between a
stable and an unstable equilibrium, or more precisely, an asymptotically stable,
a neutrally stable, and an unstable one.

Definition 3. Let x∗ be an equilibrium of the differential equation ẋ = X(x).

– x∗ is stable if each trajectory starting near x∗ will stay near x∗, i.e., if for
any ε > 0 there exists δ(ε) > 0 such that ‖x(t, 0, x0) − x∗‖ < ε holds for all
t > 0 and for all x0 ∈ S with ‖x0 − x∗‖ < δ(ε).
Even more, x∗ is asymptotically stable if each trajectory starting near x∗

will converge to x∗ (i.e., limt→∞ x(t, 0, x0) = x∗), otherwise x∗ is neutrally
stable.

– x∗ is unstable if it is not stable.

To get a feel for the different stability characteristics of equilibria see Fig. 1.

Fig. 1. [1, p. 55] Examples for the stability types of equilibria, from left to right:
asymptotically stable, neutrally stable, unstable.

For Definition 3 it is necessary to solve the differential equation at first,
in order to analyze the behavior of trajectories near the equilibrium point. To
avoid the difficulty of finding a solution, in many cases it is possible to derive
the behavior directly from the differential equations.

To find out directly from the differential equation whether an equilibrium is
stable or unstable, we need to look at linear and nonlinear differential equations
separately.

Theorem 4. Consider a linear differential equation ẋ = A · x. Let x∗ be an
equilibrium of the differential equation.

10

– x∗ is stable if and only if all eigenvalues of A have no positive real part.
More precisely, x∗ is asymptotically stable if and only if all eigenvalues of A
have a negative real part, otherwise x∗ is neutrally stable.

– x∗ is unstable if and only if at least one eigenvalue of A has a positive real
part.

So if the differential equation is linear, the stability can be derived from the
eigenvalues of the matrix.

A nonlinear differential equation ẋ = X(x) with equilibrium in x∗ can be
transformed by Taylor approximation into the linear differential equation ẏ =
DX(x∗) · y where y substitutes x − x∗ and DX =

(
dXi

dxj

)
i,j=1,...,n

is the Jacobi

matrix. Therefore it seems obvious that the eigenvalues of the Jacobi matrix
give the information of the stability of the equilibria. Indeed, this is possible for
hyperbolic equilibria.

Definition 5. Consider a nonlinear differential equation ẋ = X(x). Let x∗ be
an equilibrium of the differential equation. x∗ is hyperbolic if all eigenvalues of
the Jacobi matrix DX(x∗) have a nonzero real part.

For a hyperbolic equilibrium, the transformation to the linear differential
equation does not change the stability. This fact leads to

Theorem 6. Consider a nonlinear differential equation ẋ = X(x). Let x∗ be a
hyperbolic equilibrium of the differential equation.

– x∗ is asymptotically stable if and only if all eigenvalues of DX(x∗) have a
negative real part.

– x∗ is unstable if and only if at least one eigenvalue of DX(x∗) has a positive
real part.

So if the considered equilibrium of a nonlinear differential equation is hyper-
bolic, the stability can be derived from the eigenvalues of the Jacobi matrix. But
for non-hyperbolic equilibria, the theorem above does not provide any informa-
tion about the analysis of their stability.

2 Discussion

The presented ways to analyze the stability of equilibria for continuous systems
are sufficient to get results for systems whose differential equation is easy to solve
as well as for systems whose differential equation is linear. For continuous systems
which have a nonlinear differential equation and whose differential equation is
difficult to solve the definitions and theorems presented above do not always turn
out satisfactory. As long as hyperbolic equilibria are to be analyzed for stability
Theorem 6 is applicable. If an equilibrium of a nonlinear differential equation
is non-hyperbolic, one can search for (or guess) the Lyapunov function for the
analysis of stability instead. More information about the Lyapunov function can
be found in [1].

11

References

1. Boccara, N.: Modeling Complex Systems. Springer, New York et al., 2004.
2. Holzer, R.: Modeling and Control of Complex and Self-Organizing Systems.

