
Type-Safe Feature-Oriented
Product Lines

Sven Apel†, Christian Kästner‡, Armin Größlinger†, and
Christian Lengauer†

† Department of Informatics and Mathematics, University of Passau
{apel,groesslinger,lengauer}@uni-passau.de
‡ School of Computer Science, University of Magdeburg

kaestner@iti.cs.uni-magdeburg.de

Technical Report, Number MIP-0909
Department of Informatics and Mathematics

University of Passau, Germany
June 2009

Type-Safe Feature-Oriented Product Lines

Sven Apel†, Christian Kästner‡, Armin Größlinger†, and Christian Lengauer†

† Department of Informatics and Mathematics, University of Passau
{apel,groesslinger,lengauer}@uni-passau.de

‡ School of Computer Science, University of Magdeburg
kaestner@iti.cs.uni-magdeburg.de

Abstract. A feature-oriented product line is a family of programs that share a
common set of features. A feature implements a stakeholder’s requirement, rep-
resents a design decision and configuration option and, when added to a program,
involves the introduction of new structures, such as classes and methods, and the
refinement of existing ones, such as extending methods. With feature-oriented
decomposition, programs can be generated, solely on the basis of a user’s selec-
tion of features, by the composition of the corresponding feature code. A key
challenge of feature-oriented product line engineering is how to guarantee the
correctness of an entire feature-oriented product line, i.e., of all of the member
programs generated from different combinations of features. As the number of
valid feature combinations grows progressively with the number of features, it
is not feasible to check all individual programs. The only feasible approach is
to have a type system check the entire code base of the feature-oriented product
line. We have developed such a type system on the basis of a formal model of a
feature-oriented Java-like language. We demonstrate that the type system ensures
that every valid program of a feature-oriented product line is well-typed and that
the type system is complete.

1 Introduction

Feature-oriented programming (FOP) aims at the modularization of programs in terms
of features [55,13]. A feature implements a stakeholder’s requirement and is typically
an increment in program functionality [55,13]. Contemporary feature-oriented pro-
gramming languages and tools such as AHEAD [13], Xak [2], CaesarJ [48], Class-
box/J [14], FeatureHouse [9], and FeatureC++ [10] provide a variety of mechanisms
that support the specification, modularization, and composition of features. A key idea
is that a feature is implemented by a distinct code unit, called a feature module. When
added to a base program, it introduces new structures, such as classes and methods, and
refines existing ones, such as extending methods [43,11]. A program that is decomposed
into features is called henceforth a feature-oriented program.1

1 Typically, feature-oriented decomposition is orthogonal to class-based or functional
decomposition [63,49,61]. A multitude of modularization and composition mecha-
nisms [17,26,24,45,46,56,65] have been developed in order to allow programmers to decom-
pose a program along multiple dimensions [63]. Feature-oriented languages and tools provide
a significant subset of these mechanisms [11].

Beside the decomposition of programs into features, the concept of a feature is
useful for distinguishing different, related programs thus forming a software product
line [35,21]. Typically, programs of a common domain share a set of features but also
differ in other features. For example, suppose an email client for mobile devices that
supports the protocols IMAP and POP3 and another client that supports POP3, MIME,
and SSL encryption. With a decomposition of the two programs into the features IMAP,
POP3, MIME, and SSL, both programs can share the code of the feature POP3. Since
mobile devices have only limited resources, unnecessary features should be removed.

With feature-oriented decomposition, programs can be generated solely on the ba-
sis of a user’s selection of features by the composition of the corresponding feature
modules. Of course, not all combinations of features are legal and result in correct
programs [12]. A feature model describes which features can be composed in which
combinations, i.e., which programs are valid [35,21]. It consists of an (ordered) set
of features and a set of constraints on feature combinations [21,12]. For example, our
email client may have different rendering engines for HTML text, e.g., the Mozilla en-
gine or the Safari engine, but only one at a time. A set of feature modules along wit a
feature model is called a feature-oriented product line [12].

An important question is how the correctness of feature-oriented programs, in par-
ticular, and product lines, in general, can be guaranteed. A first problem is that con-
temporary feature-oriented languages and tools usually involve a code generation step
during composition in which the code is transformed into a lower-level representation.
In previous work, we have addressed this problem by modeling feature-oriented mech-
anisms directly in the formal syntax and semantics of a core language, called Feature
Featherweight Java (FFJ). The type system of FFJ ensures that the composition of
feature modules is type-safe [8].

In this paper, we address a second problem: How can the correctness of an entire
feature-oriented product line be guaranteed? A naive approach would be to type-check
all valid programs of a product line using a type checker like the one of FFJ [8]. How-
ever, this approach does not scale; already for 34 implemented optional features, a vari-
ant can be generated for every person on the planet. Noticing this problem, Czarnecki
and Pietroszek [22] and Thaker et al. [64] suggested the development of a type sys-
tem that checks the entire code base of the feature-oriented product line, instead of all
individual feature-oriented programs. In this scenario, a type checker must analyze all
feature modules of a product line on the basis of the feature model. We will show that,
with this information, the type checker can ensure that every valid program variant that
can be generated is type-safe. Specifically, we make the following contributions:

– We provide a condensed version of FFJ, which is in many respects more elegant
and concise than its predecessor [8].

– We develop a formal type system that uses information about features and con-
straints on feature combinations in order to type-check a product line without gen-
erating every program.

– We prove correctness by proving that every program generated from a well-formed
product line is well-formed, as long as the feature selection satisfies the constraints
of the product line. Furthermore, we prove completeness by proving that the well-

2

typedness of all programs of a product line guarantees that the product line is well-
typed as a whole.

– We offer an implementation of FFJ, including the proposed type system, which can
be downloaded for evaluation and for experiments with further feature-oriented
language and typing mechanisms.

Or work differs in many respects from previous and related work (see Section 5
for a comprehensive discussion). Most notably, Thaker et al. have implemented a type
system for feature-oriented product lines and conducted several case studies [64]. We
take their work further with a formalization and a correctness and completeness proof.

Furthermore, our work differs in many respects from previous work on modeling
and type-checking feature-oriented and related programming mechanisms. Most no-
tably, we model the feature-related mechanisms directly in FFJ’s syntax and semantics,
without any transformation to a lower-level representation, and we stay very close to
the syntax of contemporary feature-oriented languages and tools (see Section 5). We
begin with a brief introduction to FFJ.

2 Feature-Oriented Programs in FFJ

In this section, we introduce the language FFJ. Originally, FFJ was designed for feature-
oriented programs [8,7]. We extend FFJ in Section 3 to support feature-oriented product
lines, i.e., to support the representation of multiple alternative program variants at a
time.

2.1 An Overview of FFJ

FFJ is a lightweight feature-oriented language that has been inspired by Featherweight
Java (FJ) [32]. As with FJ, we have aimed at minimality in the design of FFJ. FFJ
provides basic constructs like classes, fields, methods, and inheritance and only a few
new constructs capturing the core mechanisms of feature-oriented programming. But,
so far, FFJ’s type system has not supported the development of feature-oriented product
lines. That is, the feature modules written in FFJ are interpreted as a single program.
We will change this in Section 3.

An FFJ program consists of a set of classes and refinements. A refinement extends a
class that has been introduced previously. Each class and refinement is associated with
a feature. We say that a feature introduces a class or applies a refinement to a class.
Technically, the mapping between classes/refinements and the features they belong to
can be established in different ways, e.g., by extending the language with modules rep-
resenting features [48,14,23] or by grouping classes and refinements that belong to a
feature in packages or directories [13,10].

Like in FJ, each class declares a superclass, which may be the class Object. Refine-
ments are defined using the keyword refines. The semantics of a refinement applied to
a class is that the refinement’s members are added to and merged with the member of
the refined class. This way, a refinement can add new fields and methods to the class
and override existing methods (declared by overrides).

3

On the left side in Figure 1, we show an excerpt of the code of a basic email client,
called EMAILCLIENT, (top) and a feature, called SSL, (bottom) in FFJ. The feature
SSL adds the class SSL (Lines 7–10) to the email client’s code base and refines the
class Trans in order to encrypt outgoing messages (Lines 11–15). To this effect, the
refinement of Trans adds a new field key (Line 12) and overrides the method send of
class Trans (Lines 13-15).

Feature EMAILCLIENT

1 class Msg extends Object {
2 String serialize() { ... }
3 }
4 class Trans extends Object {
5 Bool send(Msg m) { ... }
6 }

Feature SSL

7 class SSL extends Object {
8 Trans trans;
9 Bool send(Msg m) { ... }

10 }
11 refines class Trans {
12 Key key;
13 overrides Bool send(Msg m) {
14 return new SSL(this).send(m);
15 }
16 }

refinement chain

feature

refinement

class

inherits

refines

SSLEmailClient

Object

Trans

Msg

Trans

SSL

Fig. 1. A feature-oriented email client supporting SSL encryption.

Typically, a programmer applies multiple refinements to a class by composing a
sequence of features. This is called a refinement chain. A refinement that is applied
immediately before another refinement in the chain is called its predecessor. The order
of the refinements in a refinement chain is determined by their composition order. On
the right side in Figure 1, we depict the refinement and inheritance relationships of our
email example.

Fields are unique within the scope of a class and its inheritance hierarchy and re-
finement chain. That is, a refinement or subclass is not allowed to add a field that has
already been defined in a predecessor in the refinement chain or in a superclass. For
example, a further refinement of Trans would not be allowed to add a field key, since
key has been introduced by a refinement of feature SSL already. With methods, this is
different. A refinement or subclass may add new methods (overloading is prohibited)
and override existing methods. In order to distinguish the two cases, FFJ expects the
programmer to declare whether a method overrides an existing method (using the mod-
ifier overrides). For example, the refinement of Trans in feature SSL overrides the
method send introduced by feature MAIL; for subclasses, this is similar.

The distinction between method introduction and overriding allows the type system
to check (1) whether an introduced method inadvertently replaces or occludes an ex-
isting method with the same name and (2) whether, for every overriding method, there
is a proper method to be overridden. Apart from the modifier overrides, a method in
FFJ is similar to a method in FJ. That is, a method body is an expression (prefixed with

4

return) and not a sequence of statements. This is due to the functional nature of FFJ
and FJ. Furthermore, overloading of methods (introducing methods with equal names
and different argument types) is not allowed in FFJ (and FJ).

As shown in Figure 1, refinement chains grow from left to right and inheritance
hierarchies from top to bottom. When looking up a method body, FFJ traverses the
combined inheritance and refinement hierarchy of an object and selects the right-most
and bottom-most body of a method declaration or method refinement that is compati-
ble. This kind of lookup is necessary since we model features directly in FFJ, instead
of generating and evaluating FJ code [40]. First, the FFJ calculus looks for a method
declaration in the refinement chain of the object’s class, starting with the last refinement
back to the class declaration itself. The first body of a matching method declaration is
returned. If the method is not found in the class’ refinement chain or in its own dec-
laration, the methods in the superclass (and then the superclass’ superclass, etc.) are
searched, each again from the most specific refinement of the class declaration itself.
The field lookup works similarly, except that the entire inheritance and refinement hier-
archy is searched and the fields are accumulated in a list. In Figure 2, we illustrate the
processes of method body and field lookup schematically.

Ref(n−1,1) Ref(n−1,k−1)

Ref(n,1) Ref(n,m)Classn Ref(n,m−1)

Ref(n,1) Ref(n,p)

Ref

Class1 Ref(n,p−1)

(n−1,k)Classn−1

Object

Fig. 2. Order of method body and field lookup in FFJ.

2.2 Syntax of FFJ

Before we go into detail, let us explain some notational conventions. We abbreviate lists
in the obvious ways:

– C is shorthand for C1, . . . , Cn

– C f is shorthand for C1 f1, . . . , Cn fn
– C f; is shorthand for C1 f1; . . . ; Cn fn;
– t : C is shorthand for t1 : C1, . . . , tn : Cn

– C <: D is shorthand for C1 <: D1 . . . Cn <: Dn

– . . .