Presentation of the EuroNF PhD Course on ”Modeling and Control of Com-
plex and Self-Organizing Systems”, University of Passau, Germany, 2009.
http://www.net.fim.uni-passau.de/mcsos

12

Bifurcation

Edzard Höfig1, Stefan-Liviu Taranu2, and Stefan Neumann3

1 Fraunhofer Institute, Berlin, Germany,
edzard.hoefig@fokus.frauenhofer.de
2 Fraunhofer Institute, Berlin, Germany,

stefan-liviu.taranu@fokus.frauenhofer.de
3 Hasso-Plattner-Institute, Potsdam, Germany

stefan.neumann@hpi.uni-potsdam.de

Abstract. Using models for describing complex systems facilitates the
analysis concerning properties like stability and the convergence to equi-
libria. We discuss the influence of parameter modification regarding er-
ratic changes in the overall model behavior, by applying bifurcation the-
ory. Different kinds of bifurcation types, like Saddle-Node, Transcritical,
and Pitchfork Bifurcation are discussed for the family of one parame-
ter, one-dimensional vector fields by using examples and giving sufficient
conditions, which need to be fulfilled.

1 Foundations

Models of complex systems are commonly described using differential equations.
Often stability criteria are essential for the overall behavior of the considered
system. Following we discuss the analysis of differential equations regarding their
equilibria and stability properties.

1.1 Equilibria

Let the differential equation ẋ = X(x, µ) describe a complex system where x is
the system variable and µ is a parameter. Intuitively, the system is at equilibrium
when it is not changing over time. Therefore its derivation against the time
should be zero: X(x∗, µ∗) = 0, where (x∗, µ∗) give the points of equilibrium.

1.2 Stability

Some knowledge is necessary before we continue with the analysis of stability.
We therefore define the trajectory of the system as the path in time a system’s
behavior is following; and the closed orbit as a cyclic trajectory, i.e. if we begin
at a point of the trajectory, we will end up in the same point after a certain
amount of time. If we start analyzing the model when it is not in equilibrium,
then it might tend to evolve

1. towards the equilibrium (Figure 1.a), in which case the equilibrium is stable

13

2. away from the equilibrium (Figure 1.b) in which case the equilibrium is
unstable

3. around the equilibrium point (Figure 1.c) in which case the equilibrium is
neutrally stable or

4. towards a closed orbit around the equilibrium points (see Figure 2)

a b c

Fig. 1. Stability points

Fig. 2. Limit cycle

2 Bifurcation

The term “Bifurcation” refers to an erratic change in the qualitative behavior of
a model in response to a small and smooth modification of its parameter values.
Such a change might appear in continuous, as well as discrete systems. Being able
to determine the exact parameter values at which a bifurcation appears within
the phase space of a model is important for determining its overall stability.

14

The Logistics Map A popular example for demonstrating bifurcation is the
“logistics map” (see equation 1 as found in [1]). In the field of biology the logistics
map is used as a demographic model for capturing the effects of reproduction and
starvation in animal populations. It also demonstrates that chaotic behavior can
ensue from a simple, discrete, first-order differential equation due to bifurcation.

xn+1 = rx(1 − xn) (1)

The logistics map has a single parameter r, which is a positive number and
specifies the combined rate of reproduction and starvation. The variable x is a
number between zero and one and gives the size of the population for each step
n (which represents years).

Fig. 3. Bifurcation Diagram of the Logistics Map

Figure 3 shows a bifurcation diagram4 depicting the equilibria that this sys-
tem can assume as a function of the bifurcation parameter r in the range between
2.4 and 4.0. It can be seen that for values of r smaller than 3, the population
of x converges to a stable equilibrium. Values larger than 3 show bifurcation:
The population x first oscillates between two possible stable values. The larger
the value of r, the more different equilibria the population can assume, which
finally leads to chaotic behavior for the population size. The location where

4 Taken from Wikipedia

15

a model qualitatively changes its stability is referred to as a bifurcation point.
The logistics map example is only shown here to give the reader an initial under-
standing on bifurcation theory, in the following discussion we will use different
examples. Bifurcation points can be classified as several different kinds, and we
subsequently discuss three types: Saddle-Node, Transcritical and Pitchfork Bi-
furcation. For a more in-depth discussion about other types of bifurcation points,
please refer to [2, page 71ff.]

2.1 Saddle-Node Bifurcation

The term “Saddle-Node Bifurcation” refers to those bifurcation points in which
two equilibria meet and extinguish each other. We are going to demonstrate how
to analyze equilibrium points for their saddle-node bifurcation properties for the
family of one-parameter, one-dimensional vector fields as specified by equation
2. For sake of simplicity, we suppose that the equilibrium point for analysis is
supposed to be found at x = 0, µ = 0.

ẋ = X(x, µ) (2)

Following [2, page 75–77] the equation 2 might have a saddle-node bifurcation
point at (0,0), if it is a non-hyperbolic equilibrium point. This is the case if both
equations 3 hold. Furthermore, if both equations 4 are fulfilled, a saddle-node
bifurcation point has been found.

X(0, 0) = 0
∂X

∂x
(0, 0) = 0 (3)

∂X

∂µ
(0, 0) �= 0

∂2X

∂2x
(0, 0) �= 0 (4)

For an example consider equation 5

ẋ = µ − x2 (5)

The equilibria of this equation can be found as

x∗ = ±√
µ (6)

Following the process for determination of equilibria we find that there is
no equilibrium for µ < 0, one non-hyperbolic equilibrium for µ = 0, and two
equilibria for µ > 0. Calculating the Eigenvalues for the two last results we get
x∗ = ∓2

√
µ, giving us a stable equilibrium for µ > 0 and an unstable one for

µ < 0.

This is also depicted in Figure 4: case a corresponds to µ < 0, case b to µ = 0,
and case c shows the two equilibria x∗ = −√

µ and x∗ =
√

µ for µ > 0. Arrows
in the diagram indicate convergence, respectively divergence in the vicinity of
the equilibrium points. These phase portraits match to the general bifurcation

16

a

b

c

Fig. 4. Phase Portraits for a Saddle-Node Bifurcation

diagram in Figure 5, shows that a saddle-node bifurcation for a family X(x, µ)
leads to a curve of fixed points tangent to µ = 0 at x = 0 and lying entirely to
one side of µ = 0, as demanded by the saddle-node bifurcation conditions. As a
convention, the solid line represents the collection of stable equilibrium points
and the dashed line represents the collection of unstable equilibrium points. A
larger dot represents the bifurcation point and smaller ones represent equilibrium
points5.

parameter

e
q
u
i
l
i
b
r
i
u
m

Fig. 5. Saddle-Node Bifurcation Diagram

5 These conventions are valid for the entire document.

17

2.2 Transcritical Bifurcation

In a bifurcation the equilibria points change their stability, depending on the
change of the parameter. The number of equilibrium points remains the same in
the transcritical bifurcation, whereas in saddle-node bifurcation the number of
these points seems to disappear after certain value of the parameter.

Necessary Conditions Let

ẋ = X(x, µ) (x ∈ R, µ ∈ R) (7)

be the differential equation that describes a one-dimensional system. To simplify
the problem we will assume that the equilibrium point (x∗) and the parameter
(µ∗) are both equal to 0. In order for the system to achieve a non-hyperbolic
equilibrium in (0, 0) the equation 3 should be met. According to [2, page 78],
because there are two lines that intersect in (0, 0) (cf. Figure 6) equation 8 should
also be satisfied.

∂X

∂µ
(0, 0) = 0 (8)

Additionally equations 9 need to be satisfied:

∂2X

∂x
(0, 0) �= 0

∂2X

∂x∂µ
(0, 0) �= 0 (9)

As seen in Figure 6 there are 2 (red) lines – described by the equations x = µ

Fig. 6. Transcritical Bifurcation Diagram.

and x = 0 – that intersect in 0. Considering the convention, one can see that
the equilibrium points change their stability once they pass the bifurcation point
(0, 0).

18

Fig. 7. Transcritical Bifurcation Phases

Example Let’s take, for example the equation

ẋ = µx − x2 (10)

The solutions of this equation are x1 = 0 and x2 = µ.If µ = 0 then we will
have only an equilibrium point; for the other cases (µ �= 0) there will be two
equilibrium points.