Note that, depending on the context, blanks, commas, or semicolons separate the el-
ements of a list. The context will make clear which separator is meant. The symbol •

5

denotes the empty list and lists of field declarations, method declarations, and parameter
names must not contain duplicates. We use the metavariables A–E for class names, f–h
for field names, and m for method names. Feature names are denoted by Greek letters.

In Figure 3, we depict the syntax of FFJ in extended Backus-Naur-Form. An FFJ
program consists of a set of class and refinement declarations. A class declaration L
declares a class with the name C that inherits from a superclass D and consists of a list
C f; of fields and a list M of method declarations.2 A refinement declaration R consists
of a list C f; of fields and a list M of method declarations.

L ::= class declarations:
class C extends D { C f; M }

R ::= refinement declarations:
refines class C { C f; M }

M ::= method declarations:
[overrides] C m(C x) { return t; }

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values:
new C(v) object creation

Fig. 3. Syntax of FFJ in extended BNF.

A method m expects a list C x of arguments and declares a body that returns only
a single expression t of type C. Using the modifier overrides, a method declares that it
intends to override another method with the same name and signature. Where we want
to distinguish methods that override others and methods that do not override others, we
call the former method introductions and the latter method refinements

Finally, there are five forms of terms: the variable, field access, method invocation,
object creation, and type cast, which are taken from FJ without change. The only values
are object creations whose arguments are values as well.

2.3 FFJ’s Class Table

Declarations of classes and refinements can be looked up via a class table CT . The com-
piler fills the class table during the parser pass. In contrast to FJ, class and refinement
declarations are identified not only by their names but, additionally, by the names of
the enclosing features. For example, in order to retrieve the declaration of class Trans,
introduced by feature MAIL, in our example of Figure 1, we write CT(MAIL.Trans);
in order to retrieve the refinement of class Trans applied by feature SSL, we write
CT(SSL.Trans). We call Φ.C the qualified type of class C in feature Φ. In FFJ, class
and refinement declarations are unique with respect to their qualified types. This prop-
erty is ensured because of the following sanity conditions: a feature is not allowed

2 The concept of a class constructor is unnecessary in FFJ and FJ [54]. Its omittance simplifies
the syntax, semantics, and type rules significantly without loss of generality.

6

– to introduce a class or refinement twice inside a single feature module and
– to refine a class that the feature has just introduced.

These are common sanity conditions in feature-oriented languages and tools [13,10,9].
As for FJ, we impose further sanity conditions on the class table and the inheritance

relation:

– CT (Φ.C) = class C. . . or refines class C. . . for every qualified type Φ.C ∈
dom(CT); Feature Base plays the same role for features as Object plays for
classes; it is a symbol denoting the empty feature at which lookups terminate.

– Base.Object /∈ dom(CT);
– for every class name C appearing anywhere in CT , we have Φ.C ∈ dom(CT) for

at least one feature Φ; and
– the inheritance relation contains no cycles (incl. self-cycles).

2.4 Refinement in FFJ

Information about the refinement chain of a class can be retrieved using the refinement
table RT . The compiler fills the refinement table during the parser pass. RT (C) yields
a list of all features that either introduce or refine class C. The leftmost element of
the result list is the feature that introduces the class C and, then, from left to right, the
features are listed that refine class C in the order of their composition. In our example of
Figure 1, RT (Trans) yields the list EMAILCLIENT, SSL. There is only a single sanity
condition for the refinement table:

– RT (C) = Φ for every type C ∈ dom(CT), with Φ being the features that intro-
duce and refine class C.

In Figure 4, we show two functions for the navigation of the refinement chain that
rely on RT . Function last returns, for a class name C, a qualified type Ψn.C, in which
Ψn refers to the feature that applies the final refinement to class C; if a class is not
refined at all, Ψn refers to the feature that introduces class C. Function pred returns,
for a qualified type Φ.C, another qualified type Ψn.C, in which Ψn refers to the feature
that introduces or refines class C and that is the immediate predecessor of Φ in the
refinement chain; if there is no predecessor, Base.Object is returned.

Navigating along the refinement chain

RT (C) = Ψ

last(C) = Ψn.C
RT (C) = Ψ, Φ, Ω Ψ 6= •

pred(Φ.C) = Ψn.C
RT (C) = Φ, Ω

pred(Φ.C) = Base.Object

Fig. 4. Refinement in FFJ.

7

2.5 Subtyping in FFJ

In Figure 5, we show the subtype relation of FFJ. The subtype relation <: is defined
by one rule each for reflexivity and transitivity and one rule for relating the type of a
class to the type of its immediate superclass. It is not necessary to define subtyping over
qualified types because only classes (not refinements) declare superclasses and there is
only a single declaration per class.

Subtyping C <: D

C <: C
C <: D D <: E

C <: E
CT(Φ.C) = class C extends D { . . . }

C <: D

Fig. 5. Subtyping in FFJ.

2.6 Auxiliary Definitions of FFJ

In Figure 6, we show the auxiliary definitions of FFJ. Function fields searches the re-
finement chain from right to left and accumulates the fields into a list (using the comma
as concatenation operator). If there is no further predecessor in the refinement chain,
i.e., we have reached a class declaration, then the refinement chain of the superclass is
searched (see Figure 2). If Base.Object is reached, the empty list is returned (denoted
by •).

Function mbody looks up the most specific and most refined body of a method m. A
body consists of the formal parameters x of a method and the actual term t representing
the content. The search is like in fields. First, the refinement chain is searched from
right to left and, then, the superclasses’ refinement chains are searched, as illustrated in
Figure 2. Note that [overrides] means that a given method declaration may (or may not)
have the modifier. This way, we are able to define uniform rules for method introduction
and method refinement. Function mtype yields the signature B→ B0 of a declaration
of method m. The lookup is like in mbody .

Predicate introduce is used to check whether a class has been introduced by mul-
tiple features and whether a field or method has been introduced multiple times in a
class. Precisely, it states, in the case of classes, whether C has not been introduced by
any feature other than Φ and whether a method m or a field f has not been introduced
by Φ.C or in any of its predecessors or superclasses. To evaluate it, we check, in the
case of classes, whether CT (Ψ.C) yields a class declaration or not, for any feature Ψ
different from Φ, in the case of methods, whether mtype yields a signature or not and,
in the case of fields, whether f is defined in the list of fields returned by fields .

Predicate refine states whether, for a given refinement, a proper class has been
declared previously in the refinement chain. The predicate override states whether a
method m has been introduced before in some predecessor of Φ.C and whether the
previous declaration of m has the given signature.

8

Field lookup fields(Φ.C) = C f

fields(Base.Object) = •

CT (Φ.C) = class C extends D { C f; M }
fields(Φ.C) = fields(last(D)), C f

CT (Φ.C) = refines class C { C f; M }
fields(Φ.C) = fields(pred(Φ.C)), C f

Method body lookup mbody(m, Φ.C) = (x, t)

[overrides] B m(B x) { return t; } ∈ M
CT (Φ.C) = class C extends D { C f; M }

mbody(m, Φ.C) = (x, t)

m is not defined in M
CT (Φ.C) = class C extends D { C f; M }

mbody(m, Φ.C) = mbody(m, last(D))

[overrides] B m(B x) { return t; } ∈ M
CT (Φ.C) = refines class C { C f; M }

mbody(m, Φ.C) = (x, t)

m is not defined in M
CT (Φ.C) = refines class C { C f; M }

mbody(m, Φ.C) = mbody(m, pred(Φ.C))

Method type lookup mtype(m, Φ.C) = C→C

B0 m(B x) { return t; } ∈ M
CT (Φ.C) = class C extends D { C f; M }

mtype(m, Φ.C) = B→B0

m is not defined in M
CT (Φ.C) = class C extends D { C f; M }

mtype(m, Φ.C) = mtype(m, last(D))

B0 m(B x) { return t; } ∈ M
CT (Φ.C) = refines class C { C f; M }

mtype(m, Φ.C) = B→B0

m is not defined in M
CT (Φ.C) = refines class C { C f; M }
mtype(m, Φ.C) = mtype(m, pred(Φ.C))

Valid class introduction introduce(Φ.C)

@ Ψ : (CT (Ψ.C) = class C . . . ∧ Φ 6= Ψ)

introduce(Φ.C)

Valid field introduction introduce(f, Φ.C)

fields(Φ.C) = E h f /∈ h
introduce(f, Φ.C)

Valid method introduction introduce(m, Φ.C)

(m, Φ.C) /∈ dom(mtype)

introduce(m, Φ.C)

Valid class refinement refine(Φ.C)

RT (C) = Ψ, Φ, Ω CT (Ψ1.C) = class C . . .

refine(Φ.C)

Valid method overriding override(m, Φ.C, C→C0)

mtype(m, Φ.C) = B→B0 C = B C0 = B0

override(m, Φ.C, C→C0)

Fig. 6. Auxiliary definitions of FFJ.

9

2.7 Evaluation of FFJ Programs

Each FFJ program consists of a class table and a term.3 The term is evaluated using the
evaluation rules shown in Figure 7. The evaluation terminates when a value, i.e., a term
of the form new C(v), is reached. Note that we use a direct semantics of class refine-
ment [40]. That is, the field and method lookup mechanisms incorporate all refinements
when a class is searched for fields and methods. An alternative, which is discussed in
Section 5, would be a flattening semantics, i.e., to merge a class in a preprocessing step
with all of its refinements into a single declaration.

fields(last(C)) = C f
(new C(v)).fi −→ vi

(E-PROJNEW)

mbody(m, last(C)) = (x, t0)

(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] t0
(E-INVKNEW)

C <: D
(D)(new C(v)) −→ new C(v)

(E-CASTNEW)

t0 −→ t′0
t0.f −→ t′0.f

(E-FIELD)

t0 −→ t′0
t0.m(t) −→ t′0.m(t)

(E-INVKRECV)

ti −→ t′i
v0.m(v, ti, t) −→ v0.m(v, t′i, t)

(E-INVKARG)

ti −→ t′i
new C(v, ti, t) −→ new C(v, t′i, t)

(E-NEWARG)

t0 −→ t′0
(C)t0.f −→ (C)t′0.f

(E-CAST)

Fig. 7. Evaluation of FFJ programs.

Using the subtype relation <: and the auxiliary functions fields and mbody, the eval-
uation of FFJ is fairly simple. The first three rules are most interesting (the remaining
rules are just congruence rules). Rule E-PROJNEW describes the projection of a field
from an instantiated class. A projected field fi evaluates to a value vi that has been
passed as argument to the instantiation. Function fields is used to look up the fields
of the given class. It receives last(C) as argument since we want to search the entire
refinement chain of class C from right to left (cf. Figure 2).

Rule E-PROJINVK evaluates a method invocation by replacing the invocation with
the method’s body. The formal parameters of the method are substituted in the body for

3 The refinement table is not relevant for evaluation.

10

the arguments of the invocation; the value on which the method is invoked is substituted
for this. The function mbody is called with the last refinement of the class C in order to
search the refinement chain from right to left and return the most specific method body
(cf. Figure 2).

Rule E-CASTNEW evaluates an upcast by simply removing the cast. Of course, the
premise must be that the cast is really an upcast and not a downcast or an incorrect cast.

2.8 Type Checking FFJ Programs

The type relation of FFJ consists of the type rules for terms and the well-formedness
rules for classes, refinements, and methods, shown in Figures 8 and 9.