The Jacobi matrix is DX(x, µ) = µ − 2x. We can see that when µ = 0 we
have only one equilibrium point x∗ = 0 and that is not hyperbolic. If µ �= 0 we
will have two solutions x∗

1 = 0 and x∗
2 = µ. We then calculate the Jacobi matrix

for each solution. We will have DX(x∗
1, µ) = µ which is stable for µ < 0 and

unstable for µ > 0; and DX(x∗
2, µ) = −µ which is unstable for µ < 0 and stable

for µ > 0. The points discussed above are represented with red in Figure 6.
In analyzing the behavior of the systems one needs to know first what are the

points where the system is stable. Once these points and their nature are known,
one can see what are the behaviors of the system around these equilibrium points.
This way one can have a clear picture of evolution of the model and can say with
precision its state at a particular moment in time.

An example in the real world is the predator-prey model, where the evolution
of the two species is analyzed. Supposing that the model is defined as in the
example above, where it has a dependency on parameter µ one can say that

– the population can be unstable and extinguish or increase to infinity for
µ = 0

– the population stabilizes at a high number of specimens
– the population stabilizes at a low number of specimens

2.3 Pitchfork Bifurcation

The necessary and sufficient conditions for analyzing “Pitchfork Bifurcation”
for the family of one-parameter and one-dimensional vector fields are similar to

19

these, which exist to exhibit a transcritical bifurcation. We take into considera-
tion an equation of the form like shown in equation 2 and again assume that an
equilibrium point can be found at x = 0 and µ = 0. Like in case of saddle-node
bifurcation and transcritical bifurcation we need to show that at the point (0, 0)
exist a non-hyperbolic equilibrium and so the equations 3 need to be fulfilled.
Additionally the equations 11 need to be fulfilled to exhibit pitchfork bifurcation
for the point (0, 0) in case we have a non-hyperbolic equilibrium.

∂X

∂µ
(0, 0) = 0

∂2X

∂2x
(0, 0) = 0

∂2X

∂µ∂x
(0, 0) �= 0

∂3X

∂3x
(0, 0) �= 0 (11)

An example equation, which fulfills all criteria for pitchfork-bifurcation is given
in equation 12 (compare [2, page 74–77]).

ẋ = µx − x3 (12)

For this example, setting µ = 0 the only possible equilibrium point is at x∗ = 0.
By deriving the Jacobi Matrix DX(x, µ) = µ − 3x2 and the Eigenvalue we find
out that this point is not hyperbolic because of DX(0, 0) = 0. For µ ≤ 0, x∗ = 0
is the only equilibrium point and it is asymptotically stable. For µ > 0 we can
find three equilibrium points.

x∗ = ±√
µ x∗ = 0 (13)

while the points at x∗ = ±√
µ are stable, the equilibrium point at x∗ = 0 is

Fig. 8. Phase Portraits for a Pitchfork Bifurcation

not stable. Figure 8 shows the phase portrait for a pitchfork bifurcation where
case a depicts the equilibrium point for µ < 0 and case b depicts the three
equilibrium points for µ > 0. Figure 9 shows the bifurcation diagram for the
pitchfork bifurcation including the information of the phase portrait shown in
Figure 8 in combination with the bifurcation point (at the point (0, 0)). Generally
a pitchfork bifurcation has the property that if a certain system is in an unique
stable state with µ ≤ 0, if the value for µ changes to µ > 0 it has two possibilites
to reach again a stable state.

20

Fig. 9. Pitchfork Bifurcation Diagram

References

1. May, R.M.: Simple mathematical models with very complicated dynamics. Nature
261 (1976) 459–467

2. Boccara, N.: Modeling Complex Systems (Graduate Texts in Contemporary
Physics). Springer (November 2003)

21

Equilibrium in size-based scheduling systems

Sebastien Soudan, Dinil Mon Divakaran

INRIA / Université de Lyon / ENS Lyon,
{Sebastien.Soudan,Dinil.Mon.Divakaran}@ens-lyon.fr

1 Introduction

Scheduling based on flow size (or flow age) has been gaining importance in the
recent times. Researchers have proposed different ways of scheduling based on
size, ranging from SRPT (Shortest Remaining Processing Time) to LAS (Least
Attained Service) to MLPS (Multi-level Processor Sharing) scheduling mecha-
nisms [1,2,3]. These scheduling strategies differ from the general model for flow
scheduling in the Internet. The queues in the Internet nodes, though are served
in an FCFS order at packet level, can be modeled using an M/G/1-PS (pro-
cessor sharing) queue at flow level. The motivation to deviate from this norm,
and schedule flows based on size, is to give better completion time to small
flows. Strictly speaking, the aim has been to improve the conditional mean re-
sponse time of small flows, at negligible cost to large flows. LAS, for example,
always gives highest priority to the flow that has attained the least service. More
details on size-based scheduling policies and the advantages they bring, can be
found in [4] and [2]. Note that, researchers use age-based scheduling to refer to the
scheduling schemes that are blind, in the sense that, they do not have information
about the size of the flow when it arrives, and hence uses its age (the number of
bytes/packets already scheduled) to make scheduling decision. Whereas, in this
paper, we use the broader phrase size-based scheduling to include all the policies
that use age or size to make scheduling decisions.

A user (an end-user or an application) sends a file as a single flow across
the Internet. We take this as a normal behaviour. If size-based scheduling is
deployed by an operator, there is a clear motivation for one or more users to
deviate from the normal behaviour. Indeed, there is an incentive in splitting a
flow (possibly large, but more precisely, one that is not small) into multiple small
flows to exploit the advantage (say, priority in scheduling) given to small flows
to improve the response time. If a considerable number of users deviate from
the normal behaviour, then the operator’s aim of giving shorter response time
to small flows might well be deceived. More importantly, an operator would like
to know if such user manipulations would lead to an unstable system behaviour.
This poses an important problem in the context of size-based scheduling systems
which, to the best of our knowledge, has not been addressed yet. This is the
problem we address in this work. In the scenario where users do not misbehave,
the stability issue (for network of queues) has been addressed in [5] recently.

The focus of this work is to study the equilibria in size-based scheduling sys-
tem where users misbehave. We believe this would lead to better understanding

22

of the implication of deploying a size-based scheduling mechanism. More descrip-
tion of the problem is given in Section 2. The model is elaborated in Section 3.
The existence of equilibria is studied in Section 4, for the case in which the
service rates are fixed.

2 Problem statement and assumptions

We study the problem that arises when an operator deploys a size-based schedul-
ing mechanism. Though there are different ways of scheduling based on size, our
focus is on size-based scheduling using two queues. Here, flows are classified
based on their sizes. Small flows are sent to one queue, and large flows to an-
other1. Each queue is assigned a specific service rate, such that the total service
rate equals the line capacity. The aim of operator in setting such a mechanism
is to give to reduce the average response times of small flows.

To formulate the objective of the operator, we assume Poisson flow arrivals.
Arrivals and service rates are in units of small flow. λx and λy are the arrival
rates for small and large flows respectively. Each large is F times a small flow.
The service rates at small and large queues are φx and φy respectively, such that
if C denotes the line capacity, φx + φy = C. Each queue is served using the PS
discipline; hence it is an M/G/1 − PS queue.

We study the existence of equilibria under the scenario where users cheat
by splitting a large flow into multiple small flows to improve their delay. This
is explored in two cases: (i) where the service rates assigned are static, (ii)
where the operators exhibits control by dynamically changing the service rates.
In the latter case, we explore the existence of interesting equilibria, and state
the conditions required for stability, under the assumption that the incentive for
players to migrate is to minimize the delay the flow will incur. Note that, by
‘players’, we consider only the users who migrate.

3 Model description

The fluid model used in this work is inspired by the one used in [6], where the
authors analyse dynamic bandwidth resource allocation and migration between
guaranteed performance and best effort traffic classes.