Term typing Γ ` t : C

x : C ∈ Γ

Γ ` x : C
(T-VAR)

Γ ` t0 : C0 fields(last(C0)) = C f
Γ ` t0.fi : Ci

(T-FIELD)

Γ ` t0 : C0 Γ ` t : C mtype(m, last(C0)) = D→C C <: D
Γ ` t0.m(t) : C

(T-INVK)

Γ ` t : C fields(last(C)) = D f C <: D
Γ ` new C(t) : C

(T-NEW)

Γ ` t0 : D D <: C
Γ ` (C)t0 : C

(T-UCAST)

Γ ` t0 : D C <: D C 6= D
Γ ` (C)t0 : C

(T-DCAST)

Γ ` t0 : D C 6<: D D 6<: C stupid warning

Γ ` (C)t0 : C
(T-SCAST)

Fig. 8. Term typing in FFJ.

Term Typing Rules. A term typing judgment is a triple consisting of a typing context
Γ, a term t, and a type C (see Figure 8).

Rule T-VAR checks whether a free variable is contained in the typing context. Rule
T-FIELD checks whether a field access t0.f is well-typed. Specifically, it checks whether
f is declared in the type of t0 and whether the type f equals the type of the entire term.
Rule T-INVK checks whether a method invocation t0.m(t) is well-typed. To this end,
it checks whether the arguments t of the invocation are subtypes of the types of the

11

Method typing M OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = class C extends D { C f; M } introduce(m, last(D))

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = class C extends D { C f; M } override(m, last(D), B→B0)

overrides B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = refines class C { C f; M } introduce(m, pred(Φ.C))

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = refines class C { C f; M } override(m, pred(Φ.C), B→B0)

overrides B0 m(B x) { return t0; } OK a Φ.C

Class typing L OK a Φ

∀ f ∈ f : introduce(f, last(D)) introduce(Φ.C) M OK a Φ.C
class C extends D { C f; M } OK a Φ

Refinement typing R OK a Φ

∀ f ∈ f : introduce(f, pred(Φ.C)) refine(Φ.C) M OK a Φ.C

refines class C { C f; M } OK a Φ

Fig. 9. Well-formedness rules of FFJ.

12

formal parameters of m and whether the return type of m equals the type of the entire
term. Rule T-NEW checks whether an object creation new C(t) is well-typed in that it
checks whether the arguments t of the instantiation of C are subtypes of the types D of
the fields of C and whether C equals the type of the entire term. The rules T-UCAST,
T-DCAST, and T-SCAST check whether casts are well-typed. In each rule, it is checked
whether the type C the term t0 is cast to is a subtype, supertype, or unrelated type of the
type of t0 and whether C equals the type of the entire term.4

Well-Formedness Rules. In Figure 9, we show FFJ’s well-formedness rules of classes,
refinements, and methods.

The typing judgments of classes and refinements are binary relations between a
class or refinement declaration and a feature, written L OK a Φ and R OK a Φ. The
rule of classes checks whether all methods are well-formed in the context of the class’
qualified type. Moreover, it checks whether none of the fields of the class declaration
is introduced multiple times in the combined inheritance and refinement hierarchy and
whether there is no feature other than Φ that introduces a class C (using introduce). The
well-formedness rule of refinements is analogous, except that the rule checks whether
a corresponding class has been introduced before (using refine).

The typing judgment of methods is a binary relation between a method declaration
and the qualified type that declares the method, written M OK a Φ.C. There are four
different rules for methods (from top to bottom in Figure 9)

1. that do not override another method and that are declared by classes,
2. that override another method and that are declared by classes,
3. that do not override another method and that are declared by refinements,
4. that override another method and that are declared by refinements.

All four rules check whether the type E0 of the method body is a subtype of the declared
return type B0 of the method declaration. For methods that are being introduced, it is
checked whether no method with an identical name has been introduced in a superclass
(Rule 1) or in a predecessor in the refinement chain (Rule 3). For methods that override
other methods, it is checked whether a method with identical name and signature exists
in the superclass (Rule 2) or in a predecessor in the refinement chain (Rule 4).

Well-Typed FFJ Programs. Finally, an FFJ program, consisting of a term, a class
table, and a refinement table, is well-typed if

– the term is well-typed (checked using FFJ’s term typing rules),
– all classes and refinements stored in the class table are well-typed (checked using

FFJ’s well-formedness rules), and
– the class and refinement tables are well-formed (ensured by the corresponding san-

ity conditions).
4 Rule T-SCAST is needed only for the small step semantics of FFJ (and FJ) in order to be

able to formulate and prove the type preservation property. FFJ (and FJ) programs whose type
derivation contains this rule (i.e., the premise stupid warning appears in the derivation) are
not further considered (cf. [32]).

13

Type Soundness of FFJ. The type system of FFJ is sound. We can prove this using the
standard theorems of preservation and progress [66]:

THEOREM 2.1 (Preservation) If Γ ` t : C and t −→ t′, then Γ ` t′: C′ for some
C′<: C.

THEOREM 2.2 (Progress) Suppose t is a well-typed term.

1. If t includes new C0(t).fi as a subterm, then fields(last(C0)) = C f for some C and
f.

2. If t includes new C0(t).m(u) as a subterm, then mbody(m, last(C0)) = (x, t0) and
|x| = |u| for some x and t0.

We provide the proofs of the two theorems in Appendix A.

3 Feature-Oriented Product Lines in FFJPL

In this section, our goal is to define a type system for feature-oriented product lines –
a type system that checks whether all valid combinations of features yield well-typed
programs. In this scenario, the features in question may be optional or mutually ex-
clusive so that different combinations are possible that form different feature-oriented
programs. Since there may be plenty of valid combinations, type checking all of them
individually is usually not feasible.

In order to provide a type system for feature-oriented product lines, we need infor-
mation about which combinations of features are valid, i.e., which features are manda-
tory, optional, or mutually exclusive, and we need to adapt the subtype and type rules
of FFJ to check that there are no combinations/variants that lead to ill-typed terms.
The type system guarantees that every program derived from a well-typed product line
is a well-typed FFJ program. FFJ together with the type system for checking feature-
oriented product lines is henceforth called FFJPL.

3.1 An Overview of Feature-Oriented Product Lines

A feature-oriented product line is made up of a set of feature modules and a fea-
ture model. The feature modules contains the features’ implementation and the feature
model describes how the feature modules can be combined. In contrast to the feature-
oriented programs of Section 2, typically, some features are optional and some are mu-
tually exclusive (Also other relations such as disjunction, negation, and implication are
possible [12]; they are broken down to mandatory, optional, and mutually exclusive
features, as we will explain.). Generally, in a derivation step, a user selects a valid sub-
set of features from which, subsequently, a feature-oriented program is derived. In our
case, derivation means assembling the corresponding feature modules for a given set of
features. In Figure 10, we illustrate the process of program derivation.

Typically, a wide variety of programs can be derived from a product line [21,19].
The challenge is to define a type system that guarantees, on the basis of the feature
modules and the feature model, that all valid programs are well-typed. Once a program
is derived from such a product line, we can be sure that it is well-typed and we can
evaluate it using the standard evaluation rules of FFJ (see Section 2.7).

14

selection

user’s feature
B

A

E

C

program program

program program

A

B

D

E

A

B

E

B

A

C

E

D

...

A

B C D

F

FE

B

B

A

...

E

...

...

feature model

F

C
B
A

D
E

feature modules

feature−oriented product line feature−oriented programs

derivation

Fig. 10. The process of deriving programs from a product line.

3.2 Managing Variability – Feature Models

The aim of developing a product line is to manage the variability of a set of programs
developed for a particular domain and to facilitate the reuse of feature implementations
among the programs of the domain. A feature model captures the variability by (explic-
itly or implicitly) defining an ordered set of all features of a product line and their legal
feature combinations. A well-defined feature order is essential for field and method
lookup (see Section 3.6).

Different approaches to product line engineering use different representations of
feature models to define legal feature combinations. The simplest approach is to enu-
merate all legal feature combinations. In practice, commonly different flavors of tree
structures are used, sometimes in combination with additional propositional constraints,
to define legal combinations [21,12], as illustrated in Figure 10.

For our purpose, the actual representation of legal feature combinations is not rele-
vant. In FFJPL, we use the feature model only to check whether feature and/or specific
program elements are present in certain circumstances. A design decision of FFJPL is
to abstract from the concrete representation of the underlying feature model and rather
to provide an interface to the feature model. This has to benefits: (1) we do not need
to struggle with all the details of the formalization of feature models, which is well
understood by researchers [12,22,64,23] and outside the scope of this paper, and (2) we
are able to support different kinds of feature model representations, e.g., a tree struc-
tures, grammars, or propositional formulas [12]. The interface to the feature model is
simply a set of functions and predicates that we use to ask questions like “may (or may
not) feature A be present together with feature B” or “is program element m present in
every variant in which also feature A is present”, i.e., “is program element m always
reachable from feature A”.

3.3 Challenges of Type Checking

Let us explain the challenges of type checking by extending our email example, as
shown in Figure 11. Suppose our basic email client is refined to process incoming
text messages (feature TEXT, Lines 1–8). Optionally, it is enabled to process HTML

15

messages, using either Mozilla’s rendering engine (feature MOZILLA, Lines 9–12)
or Safari’s rendering engine (feature SAFARI, Lines 13–16). To this end, the features
MOZILLA and SAFARI override the method render of class Display (Line 11 and 15)
in order to invoke the respective rendering engines (field renderer, Lines 10 and 14)
instead of the text printing function (Line 7).

Feature TEXT

1 refines class Trans {
2 Unit receive(Msg msg) {
3 return /∗ do something... ∗/ new Display().render(msg);
4 }
5 }
6 class Display {
7 Unit render(Msg msg) { /∗ display message in text format ∗/ }
8 }

Feature MOZILLA

9 refines class Display {
10 MozillaRenderer renderer;
11 overrides Unit render(Msg m) { /∗ render HTML message using the Mozilla engine ∗/ }
12 }

Feature SAFARI

13 refines class Display {
14 SafariRenderer renderer;
15 overrides Unit render(Msg m) { /∗ render HTML message using the Safari engine ∗/ }
16 }

Fig. 11. A feature-oriented email client using Mozilla’s and Safari’s rendering engines.

The first thing to observe is that the features MOZILLA and SAFARI rely on class
Display and its method render introduced by feature TEXT. In order to guarantee that
every derived program is well-formed, the type system checks whether Display and
render are always reachable from the features MOZILLA and SAFARI, i.e., whether,
in every program variant that contains MOZILLA and SAFARI, also feature TEXT is
present.

The second thing to observe is that the features MOZILLA and SAFARI both add
a field renderer to Display (Lines 10 and 14), both of which have different types. In
FFJ, a program with both feature modules would not be a well-typed program because
the field renderer is introduced twice. However, Figure 11 is not intended to repre-
sent a single feature-oriented program but a feature-oriented product line; the features
MOZILLA and SAFARI are mutually exclusive, as defined in the product line’s feature
model (stated earlier), and the type system has to take this fact into account.

Let us summarize the key challenges of type checking product lines:

– A global class table contains classes and refinements of all features of a product
line, even if some features are optional or mutually exclusive so that they are present
only in some derived programs. That is, a single class can be introduced by multiple
features as long as the features are mutually exclusive. This is also the case for
multiple introductions of methods and fields, which may even have different types.

16

– The presence of types, fields, and methods depends on the presence of the fea-
tures that introduce them. A reference from the elements of a feature to a type, a
field projection, or a method invocation is valid if the referenced element is always
reachable from the referring feature, i.e., in every variant that contains the referring
feature.

– Like references, an extension of a program element, such as a class or method
refinement, is valid only if the extended program element is always reachable from
the feature that applies the refinement.

– Refinements of classes and methods do not necessarily form linear refinement
chains. There may be alternative refinements of a single class or method that ex-
clude one another, as explained below.

3.4 Collecting Information on Feature Modules

For type checking, the FFJPL compiler collects various information on the feature mod-
ules of the product line. Before the actual type checking is performed, the compiler fills
three tables with information: the class table (CT), the introduction table (IT), and the
refinement table (RT).

The class table CT of FFJPL is like the one of FFJ and has to satisfy the same
sanity conditions except that (1) there may be multiple declarations of a class (or field
or method), as long as they are defined in are mutually exclusive features, and (2) there
may be cycles in the inheritance hierarchy, but no cycles for each set of classes which
are reachable from any given feature.

The introduction table IT maps a type to a list Φ of (mutually exclusive) features
that introduce the type. The features returned by IT are listed in the order prescribed
by the feature model. In our example of Figure 11, a call of IT (Display) would return
a list consisting only of the single feature TEXT. Likewise, the introduction table maps
field and method names, in combination with their declaring classes, to features. For
example, a call of IT (Display.renderer) would return the list MOZILLA, SAFARI. The
sanity conditions for the introduction table are straightforward:

– IT (C) = Φ for every type C ∈ dom(CT), with Φ being the features that introduce
class C.

– IT (C.f) = Φ for every field f contained in some class C ∈ dom(CT), with Φ
being the features that introduce field f.

– IT (C.m) = Φ for every method m contained in some class C ∈ dom(CT), with
Φ being the features that introduce method m.

Much like in FFJ, in FFJPL there is a refinement table RT . A call of RT (C) yields
a list of all features that either introduce or refine class C, which is different from the
introduction table that returns only the features that introduce class C. As with IT , the
features returned by RT are listed in the order prescribed by the feature model. The
sanity condition for FFJPL’s refinement table is identical to the one of FFJ, namely:

– RT (C) = Φ for every type C ∈ dom(CT), with Φ being the features that intro-
duce and refine class C.

17

3.5 Feature Model Interface

As said before, in FFJPL, we abstract from the concrete representation of the feature
model and define instead an interface consisting of proper functions and predicates.
There are two kinds of questions we want to ask about the feature model, which we
explain next.

First, we would like to know which features are never present together, which fea-
tures are sometimes present together, and which features are always present together. To
this end, we define two predicates, never and sometimes , and a function always . Pred-
icate never(Ω, Φ) indicates that feature Φ is never reachable in the context Ω, i.e., there
is no valid program variant in which the features Ω and feature Φ are present together.
Predicate sometimes(Ω, Φ) indicates that feature Φ is sometimes present when the
features Ω are present, i.e., there are variants in which the features Ω and feature Φ are
present together and there are variants in which they are not present together. Function
always(Ω, Φ) is used to evaluate whether feature Φ is always present in the context Ω
(either alone or within a group of alternative features). There are three cases: if feature Φ
is always present in the context, always returns the feature again (always(Ω, Φ) = Φ);
if feature Φ is not always present, but would be together with a certain group of mutu-
ally exclusive features Ψ (i.e., one of the group is always present), always returns all
features of this group (always(Ω, Φ) = Φ, Ψ). If a feature is not present at all, neither
alone nor together with other mutually exclusive features, always returns the empty
list (always(Ω, Φ) = •). The above predicates and function provide all information we
need to know about the features’ relationships. They are used especially for field and
method lookup.

Second, we would like to know whether a specific program element is always
present when a given set of features is present. This is necessary to ensure that ref-
erences to program elements are always valid (i.e., not dangling). We need two sources
of information for that. First, we need to know all features that introduce the program
element in question (determined using the introduction table) and, second, we need to
know which combinations of features are legal (determined using the feature model).
For the field renderer of our example, the introduction table would yield the features
MOZILLA and SAFARI and, from the feature model, it follows that MOZILLA and SA-
FARI are mutually exclusive, i.e., never(MOZILLA, SAFARI). But it can happen that
none of the two features is present, which can invalidate a reference to the field. The
type system needs to know about this situation.

To this end, we introduce a predicate validref that expresses that a program element
is always reachable from a set of features. For example, validref (Ω, C) holds if type
C is always reachable from the context Ω, validref (Ω, C.f) holds if field f of class C
is always reachable from the context Ω, and validref (Ω, C.m) holds if method m of
class C is always reachable from the context Ω. Applying validref to a list of program
elements means that the conjunction of the predicates for every list element is taken.
Finally, when we write validref (Ω, C) a Ψ, we mean that program element C is always
reachable from a context Ω in a subset Ψ of features of the product line.

In our prototype, we have implemented the above functions and predicates using a
SAT solver that reasons about propositional formulas representing constraints on legal

18

feature combinations (see Section 4), as proposed by Batory [12] and Czarnecki and
Pietroszek [22].

3.6 Refinement in FFJPL

In Figure 12, we show the functions last and pred for the navigation along the refine-
ment chain. The two functions are identical to the ones of FFJ (cf. Figure 4). However,
in FFJPL, there may be alternative declarations of a class and, in the refinement chain,
refinement declarations may even precede class declarations, as long as the declaring
features are mutually exclusive. Let us illustrate refinement in FFJPL by means of the
example shown in Figure 13. Class C is introduced in the features Φ1 and Φ3. Feature
Φ2 refines class C introduced by feature Φ1 and feature Φ4 refines class C introduced by
feature Φ3. Feature Φ1 and Φ2 are never present when feature Φ3 or Φ4 are present and
vice versa. A call of RT (C) would return the list Φ1, . . . , Φ4, a call of last(C) would
return the qualified type Φ4.C, and a call of pred(Φ4.C) would return the qualified type
Φ3.C and so on.

Navigating along the refinement chain

RT (C) = Ψ

last(C) = Ψn.C
RT (C) = Ψ, Φ, Ω Ψ 6= •

pred(Φ.C) = Ψn.C
RT (C) = Φ, Ω

pred(Φ.C) = Base.Object

Fig. 12. Refinement in FFJPL.

CC CC

2 3 41
Φ Φ Φ Φ

mutually exclusive

Fig. 13. Multiple alternative refinements.

3.7 Subtyping in FFJPL

The subtype relation is more complicated in FFJPL than in FFJ. The reason is that
a class may have multiple declarations in different features, each declaring possibly
different superclasses, as illustrated in Figure 14. That is, when checking whether a class
is a subtype of another class, we need to check whether the subtype relation holds in
all alternative inheritance paths that may be reached from a given context. For example,
FooBar is a subtype of BarFoo because BarFoo is a superclass of FooBar in every

19

program variant (since always(Φ1, Φ2) = Φ2, Φ3); but FooBar is not a subtype of
Foo and Bar because, in both cases, a program variant exists in which FooBar is not a
(indirect) subclass of the class in question.

Φ1

Φ2 Φ3

Φ2 Φ3

Φ1present together with

and are

mutually exclusive and

one of them is always

E e;

B b;

B m(B b);

A a;

A m(D d);

D d;

FooBar

Foo Bar

BarFoo

D d;

BarFoo

Fig. 14. Multiple inheritance chains in the presence of alternative features.

In Figure 15, we show the subtype relation of FFJPL. The subtype relation C <:
E a Ω is read as follows: in the context Ω, type C is a subtype of type E, i.e., type C is
a subtype of type E in every variant in which also the features Ω are present. The first
rule in Figure 15 covers reflexivity and terminates the recursion over the inheritance
hierarchy. The second rule states that class C is a subtype of class E if at least one
declaration of C is always present (tested with validref) and if every of C’s declarations
that may be present together with Ω (tested with sometimes) declares some type D as
its supertype and D is a subtype of E in the context Ω. That is, E must be a direct or
indirect supertype of D in all variants in which the features Ω are present. Additionally,
supertype D must be always reachable from the context (Ω, Ψ). When traversing the
inheritance hierarchy, in each step, the context is extended by the feature that introduces
the current class in question, e.g., Ω is extended with Ψ.

Interestingly, the second rule subsumes the two FFJ rules for transitivity and direct
superclass declaration because some declarations of C may declare E directly as its
superclass and some declarations may declare another superclass D that is, in turn, a
subtype of E, and the rule must be applicable to both cases simultaneously.

Subtyping C <: E a Ω

C <: C a Ω

validref (Ω, C)

∀Ψ ∈ IT (C) : sometimes(Ω, Ψ)⇒
„

CT(Ψ.C) = class C extends D { . . . }
validref ((Ω, Ψ), D) D <: E a Ω, Ψ

«
C <: E a Ω

Fig. 15. Subtyping in FFJPL.

20

Applied to our example of Figure 14, we have FooBar <: FooBar a Φ1 because
of the reflexivity rule. We also have FooBar <: BarFoo a Φ1 because FooBar is
reachable from feature Φ1 and every feature that introduces FooBar, namely Φ1, con-
tains a corresponding class declaration that declares BarFoo as FooBar’s superclass,
and BarFoo is always reachable from Φ1. However, we have FooBar 6<: Foo a Φ1

and FooBar 6<: Bar a Φ1 because FooBar’s immediate superclass BarFoo is not
always a subtype of Foo respectively of Bar.

3.8 Auxiliary Definitions of FFJPL

Extending FFJ toward FFJPL makes it necessary to add and modify some auxiliary
functions. The most complex changes concern the field and method lookup mecha-
nisms.

Field Lookup. The auxiliary function fields collects the fields of a class including the
fields of its superclasses and refinements. Since alternative class or refinement decla-
rations may introduce alternative fields (or the same field with identical or alternative
types), fields may return different fields for different feature selections. Since we want
to type-check all valid variants, field returns multiple field lists (i.e., a list of lists) that
cover all possible feature selections. Each inner list contains field declarations collected
in an alternative path of the combined inheritance and refinement hierarchy.

For legibility, we separate the inner lists using the delimiter ‘◦’. For example, look-
ing up the fields of class FooBar in the context of feature Φ1 (Figure 14) yields the
list A a, D d, E e ◦ B b, D d, E e because the features Φ2 and Φ3 are mutually ex-
clusive and one of them is present in each variant in which also Φ1 is present. For
readability, we use the metavariables F and G when referring to inner field lists. We
abbreviate a list of lists of fields F1 ◦ . . . ◦ Fn by F . Analogously, F is shorthand for
F11 ◦ . . . ◦ Fn1 ◦ . . . ◦ F1m ◦ . . . ◦ Fnm.

Function fields receives a qualified type Φ.C and a context of selected features Ω.
If we want all possible field lists, the context is empty. If we want only field lists for
a subset of feature selections, e.g., only the fields that can be referenced from a term
in a specific feature module, we can use the context to specify one or more features of
which we know that they must be selected.

The basic idea of FFJPL’s field lookup is to traverse the combined inheritance and
refinement hierarchy much like in FFJ. There are four situations that are handled differ-
ently:

1. The field lookup returns the empty list when it reaches Base.Object.
2. The field lookup ignores all fields that are introduced by features that are never

present in a given context.
3. The field lookup collects all fields that are introduced by features that are always

present in a given context. References to these fields are always valid.
4. The field lookup collects all fields that are introduced by features that may be

present in a given context but that are not always present. In this case, a special

21

marker @ is added to the fields in question because we cannot guarantee that a ref-
erence to this field is safe in the given context.5 It is up to the type system to decide,
based on the marker, whether this situation may provoke an error (e.g., the type sys-
tem ignores the marker when looking for duplicate fields but reports an error when
type checking object creations).

5. A special situation occurs when the field lookup identifies a group of alternative
features. In such a group each feature is optional and excludes every other feature
of the group and at least one feature of the group is always present in a given
context. Once the field lookup identifies a group of alternative features, we split the
result list, each list containing the fields of a feature of the group and the fields of
the original list.