The two-queues model is depicted in Fig. 1. The queue for small flows is
called small queue and is referred to as Qx. The other queue is called the large
queue which is denoted by Qy. The number of flows at Qx is represented by x.
At the large queue, this number (in number of small flows) is denoted by y. We
assume infinite queues. The service rates, φx and φy, are also in number of small
flows. They are both assumed to take non-zero values.

1 A flow is called small if its size is less than a threshold, θ. In practice, θ bytes of
every large flow also go to the small queue. But, we ignore this to keep the model
simple. Besides, this affects neither the analysis nor the results given here.

23

x

y

λx

λyF

φx

φy

λyFm(x, y)

Fig. 1. Two-queues model.

The system parameters φx and φy are set by the operator. System state is
modeled using averaged queue sizes: x and y. Depending on the measured de-
lay values, a user might decide to split a large flow into multiple small flows.
Therefore, a fraction of the flows arriving at the large queue might be migrated
to the small queue. This migration function, which is a result of aggregate user
behaviour, is represented as m(x, y). It is linear in λyF as a result of the inte-
gration of individual user that send dλy each:

∫
mdλy = λym. We take m to be

a non-negative and continuous function of x and y. m represents the fraction of
λy which goes to Qx.

0 ≤ m(x, y) ≤ 1 (1)

For every large flow that migrates, it adds an overhead of η (e.g. connection
establishment cost, slow-start cost). The rate equations can now be written as:

dx

dt
= λx − φx + λyFm(x, y)(1 + η), x > 0 (2)

dy

dt
= λyF − φy − λyFm(x, y), y > 0 (3)

The rate equations are different at the borders. For x = 0,

dx

dt

∣∣∣∣
x=0

= [λx − φx + λyFm(x, y)(1 + η)]+ (4)

and for y = 0,
dy

dt

∣∣∣∣
y=0

= [λyF − φy − λyFm(x, y)]+. (5)

4 System analysis for static service rates

This section details the analysis of a system where the service rates at both the
queues are fixed.

Proposition 4.1 An interior point (x, y) is an equilibrium iff φx −λx = λyF −
φy and m is such that m(x, y) = φx−λx

λyF and 0 ≤ m(x, y) ≤ 1.

24

Proof (Proof of Prop. 4.1).
Let (x, y) be an interior point. It is an equilibrium if and only if :

⎧⎨
⎩

dx
dt = 0
dy
dt = 0
0 ≤ m(x, y) ≤ 1

⇐⇒

⎧⎪⎨
⎪⎩

m(x, y) = φx−λx

λyF (1+η)

m(x, y) = λyF−φy

λyF

0 ≤ m(x, y) ≤ 1

�
Remark 4.2 Existence of interior equilibrium does not only depend on m func-
tion but also on the arrival rates and service rates. Meaning that they can only
exist in very specific cases.

Proposition 4.3 (0, 0) is an equilibrium point if and only if:
⎧⎪⎨
⎪⎩

m(0, 0) ≤ φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(0, 0)
0 ≤ m(0, 0) ≤ 1

Proof (Proof of Prop. 4.3). Using equations (4) and (5), we obtain that (0, 0) is
an equilibrium point if and only if:

⎧⎪⎨
⎪⎩

dx
dt

∣∣
x=0

= 0
dy
dt

∣∣∣
y=0

= 0

0 ≤ m(0, 0) ≤ 1

⇐⇒
⎧⎨
⎩

λx−φx

1+η + λyFm(0, 0) ≤ 0
λyF − φy − λyFm(0, 0) ≤ 0
0 ≤ m(0, 0) ≤ 1

⇐⇒

⎧⎪⎨
⎪⎩

m(0, 0) ≤ φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(0, 0)
0 ≤ m(0, 0) ≤ 1

�
Proposition 4.4 (0, y) with y > 0 is an equilibrium point if and only if:

⎧⎪⎨
⎪⎩

m(0, y) ≤ φx−λx

λyF (1+η)

m(0, y) = λyF−φy

λyF

0 ≤ m(0, y) ≤ 1

Proof (Proof of Prop. 4.4). Using equations (4) and (3), we obtain that (0, y) is
an equilibrium point if and only if:

⎧⎨
⎩

dx
dt

∣∣
x=0

= 0
dy
dt = 0
0 ≤ m(0, y) ≤ 1

⇐⇒
⎧⎨
⎩

λx−φx

1+η + λyFm(0, y) ≤ 0
λyF − φy − λyFm(0, y) = 0
0 ≤ m(0, y) ≤ 1

⇐⇒

⎧⎪⎨
⎪⎩

m(0, y) ≤ φx−λx

λyF (1+η)

m(0, y) = λyF−φy

λyF

0 ≤ m(0, y) ≤ 1
�

25

Proposition 4.5 (x, 0) with x > 0 is an equilibrium point if and only if:
⎧⎪⎨
⎪⎩

m(x, 0) = φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(x, 0)
0 ≤ m(x, 0) ≤ 1

Proof (Proof of Prop. 4.5). Using equations (2) and (5), we obtain that (x, 0) is
an equilibrium point if and only if:

⎧⎪⎨
⎪⎩

dx
dt = 0
dy
dt

∣∣∣
y=0

= 0

0 ≤ m(0, y) ≤ 1

⇐⇒
⎧⎨
⎩

λx−φx

1+η + λyFm(x, 0) = 0
λyF − φy − λyFm(x, 0) ≤ 0

0 ≤ m(x, 0) ≤ 1

⇐⇒

⎧⎪⎨
⎪⎩

m(x, 0) = φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(x, 0)
0 ≤ m(x, 0) ≤ 1

�

4.1 Discussion

The aim of a network operator in deploying such a scheduling mechanism is to
give shorter delays to small flows, at negligible cost to large flows. With this in
mind, we can now evaluate which among the equilibrium points are interesting
and useful (from the perspective of a network operator).

To start with, let us consider the equilibrium point (0, 0). The inequalities of
Prop. 4.3 give the shaded region of Fig. 2, where one m can exist to make (0, 0)
an equilibrium. This region is dominated by the line λx+λyF = C, which defines
the region where a single queue system would have empty queue equilibrium.
Thus, this equilibrium (in the two queue system) is not of great interest for the
network operator.

The lines (x, 0) and (0, y) constitute the remaining border point equilibria.
(x, 0) is the set of those points where there is queueing in the small queue, but
not at the large queue. For this reason, these are not desirable equilibria from
operator’s point of view. Similarly existence of (0, y) means, there is nothing
queueing at Qx. So, there is incentive for users to migrate to Qx. Hence (0, y)
will not be stable.

5 Conclusions and future work

As seen in previous section, interior point equilibrium are only possible in lim-
iting cases where the surplus rate at the large queue is exactly equal to the
surplus of service of x, with the additional constraint that m transfers exactly
this. This situation is too constrained to happen in a real scenario. To introduce
more flexibility, the operator can control the service rate. But this requires the

26

0
λx

λyF

C

Cφx

φy

φx

1+η + φy

Fig. 2. Existence region of equilibrium (0, 0) under static service rate.

use of some observable parameters of the system. In this system, the only ob-
servable parameters are x and y as arrival rates λx and λy are not separable at
the queues.

References

1. L. Kleinrock, Queueing Systems, Volume II: Computer Applications. Wiley Inter-
science, 1976.

2. K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg, “Differentiation Between
Short and Long TCP Flows: Predictability of the Response Time,” in Proc. IEEE
INFOCOM, 2004.

3. C. Sun, L. Shi, C. Hu, and B. Liu, “DRR-SFF: A Practical Scheduling Algorithm
to Improve the Performance of Short Flows,” in ICNS ’07: Proceedings of the Third
International Conference on Networking and Services, 2007, p. 13.

4. M. Nuyens and A. Wierman, “The foreground-background queue: A survey,” Per-
form. Eval., vol. 65, no. 3-4, pp. 286–307, 2008.

5. P. Brown, “Stability of networks with age-based scheduling,” in Proc. IEEE INFO-
COM, 2007, pp. 901–909.

6. E. Altman, A. Orda, and N. Shimkin, “Bandwidth allocation for guaranteed versus
best effort service categories,” Queueing Syst. Theory Appl., vol. 36, no. 1-3, pp.
89–105, 2000.

27