Field lookup fields(Ω, Φ.C) = C f

fields(Ω, Φ.Object) = • (FL-1)

never(Ω, Φ)

fields(Ω, Φ.C) = fields(Ω, pred(Φ.C))
(FL-2)

sometimes(Ω, Φ) always(Ω, Φ) = Φ

CT (Φ.C) = class C extends D { C f; M }

fields(Ω, Φ.C) = append(fields(Ω, last(D)), C f)
(FL-3.1)

sometimes(Ω, Φ) always(Ω, Φ) = Φ

CT (Φ.C) = refines class C { C f; M }

fields(Ω, Φ.C) = append(fields(Ω, pred(Φ.C)), C f)
(FL-3.2)

sometimes(Ω, Φ) always(Ω, Φ) = •
CT (Φ.C) = class C extends D { C f; M }

fields(Ω, Φ.C) = append(fields(Ω, last(D)), C f@)
(FL-4.1)

sometimes(Ω, Φ) always(Ω, Φ) = •
CT (Φ.C) = refines class C { C f; M }

fields(Ω, Φ.C) = append(fields(Ω, pred(Φ.C)), C f@)
(FL-4.2)

sometimes(Ω, Φ) always(Ω, Φ) = Ψ

fields(Ω, Φ.C) = fields((Ω, Ψ1), Φ.C) ◦ . . . ◦ fields((Ω, Ψn), Φ.C)
(FL-5)

Fig. 16. Field lookup in FFJPL.

In order to distinguish the different cases, we use the predicates and functions de-
fined in Section 3.5 (especially never , sometimes , and always). The definition of func-

5 Note that the marker @ is generated during type checking, so we do not include it in the syntax
of FFJ.

22

tion fields , shown in Figure 16, follows the intuition described above: Once Base.Object
is reached, the recursion terminates (FL-1). When a feature is never reachable in the
given context, fields ignores this feature and resumes with the previous one (FL-2).
When a feature is mandatory (i.e., always present in a given context), the fields in ques-
tion are added to each alternative result list, which were created in Rule FL-5 (FL-3.1
and FL-3.2).6 When a feature is optional, the fields in question, annotated with the
marker @, are added to each alternative result list (FL-4.1 and FL-4.2). When a feature
is part of an alternative group of features, we cannot immediately decide how to pro-
ceed. We split the result list in multiple lists (by means of multiple recursive invocations
of fields), in which we add one of the alternative features to each context passed to an
invocation of fields (FL-5).

Method type lookup mtype(Ω, m, Φ.C) = B→B0

mtype(Ω, m, Base.Object) = • (ML-1)

B0 m(B x) { . . . } ∈ M sometimes(Ω, Φ)

CT (Φ.C) = class C extends D { C f; M }

mtype(Ω, m, Φ.C) = mtype(Ω, m, pred(Φ.C)), mtype(Ω, m, last(D)), B→B0

(ML-2)

B0 m(B x) { . . . } ∈ M sometimes(Ω, Φ)

CT (Φ.C) = refines class C { C f; M }

mtype(Ω, m, Φ.C) = mtype(Ω, m, pred(Φ.C)), B→B0

(ML-3)

(m is not defined in M ∨ never(Ω, Φ))

CT (Φ.C) = class C extends D { C f; M }

mtype(Ω, m, Φ.C) = mtype(Ω, m, pred(Φ.C)), mtype(Ω, m, last(D))
(ML-4)

(m is not defined in M ∨ never(Ω, Φ))

CT (Φ.C) = refines class C { C f; M }

mtype(Ω, m, Φ.C) = mtype(Ω, m, pred(Φ.C))
(ML-5)

Fig. 17. Method Lookup in FFJPL.

Method Type Lookup. Like in field lookup, in method lookup, we have to take al-
ternative definitions of methods into account. But the lookup mechanism is simpler
than in fields because the order of signatures found in the combined inheritance and
refinement hierarchy is irrelevant for type checking. Hence, function mtype yields a
simple list B→B0 of signatures for a given method name m. For example, calling
mtype(Φ1, m, Φ1.C) in the context of Figure 14 yields the list D→A, B→B.

6 Function append adds to each inner list of a list of field lists a given field. Its implementation
is straightforward and omitted for brevity.

23

In Figure 17, we show the definition of function mtype. For Base.Object, the empty
list is returned (ML-1). If a class that is sometimes reachable introduces a method in
question (ML-2), its signature is added to the result list and all possible predecessors
in the refinement chain (using pred) and all possible subclasses are searched (using
last). Likewise, if a refinement that is sometimes reachable introduces a method with
the name searched (ML-3), its signature is added to the result list and all possible prede-
cessors in the refinement chain are searched (using pred). If a class or refinement does
not declare a corresponding method (ML-4 and ML-5) or the a class is never reachable,
the search proceeds with the possible superclasses or predecessors.

The current definition of function mtype returns possibly many duplicate signatures.
A straightforward optimization would be to remove duplicates before using the result
list, which we omitted for simplicity.

Valid class introduction introduce(Ω, Φ.C)

@ Ψ :

„
CT (Ψ.C) = class C extends D { C f; M }

Ψ 6= Φ sometimes(Ω, Ψ)

«
introduce(Ω, Φ.C)

Valid field introduction introduce(Ω, f, Φ.C)

∀E h ∈ fields(Ω, Φ.C) : f /∈ h
introduce(Ω, f, Φ.C)

Valid method introduction introduce(Ω, m, Φ.C)

mtype(Ω, m, Φ.C) = •
introduce(Ω, m, Φ.C)

Valid class refinement refine(Ω, Φ.C)

RT (C) = Ψ, Φ, Π validref (Ω, C) a Ψ

refine(Ω, Φ.C)

Valid method overriding override(Ω, m, Φ.C, C→C0)

RT (C) = Ψ, Φ, Π validref (Ω, C.m) a Ψ, Φ

∀B→B0 ∈ mtype(Ω, m, Φ.C) : C = B ∧ C0 = B0

override(Ω, m, Φ.C, C→C0)

Fig. 18. Valid introduction, refinement, and overriding in FFJPL.

24

Valid Introduction, Refinement, and Overriding. In Figure 18, we show predicates
for checking the validity of introduction, refinement, and overriding in FFJPL. Predicate
introduce indicates whether a class with the qualified type Φ.C has not been introduced
by any other feature Ψ that may be present in the context Ω. Likewise, introduce holds
if a method m or a field f has not been introduced by a qualified type Φ.C (including
possible predecessors and superclasses) that may be present in the given context Ω.
To this end, it checks either whether mtype yields the empty list or whether f is not
contained in every inner list returned by fields .

For a given refinement, predicate refine indicates whether a proper class, which is
always reachable in the given context, has been declared previously in the refinement
chain. We write validref (Ω, C) a Ψ in order to state that a declaration of class C
has been introduced in the set Ψ of features, which is only a subset of the features of
the product line, namely the features that precede the feature that introduces class C.
Predicate override indicates whether a declaration of method m has been introduced
(and is always reachable) in some feature introduced by before the feature that refines
m and whether every possible declaration of m in any predecessor of a Φ.C has the
same signature.

3.9 Type Relation of FFJPL

The type relation of FFJPL consists of type rules for terms and well-formedness rules
for classes, refinements, and methods, shown in Figure 19 and Figure 20.

Term Typing Rules. A term typing judgment in FFJPL is a quadruple, consisting of
a typing context Γ, a term t, a list of types C, and a feature Φ that contains the term
(see Figure 19). A term can have multiple types in a product line because there may
be multiple declarations of classes, fields, and methods. The list C contains all possible
types a term can have.

Rule T-VARPL is standard and does not refer to the feature model. It yields a list
consisting only of the type of the variable in question.

Rule T-FIELDPL checks whether a field access t0.f is well-typed in every possi-
ble variant in which also Φ is present. Based on the possible types E of the term t0
the field f is accessed from, the rule checks whether f is always reachable from Φ
(using validref). Note that this is a key mechanism of FFJPL’s type system. It en-
sures that a field, being accessed, is definitely present in every valid program variant
in which the field access occurs – without generating all these variants. Furthermore,
all possible fields of all possible types E are assembled in a nested list F , C f,G in
which C f denotes a declaration of the field f; the call of fields(Φ, last(E)) is shorthand
for fields(Φ, last(E1)) . . . fields(Φ, last(En)), in which the individual result lists are
concatenated. Finally, the list of all possible types C11, . . . , Cn1, . . . , C1m, . . . , Cnm of
field f becomes the list of types of the overall field access. Note that the result list may
contain duplicates, which could be eliminated for optimization purposes.

Rule T-INVKPL checks whether a method invocation t0.m(t) is well-typed in every
possible variant in which also Φ is present. Based on the possible types E of the term
t0 the method m is invoked on, the rule checks whether m is always reachable from Φ

25

Term typing Γ ` t : C a Φ

x : C ∈ Γ

Γ ` x : C a Φ
(T-VARPL)

∀E ∈ E : validref (Φ, E.f)
Γ ` t0 : E a Φ fields(Φ, last(E)) = F , C f,G
Γ ` t0.f : C11, . . . , Cn1, . . . , C1m, . . . , Cnm a Φ

(T-FIELDPL)

∀E ∈ E : validref (Φ, E.m) ∀C ∈ C, ∀D ∈ D ∈ D : C <: D a Φ

Γ ` t0 : E a Φ Γ ` t : C a Φ mtype(Φ, m, last(E)) = D→B

Γ ` t0.m(t) : B11, . . . , Bn1, . . . , B1m, . . . , Bnm a Φ
(T-INVKPL)

validref (Φ, C) ∀D g ∈ F , ∀C ∈ C : C <: D a Φ

Γ ` t : C a Φ fields(Φ, last(C)) = F @ /∈ F
Γ ` new C(t) : C a Φ

(T-NEWPL)

validref (Φ, C)

Γ ` t0 : E a Φ ∀E ∈ E : (E <: C a Φ ∨ C <: E a Φ)

Γ ` (C)t0 : C a Φ
(T-UDCASTPL)

validref (Φ, C) stupid warning

Γ ` t0 : E a Φ ∃E ∈ E : (C 6<: E a Φ ∧ E 6<: C a Φ)

Γ ` (C)t0 : C a Φ
(T-SCASTPL)

Fig. 19. Term typing in FFJPL.

26

Method typing M OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

validref (Φ, B) introduce(Φ, m, last(D))

CT (Φ.C) = class C extends D { C f; M }

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

validref (Φ, B) override(Φ, m, last(D), B→B0)

CT (Φ.C) = class C extends D { C f; M }

overrides B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

validref (Φ, B) introduce(Φ, m, pred(Φ.C))

CT (Φ.C) = refines class C { C f; M }

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

validref (Φ, B) override(Φ, m, pred(Φ.C), B→B0)

CT (Φ.C) = refines class C { C f; M }

overrides B0 m(B x) { return t0; } OK a Φ.C

Class typing L OK a Φ

validref (Φ, D) validref (Φ, C)

∀ f ∈ f : introduce(Φ, f, last(D)) introduce(Φ, Φ.C) M OK a Φ.C

class C extends D { C f; M } OK a Φ

Refinement typing R OK a Φ

validref (Φ, C)

∀ f ∈ f : introduce(Φ, f, pred(Φ.C)) refine(Φ, Φ.C) M OK a Φ.C

refines class C { C f; M } OK a Φ

Fig. 20. Well-formedness rules of FFJPL.

27

(using validref). As with field access, this check is essential. It ensures that in generated
programs only methods are invoked that are also present. Furthermore, all possible

signatures of m of all possible types E are assembled in the nested list D→B and it is
checked that all possible lists C of argument types of the method invocation are subtypes
of all possible lists D of parameter types of the method (this implies that the lengths of
the two lists must be equal). A method invocation has multiple types assembled in a list
that contains all result types of method m determined by mtype. As with field access,
duplicates should be eliminated for optimization purposes.

Rule T-NEWPL checks whether an object creation new C(t) is well-typed in every
possible variant in which also Φ is present. Specifically, it checks whether there is a
declaration of class C always reachable from Φ. Furthermore, all possible field combi-
nations of C are assembled in the nested list F , and it is checked whether all possible
combinations of argument types passed to the object creation are subtypes of the types
of all possible field combinations (this implies that the number of arguments types must
equal the number of field types). The fields of the result list must not be annotated with
the marker @ since optional fields may not be present in every variant and references
may become invalid (see field lookup).7 An object creation has only a single type C.

Rules T-UDCASTPL and T-SCASTPL check whether casts are well-typed in every
possible variant in which also Φ is present. This is done by checking whether the type
C the term t0 is cast to is always reachable from Φ and whether this type is a subtype,
supertype, or unrelated type of all possible types E the term t0 can have. We have only
a single rule T-UDCASTPL for up- and downcasts because the list E of possible types
may contain super- and subtypes of C simultaneously. If there is a type in the list which
leads to a stupid case, we flag a stupid warning . A cast yields a list containing only a
single type C.

Well-Formedness Rules. In Figure 20, we show the well-formedness rules of classes,
refinements, and methods.

Like in FFJ, the typing judgment of classes and refinements is a binary relation be-
tween a class or refinement declaration and a feature. The rule of classes checks whether
all methods are well-formed in the context of the class’ qualified type. Moreover, it
checks whether the class declaration is unique in the scope of the enclosing feature Φ,
i.e., whether no other feature, that may be present together with feature Φ, introduces
a class with an identical name (using introduce). Furthermore, it checks whether the
superclass and all field types are always reachable from Φ (using validref). Finally, it
checks whether none of the fields of the class declaration have been introduced before
(using introduce). The well-formedness rule of refinements is analogous, except that
the rule checks that there is at least one class declaration reachable that is refined and
that has been introduced before the refinement (using refine).

The typing judgment of methods is a binary relation between a method declaration
and the qualified type that declares the method. Like in FFJ, there are four different
rules for methods (from top to bottom in Figure 20)

1. that do not override another method and that are declared by classes,
7 The treatment of @ is semiformal but simplifies the rule.

28

2. that override another method and that are declared by classes,
3. that do not override another method and that are declared by refinements,
4. that override another method and that are declared by refinements.

All four rules check whether all possible types E of the method body are subtypes of
the declared return type B0 of the method and whether the argument types B are always
reachable from the enclosing feature Φ (using validref).

For methods that are introduced, it is checked, using introduce, whether no method
with identical name has been introduced in any possible superclass (Rule 1) or in any
possible predecessor in the refinement chain (Rule 3). For methods that override other
methods, it is checked, using override , whether a method with identical name and
signature exists in any possible superclass (Rule 2) or in any possible predecessor in the
refinement chain (Rule 4).

Well-Typed FFJPL Product Lines. An FFJPL product line, consisting of a term, a
class table, an introduction table, and a refinement table, is well-typed if

– the term is well-typed (checked using FFJPL’s term typing rules),
– all classes and refinements stored in the class table are well-formed (checked using

FFJPL’s well-formedness rules), and
– the class, introduction, and refinement tables are well-formed (ensured by the cor-

responding sanity conditions).

3.10 Type Safety of FFJPL

Type checking in FFJPL is based on information contained in the class table, introduc-
tion table, refinement table, and feature model. The first three are filled by the compiler
that has parsed the code base of the product line. The feature model is supplied directly
by the user (or tool). The compiler determines which class and refinement declarations
belong to which features. The classes and refinements of the class table are checked us-
ing their well-formedness rules which, in turn, use the well-formedness rules for meth-
ods and the term typing rules for method bodies. Several rules use the introduction and
refinement tables in order to map types, fields, and methods to features and the fea-
ture model to navigate along refinement chains and to check the presence of program
elements.

What does type safety mean in the context of a product line? The product line itself
is never evaluated; rather, different programs are derived that are then evaluated. Hence,
the property we are interested in is that all programs that can be derived from a well-
typed product line are in turn well-typed. Furthermore, we would like to be sure that
all FFJPL product lines, from which only well-typed FFJ programs can be derived, are
well-typed. We formulate the two properties as the two theorems Correctness of FFJPL

and Completeness of FFJPL.

29

Correctness

THEOREM 3.1 (Correctness of FFJPL) Given a well-typed FFJPL product line pl (in-
cluding with a well-typed term t, well-formed class, introduction, and refinement tables
CT , IT , and RT , and a feature model FM), every program that can be derived with a
valid feature selection fs is a well-typed FFJ program (cf. Figure 10).

pl = (t, CT , IT , RT , FM) pl is well-typed fs is valid in FM
derive(pl , fs) is well-typed

Function derive collects the feature modules from a product line according to a
user’s selection fs , i.e., non-selected feature modules are removed from the derived
program. After this derivation step, the class table contains only classes and refinements
stemming from the selected feature modules. We define a valid feature selection to be
a list of features whose combination does not contradict the constraints implied by the
feature model.

The proof idea is to show that the type derivation tree of an FFJPL product line
is a superimposition of multiple so-called type derivation slices. As usual, the type
derivation proceeds from the root (i.e., an initial type rule that checks the term and all
classes and refinements of the class table) to the leaves (type rules that do not have a
premise) of the type derivation tree. Each time a term has multiple types, e.g., a method
has different alternative return types, which is caused by multiple mutually exclusive
method declarations, the type derivation splits into multiple branches. With branch we
refer only to positions in which the type derivation tree is split into multiple subtrees
in order to type check multiple mutually exclusive term definitions. Each subtree from
the root of the type derivation tree along the branches toward a leaf is a type derivation
slice. Each slice corresponds to the type derivation of a feature-oriented program.

Let us illustrate the concept of a type derivation slice by a simplified example. Sup-
pose the application of an arbitrary type rule to a term t somewhere in the type deriva-
tion. Term t has multiple types C due to different alternative definitions of t’s subterms.
For simplicity, we assume here that t has only a single subterm t0, like in the case of a
field access (t = t0.f), in which the overall term t has multiple types depending on t0’s
and f’s types; the rule can be easily extended to multiple subterms by adding a predicate
per subterm. The type rule ensures the well-typedness of all possible variants of t on
the basis of the variants of t’s subterm t0. Furthermore, the type rule checks whether a
predicate predicate (e.g., C <: D) holds for each variant of the subterm with its possible
types E, written predicate(t0 : Ei). The possible types C of the overall term follow in
some way from the possible types E of its subterm. Predicate validref is used to check
whether all referenced elements and types are present in all valid variants, including
different combinations of optional features. For the general case, this can be written as
follows:

predicate(t0 : E1) predicate(t0 : E2) . . . predicate(t0 : En)
t0 : E always(. . .)

Γ ` t : C a Φ
(T-*PL)

The different uses of predicate in the premise of an FFJPL type rule correspond
to the branches in the type derivation that denote alternative definitions of subterms.

30

Hence, the premise of the FFJPL type rule is the conjunction of the different premises
that cover the different alternative definitions of the subterms of a term.

The proof strategy is as follows. Assuming that the FFJPL type system ensures that
each slice is a valid FFJ type derivation (see Lemma B.1 in Appendix B.1) and that
each valid feature selection corresponds to a single slice (since alternative features have
been removed; see Lemma B.2 in Appendix B.1), each feature-oriented program that
corresponds to a valid feature selection is guaranteed to be well-typed. Note that mul-
tiple valid feature selections may correspond to the same slice because of the presence
of optional features. It follows that, for every valid feature selection, we derive a well-
formed FFJ program – since its type derivation is valid – whose evaluation satisfies the
properties of progress and preservation (see Appendix A). In Appendix B, we describe
the proof of Theorem 3.1 in more detail.

Completeness

THEOREM 3.2 (Completeness of FFJPL) Given an FFJPL product line pl (including
a well-typed term t, well-formed class, introduction, and refinement tables CT , IT ,
and RT , and a feature model FM), and given that all valid feature selections fs yield
well-typed FFJ programs, according to Theorem 3.1, pl is a well-typed product line
according to the rules of FFJPL.

pl = (t, CT , IT , RT , FM) ∀ fs : (fs is valid in FM ⇒ derive(pl , fs) is well-typed)
pl is well-typed

The proof idea is to examine three basic cases and to generalize subsequently: (1) pl
has only mandatory features; (2) pl has only mandatory features except a single optional
feature; (3) pl has only mandatory features except two mutually exclusive features.
All other cases can be formulated as combinations of these three basic cases. To this
end, we divide the possible relations between features into three disjoint sets: (1) a
feature is reachable from another feature in all variants, (2) a feature is reachable from
another feature in some, but not in all, variants, (3) two features are mutually exclusive.
From these three possible relations, we can prove the three basic cases in isolation and,
subsequently, construct a general case that can be phrased as a combination of the three
basic cases. The description of the general case and the reduction finish the proof of
Theorem 3.2. In Appendix B, we describe the proof of Theorem 3.2 in detail.

4 Implementation & Discussion

We have implemented FFJ and FFJPL in Haskell, including the program evaluation and
type checking of product lines. The FFJPL compiler expects a set of feature modules
and a feature model both of which, together, represent the product line. A feature mod-
ule is represented by a directory. The files found inside a feature module’s directory are
assigned to / belong to the enclosing feature. The FFJPL compiler stores this informa-
tion for type checking. Each file may contain multiple classes and class refinements.
In Figure 21, we show a snapshot of our test environment, which is based on Eclipse

31

and a Haskell plugin8. We use Eclipse to interpret or compile our FFJ and FFJPL type
systems and interpreters. Specifically, the figure shows the directory structure of our
email system. The file EmailClient.features contains the user’s feature selection and
the feature model of the product line.

Fig. 21. Snapshot of the test environment of the Haskell implementation.

The feature model of a product line is represented by a propositional formula, fol-
lowing the approach of Batory [12] and Czarnecki and Pietroszek [22]. Propositional
formulas are an effective way of representing the relationships between features (e.g., of
specifying which feature implies the presence and absence of other features and of ma-
chine checking whether a feature selection is valid). For example, we have implemented
predicate sometimes as follows:

sometimes(FM , Ω, Ψ) = satisfiable(FM ∧ Ω1 ∧ . . . ∧ Ωn ∧Ψ)

The feature model is an propositional formula; feature are variables; and satisfiable is
a satisfiability solver. Likewise, we have implemented predicate always on the basis of
logical reasoning on propositional formulas:

always(FM , Ω, Ψ) = ¬(satisfiable(¬(FM ⇒ ((Ω1 ∧ . . . ∧ Ωn)⇒ Ψ))))

For a more detailed explanation of how propositional formulas relate to feature models
and feature selections, we refer the interest to the work of Batory [12].

In Figure 22, we show the textual specification of the feature model of our email
system, which can be passed directly to the FFJPL compiler.

8 http://eclipsefp.sourceforge.net/haskell/

32

http://eclipsefp.sourceforge.net/haskell/

1 features:
2 EmailClient IMAP POP3 MIME SSL Text Mozilla Safari
3
4 model:
5 EmailClient implies (IMAP or POP3);
6 IMAP implies EmailClient;
7 POP3 implies EmailClient;
8 MIME implies EmailClient;
9 SSL implies EmailClient;

10 Text implies (IMAP or POP3);
11 Mozilla implies (IMAP or POP3);
12 Safari implies (IMAP or POP3);
13 Mozilla implies (not Safari);
14 Safari implies (not Mozilla);

Fig. 22. Feature model of an email client product line.

The first section (features:) of the file representing the feature model defines an
ordered set of names of the features of the product line and the second section (model:)
defines constraints on the features’ presence in the derived programs. In our example,
each email client supports either the protocols IMAP, POP3, or both. Furthermore, every
feature requires the presence of the base feature EMAILCLIENT. Feature TEXT requires
either the presence of IMAP or POP3 or both – the same for MOZILLA and SAFARI.
Finally, feature MOZILLA requires the absence of feature SAFARI and vice versa.

On the basis of the feature modules and the feature model, FFJPL’s type system
checks the entire product line and identifies valid program variants that still contain
type errors. A SAT solver is used to check whether elements are never, sometimes, or
always reachable. If an error is found, the product line is rejected as ill-formed. If not,
a feature-oriented program guaranteed to be well-formed can derived on the basis of a
user’s feature selection. This program can be evaluated using the standard evaluation
rules of FFJ, which we have also implemented in Haskell.

In contrast to previous work on type checking feature-oriented product lines [64,23],
our type system provides detailed error messages. This is possible due to the fine-
grained checks at the level of individual term typing and well-formedness rules. For
example, if a field access succeeds only in some program variants, this fact can be
reported to the user and the error message can point to the erroneous field access. Pre-
viously proposed type systems compose all code of all features of a product line and
extract a single propositional formula, which is checked for satisfiability. If the formula
is not satisfiable (i.e., a type error has occurred), it is not possible to identify the location
that has caused the error (at least not without further information). See Section 5, for a
detailed discussion of related approaches.

We made several tests and experiments with our Haskell implementation. However,
real-world tests were not feasible because of two reasons. First, in previous work it has
been already demonstrated that feature-oriented product lines require proper type sys-
tems and that type checking entire real-world product lines is feasible and useful [64].
Second, like FJ, FFJ is a core language into which all Java programs can be compiled
and which, by its relative simplicity, is suited for the formal definition and proof of
language properties – in our case, a type system and its correctness and completeness.

33

But, a core language is never suited for the development of real-world programs. This
is why our examples and test programs are of similar size and complexity as the FJ ex-
amples of Pierce [54]. Type checking our test programs required acceptable amounts of
time (in the order of magnitude of milliseconds per product line). We do not claim to be
able to handle full-sized feature-oriented product lines by hand-coding them in FFJPL.
Rather, this would require an expansion of the type system to full Java (including sup-
port for features as provided by AHEAD [13] or FeatureHouse [9]) – an enticing goal,
but one for the future (especially, as Java’s informal language specification [28] has 688
pages). Our work lays a foundation for implementing type systems in that it provides
evidence that core feature-oriented mechanisms are type sound and type systems of
feature-oriented product lines can be implemented correctly and completely.

Still, we would like to make some predictions on the scalability of our approach. The
novelty of our type system is that it incorporates alternative features and, consequently,
alternative definitions of classes, fields, and methods. This leads to a type derivation tree
with possibly multiple branches denoting alternative term types. Hence, performing a
type derivation of product line with many alternative features may consume a significant
amount of computation time and memory. It seems that this overhead is the price for
allowing alternative implementation of program parts.

Nevertheless, our approach minimizes the overhead caused by alternative features
compared to the naive approach. In the naive approach, all possible programs are de-
rived and type checked subsequently. In our approach, we type check the entire code
base of the product line and branch the type derivation only at terms that really have
multiple, alternative types, and not at the level of entire program variants, as done in
the naive approach. Our experience with feature-oriented product lines shows that, usu-
ally, there are not many alternative features in a product line, but mostly optional fea-
tures [42,3,64,37,59,11,9,5,6,57,60]. For example, in the Berkeley DB product line (JE
edition; 80 000 lines of code) there are 99 feature modules, but only two pairs of them
alternative [9,37]; in the Graph Product Line there are 26 feature modules, of which
only three pairs are alternative [42,9]. A further observation is that most alternative fea-
tures that we encountered do not alter types. That is, there are multiple definitions of
fields and methods but with equal types. For example, GPL and Berkeley DB contain
alternative definitions of a few methods but only with identical signatures. Type check-
ing these product lines with our approach, the type derivation would have almost no
branches. In the naive approach, still many program variants exist due to optional fea-
tures. Hence, our approach is preferable. For example, in a product line with n features
and c ∗ n variants (with c being a constant), in our approach, the type system would
have to check n feature modules (with some few branches in the type derivation and
solving few simple SAT problems; see below) and, in the naive approach, the type sys-
tem would have to check, at least, 2 ∗ n feature modules but, commonly, 2 ∗ n ∗m with
m < n. For product lines with a higher degree of variability, e.g., with n2 or even 2n

variants the benefit of our approach becomes even more significant. We believe that this
benefit can make a difference in real world product line engineering.

A further point is that almost all typing and well-formedness rules contain calls to
the built-in SAT solver. This results in possibly many invocations of the SAT solver
at type checking time. Determining the satisfiability of a propositional formula is in

34

general an NP-complete problem. However, it has been shown that the structures of
propositional formulas occurring in software product lines are simple enough to scale
satisfiability solving to thousands of features [47]. Furthermore, in our experiments, we
have observed that many calls to the SAT solver are redundant, which is easy to see
when thinking about type checking feature-oriented product lines where the presence
of single types or members is checked in many type rules. We have implemented a
caching mechanism to decrease the number of calls to the SAT solver to a minimum.

Finally, the implementation in Haskell helped us a lot with the evaluation of the
correctness of our type rules. It can serve other researchers to reproduce and evaluate
our work and to experiment with further (feature-oriented) language mechanisms. The
implementations of FFJ and FFJPL, along with test programs, can be downloaded from
the Web.9

5 Related Work

We divide our discussions of related work into two parts: the implementation, formal
models, and type systems (1) of feature-oriented programs and (2) of feature oriented
product lines.

5.1 Feature-Oriented Programs

FFJ has been inspired by several feature-oriented languages and tools, most notably
AHEAD/Jak [13], FeatureC++ [10], FeatureHouse [9], and Prehofer’s feature-oriented
Java extension [55]. Their key aim is to separate the implementation of software arti-
facts, e.g., classes and methods, from the definition of features. That is, classes and re-
finements are not annotated or declared to belong to a feature. There is no statement in
the program text that defines explicitly a connection between code and features. Instead,
the mapping of software artifacts to features is established via so-called containment hi-
erarchies, which are basically directories containing software artifacts. The advantage
of this approach is that a feature’s implementation can include, beside classes in the
form of Java files, also other supporting documents, e.g., documentation in the form of
HTML files, grammar specifications in the form of JavaCC files, or build scripts and
deployment descriptors in the form of XML files [13]. To this end, feature composition
merges not only classes with their refinements but also other artifacts, such as HTML
or XML files, with their respective refinements [2,9].

Another class of programming languages that provide mechanisms for the definition
and extension of classes and class hierarchies includes, e.g., ContextL [29], Scala [52],
and Classbox/J [14]. The difference to feature-oriented languages is that they provide
explicit language constructs for aggregating the classes that belong to a feature, e.g.,
family classes, classboxes, or layers. This implies that non-code software artifacts can-
not be included in a feature [11]. However, FFJ still models a subset of these languages,
in particular, class refinement.

Similarly, related work on a formalization of the key concepts underlying feature-
oriented programming has not disassociated the concept of a feature from the level of

9 http://www.fosd.de/ffj

35

http://www.fosd.de/ffj

code. Especially, calculi for mixins [26,16,1,34], traits [41], family polymorphism and
virtual classes [33,25,30,18], path-dependent types [52,51], open classes [20], depen-
dent classes [27], and nested inheritance [50] either support only the refinement of sin-
gle classes or expect the classes that form a semantically coherent unit (i.e., that belong
to a feature) to be located in a physical module that is defined in the host programming
language. For example, a virtual class is by definition an inner class of the enclosing
object, and a classbox is a package that aggregates a set of related classes. Thus, FFJ
differs from previous approaches in that it relies on contextual information that has been
collected by the compiler, e.g., the features’ composition order or the mapping of code
to features.

A different line of research aims at the language-independent reasoning about fea-
tures [13,44,9,39]. The calculus gDeep is most closely related to FFJ since it provides a
type system for feature-oriented languages that is language-independent [4]. The idea is
that the recursive process of merging software artifacts, when composing hierarchically
structured features, is very similar for different host languages, e.g., for Java, C#, and
XML. The calculus describes formally how feature composition is performed and what
type constraints have to be satisfied. In contrast, FFJ does not aspire to be language-
independent, although the key concepts can certainly be used with different languages.
The advantage of FFJ is that its type system can be used to check whether terms of
the host language (Java or FJ) violate the principles of feature orientation, e.g., whether
methods refer to classes that have been added by other features. Due to its language
independence, gDeep does not have enough information to perform such checks.

5.2 Feature-Oriented Product Lines

Our work on type checking feature-oriented product lines was motivated by the work
of Thaker et al. [64]. They suggested the development of a type system for feature-
oriented product lines that does not check all individual programs but the individual
feature implementations. They have implemented an (incomplete) type system and, in a
number of case studies on real product lines, they found numerous hidden errors using
their type rules. Nevertheless, the implementation of their type system is ad-hoc in the
sense that it is described only informally, and they do not provide a correctness and
completeness proof. Our type system has been inspired by their work and we were able
to provide a formalization and a proof of type safety.

In a parallel line of work, Delaware et al. have developed a formal model of a
feature-oriented language, called Lightweight Feature Java (LFJ), and a type system
for feature-oriented product lines [23]. Their work was also influenced by the practical
work of Thaker et al. So, it is not surprising that it is closest to ours. However, there are
numerous differences. First, their formal model of a feature-oriented language is based
on Lightweight Java (LJ) [62] and not on Featherweight Java (FJ). While LJ is more
expressive, it is also more complex. We decided for the simpler variant FJ, omitting,
e.g., constructors and mutable state. Second, Delaware et al. do not model feature-
oriented mechanisms, such as class or method refinements, directly in the semantics
and type rules of the language. Instead, they introduce a transformation step in which
LFJ code is “compiled down” to LJ code, i.e., they flatten refinement chains to single
classes. Proceeding likewise, we would have to generate first an FJ program from an

36

FFJ product line and type check the FJ program (that consists of some or all possible
features of the product line) subsequently. We refrained from such a transformation
step in order to model the semantics of feature-oriented mechanisms directly in terms
of dedicated field and method lookup mechanisms as well as special well-formed rules
for method and class refinements.

Lagorio et al. have shown that a flattening semantics and a direct semantics are
equivalent [40]. An advantage of a “direct” semantics is that it allows a type checking
and error reporting at a finer grain. In LFJ, all feature modules are composed and a
single propositional formula is generated and tested for satisfiability; if the formula
is not satisfiable, it is difficult to identify precisely the point of failure. In FFJPL, the
individual type rules consult the feature model and can point directly to the point of
failure.

A further advantage of our approach is that it leaves open when feature composi-
tion is performed. Currently, feature composition is modeled in FFJ/FFJPL as a static
process done before compilation but, with our approach, it becomes possible to model
dynamic feature composition at run time [58,53] by making the class and feature tables
and the feature model dynamic, i.e., allowing them to change during a computation.
With LFJ this is not possible. Hutchins has shown that feature composition can be per-
formed by an interpreter and partial evaluation can be used to pre-evaluate the parts of
a composition that are static [31]. However, Delaware et al. have developed a machine-
checked model of their type system formalized with the theorem prover Coq [15]. Our
proof is hand-written, but we have a Haskell implementation of the FFJ and FFJPL

calculi that we have tested thoroughly.

Even previously to the work of Thaker et al., Czarnecki et al. presented an automatic
verification procedure for ensuring that no ill-structured UML model template instances
will be generated from a valid feature selection [22]. That is, they type check product
lines that consist not of Java programs but of UML models. They use OCL (object
constraint language) constraints to express and implement a type system for model
composition. In this sense, their aim is very similar to that of FFJPL, but limited to
model artifacts – although they have proposed to generalize their work to programming
languages.

Kästner et al. have implemented a tool, called CIDE, that allows a developer to
decompose a software system into features via annotations [38]. In contrast to other
feature-oriented languages and tools, the link between code and features is established
via annotations. If a user selects a set of features, all code that is annotated with features
(using background colors) that are not present in the selection is removed. Kästner et
al. have developed a formal calculus and a set of type rules that ensure that only well-
typed programs can be generated from a valid feature selection [36]. For example, if
a method declaration is removed, the remaining code must not contain calls to this
method. CIDE’s type rules are related to the type rules of FFJPL but, so far, mutually
exclusive features are not supported in CIDE. In some sense, FFJPL and CIDE represent
two sides of the same coin: the former aims at the composition of feature modules, the
latter at the annotation of feature-related code.

37

6 Conclusion

A feature-oriented product line imposes severe challenges on type checking. The naive
approach of checking all individual programs of a product line is not feasible because
of the combinatorial explosion of program variants. Hence, the only practical option is
to check the entire code base of a product line, including all features, and, based on the
information of which feature combinations are valid, to ensure that it is not possible to
derive a valid program variant that contains type errors.

We have developed such a type system based on a formal model of a feature-
oriented Java-like language, called Feature Featherweight Java (FFJ). A distinguishing
property of our work is that we have modeled the semantics and type rules for core
feature-oriented mechanisms directly, without compiling feature-oriented code down to
a lower-level representation such as object-oriented Java code. The direct semantics al-
lows us to reason about core feature-oriented mechanisms in terms of themselves and
not of generated lower-level code. A further advantage is the fine-grained error report-
ing and that the time of feature composition may vary between compile time and run
time.

We have demonstrated and proved that, based on a valid feature selection, our type
system ensures that every program of a feature-oriented product line is well-formed and
that our type system is complete. Our implementation of FFJ, including the type system
for product lines, indicates the feasibility of our approach and can serve as a testbed for
experimenting with further feature-oriented mechanisms.

Acknowledgment

This work is being funded in part by the German Research Foundation (DFG), project
number AP 206/2-1.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Jam—Designing a Java Extension with Mixins. ACM
Transactions on Programming Languages and Systems (TOPLAS), 25(5):641–712, 2003.

2. F. Anfurrutia, O. Díaz, and S. Trujillo. On Refining XML Artifacts. In Proceedings of the
International Conference on Web Engineering (ICWE), volume 4607 of LNCS, pages 473–
478. Springer-Verlag, 2007.

3. S. Apel and K. Böhm. Towards the Development of Ubiquitous Middleware Product Lines.
In Software Engineering and Middleware, volume 3437 of LNCS, pages 137–153. Springer-
Verlag, 2004.

4. S. Apel and D. Hutchins. An Overview of the gDeep Calculus. Technical Report MIP-0712,
Department of Informatics and Mathematics, University of Passau, 2007.

5. S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model Superimposition in Software Product
Lines. In Proceedings of the International Conference on Model Transformation (ICMT),
volume 5563 of LNCS, pages 4–19. Springer-Verlag, 2009.

6. S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Feature (De)composition in Functional
Programming. In Proceedings of the International Conference on Software Composition
(SC), volume 5634 of LNCS, pages 9–26. Springer-Verlag, 2009.

38

7. S. Apel, C. Kästner, and C. Lengauer. An Overview of Feature Featherweight Java. Technical
Report MIP-0802, Department of Informatics and Mathematics, University of Passau, 2008.

8. S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java: A Calculus for Feature-
Oriented Programming and Stepwise Refinement. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering (GPCE), pages 101–112.
ACM Press, 2008.

9. S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-Independent, Automated
Software Composition. In Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 221–231. IEEE CS Press, 2009.

10. S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the Symbiosis of Feature-
Oriented and Aspect-Oriented Programming. In Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE), volume 3676 of LNCS,
pages 125–140. Springer-Verlag, 2005.

11. S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE Transactions on Software
Engineering (TSE), 34(2):162–180, 2008.

12. D. Batory. Feature Models, Grammars, and Propositional Formulas. In Proceedings of the
International Software Product Line Conference (SPLC), volume 3714 of LNCS, pages 7–20.
Springer-Verlag, 2005.

13. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE Transac-
tions on Software Engineering (TSE), 30(6):355–371, 2004.

14. A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling the Scope of Change in
Java. In Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 177–189. ACM Press, 2005.

15. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, 2004.

16. V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and Mixins. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP), volume 1628 of
LNCS, pages 43–66. Springer-Verlag, 1999.

17. G. Bracha and W. Cook. Mixin-Based Inheritance. In Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP) and International Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), pages 303–311.
ACM Press, 1990.

18. D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: A Simple Virtual Class Cal-
culus. In Proceedings of the International Conference on Aspect-Oriented Software Devel-
opment (AOSD), pages 121–134. ACM Press, 2007.

19. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002.

20. C. Clifton, T. Millstein, G. Leavens, and C. Chambers. MultiJava: Design Rationale, Com-
piler Implementation, and Applications. ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(3):517–575, 2006.

21. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, 2000.

22. K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model Templates Against Well-
Formedness OCL Constraints. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), pages 211–220. ACM Press, 2006.

23. B. Delaware, W. Cook, and D. Batory. A Machine-Checked Model of Safe Composition. In
Proceedings of the International Workshop on Foundations of Aspect-Oriented Languages
(FOAL), pages 31–35. ACM Press, 2009.

39

24. S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A Mechanism for Fine-
Grained Reuse. ACM Transactions on Programming Languages and Systems (TOPLAS),
28(2):331–388, 2006.

25. E. Ernst, K. Ostermann, and W. Cook. A Virtual Class Calculus. In Proceedings of the
International Symposium on Principles of Programming Languages (POPL), pages 270–
282. ACM Press, 2006.

26. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proceedings of the
International Symposium on Principles of Programming Languages (POPL), pages 171–
183. ACM Press, 1998.

27. V. Gasiunas, M. Mezini, and K. Ostermann. Dependent Classes. In Proceedings of the
International Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), pages 133–152. ACM Press, 2007.

28. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. The Java
Series. Addison-Wesley, 3rd edition, 2005.

29. R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-Oriented Programming. Journal of
Object Technology (JOT), 7(3):125–151, 2008.

30. D. Hutchins. Eliminating Distinctions of Class: Using Prototypes to Model Virtual Classes.
In Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 1–19. ACM Press, 2006.

31. D. Hutchins. Pure Subtype Systems: A Type Theory For Extensible Software. PhD thesis,
School of Informatics, University of Edinburgh, 2008.

32. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core Calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems (TOPLAS), 23(3):396–
450, 2001.

33. A. Igarashi, C. Saito, and M. Viroli. Lightweight Family Polymorphism. In Proceedings of
the Asian Symposium on Programming Languages and Systems (APLAS), volume 3780 of
LNCS, pages 161–177. Springer-Verlag, 2005.

34. T. Kamina and T. Tamai. McJava – A Design and Implementation of Java with Mixin-Types.
In Proceedings of the Asian Symposium on Programming Languages and Systems (APLAS),
volume 3302 of LNCS, pages 398–414. Springer-Verlag, 2004.

35. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, 1990.

36. C. Kästner and S. Apel. Type-Checking Software Product Lines – A Formal Approach.
In Proceedings of the International Conference on Automated Software Engineering (ASE),
pages 258–267. IEEE CS Press, 2008.

37. C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features using AspectJ. In
Proceedings of the International Software Product Line Conference (SPLC), pages 222–232.
IEEE CS Press, 2007.

38. C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines. In Proceed-
ings of the International Conference on Software Engineering (ICSE), pages 311–320. ACM
Press, 2008.

39. C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Guaranteeing Syntactic Cor-
rectness for all Product Line Variants: A Language-Independent Approach. In Proceedings of
the International Conference on Objects, Models, Components, Patterns (TOOLS EUROPE),
volume 33 of LNBI, pages 174–194. Springer-Verlag, 2009.

40. G. Lagorio, M. Servetto, and E. Zucca. Featherweight Jigsaw – A Minimal Core Calculus
for Modular Composition of Classes. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), LNCS. Springer-Verlag, 2009.

41. L. Liquori and A. Spiwack. FeatherTrait: A Modest Extension of Featherweight Java. ACM
Transactions on Programming Languages and Systems (TOPLAS), 30(2):1–32, 2008.

40

42. R. Lopez-Herrejon and D. Batory. A Standard Problem for Evaluating Product-Line Method-
ologies. In Proceedings of the International Conference on Generative and Component-
Based Software Engineering (GCSE), volume 2186 of LNCS, pages 10–24. Springer-Verlag,
2001.

43. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in Ad-
vanced Modularization Technologies. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), volume 3586 of LNCS, pages 169–194. Springer-Verlag,
2005.

44. R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Approach to Aspect Com-
position. In Proceedings of the International Symposium Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), pages 68–77. ACM Press, 2006.

45. O. Madsen and B. Moller-Pedersen. Virtual Classes: A Powerful Mechanism in Object-
Oriented Programming. In Proceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 397–406. ACM
Press, 1989.

46. H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mechanisms. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP), vol-
ume 2743 of LNCS, pages 2–28. Springer-Verlag, 2003.

47. M. Mendonca, A. Wasowski, and K. Czarnecki. SAT-based Analysis of Feature Models
is Easy. In Proceedings of the International Software Product Line Conference (SPLC).
Software Engineering Institute, Carnegie Mellon University, 2009.

48. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented Programming
and Aspects. In Proceedings of the International Symposium on Foundations of Software
Engineering (FSE), pages 127–136. ACM Press, 2004.

49. G. Murphy, A. Lai, R. Walker, and M. Robillard. Separating Features in Source Code: An
Exploratory Study. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 275–284. IEEE CS Press, 2001.

50. N. Nystrom, S. Chong, and A. Myers. Scalable Extensibility via Nested Inheritance. In Pro-
ceedings of the International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 99–115. ACM Press, 2004.

51. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Objects with Depen-
dent Types. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 2743 of LNCS, pages 201–224. Springer-Verlag, 2003.

52. M. Odersky and M. Zenger. Scalable Component Abstractions. In Proceedings of the Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 41–57. ACM Press, 2005.

53. K. Ostermann. Dynamically Composable Collaborations with Delegation Layers. In Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP), volume
2374 of LNCS, pages 89–110. Springer-Verlag, 2002.

54. B. Pierce. Types and Programming Languages. MIT Press, 2002.
55. C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proceedings of the

European Conference on Object-Oriented Programming (ECOOP), volume 1241 of LNCS,
pages 419–443. Springer-Verlag, 1997.

56. T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nordhagen,
E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet. OORASS: Seamless Support for the
Creation and Maintenance of Object-Oriented Systems. Journal of Object-Oriented Pro-
gramming (JOOP), 5(6):27–41, 1992.

57. M. Rosenmüller, C. Kästner, N. Siegmund, S. Sunkle, S. Apel, T. Leich, and G. Saake. SQL
á la Carte – Toward Tailor-made Data Management. In Datenbanksysteme in Business, Tech-
nologie und Web – Fachtagung des GI-Fachbereichs Datenbanken und Informationssysteme,
volume P-144 of GI-Edition – LNI, pages 117–136. Gesellschaft für Informatik, 2009.

41

58. M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel. Code Generation to Support Static
and Dynamic Composition of Software Product Lines. In Proceedings of the International
Conference on Generative Programming and Component Engineering (GPCE), pages 3–12.
ACM Press, 2008.

59. M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel, T. Leich, O. Spinczyk,
and G. Saake. FAME-DBMS: Talor-made Data Management Solutions for Embedded Sys-
tems. In Proceedings of the EDBT Workshop on Software Engineering for Tailor-made Data
Management (SETMDM), pages 1–6. ACM Press, 2008.

60. N. Siegmund, C. Kästner, M. Rosenmüller, F. Heidenreich, S. Apel, and G. Saake. Bridging
the Gap between Variability in Client Application and Database Schema. In Datenbanksys-
teme in Business, Technologie und Web – Fachtagung des GI-Fachbereichs Datenbanken
und Informationssysteme, volume P-144 of GI-Edition – LNI, pages 297–306. Gesellschaft
für Informatik, 2009.

61. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation Tech-
nique for Refinements and Collaboration-Based Designs. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11(2):215–255, 2002.

62. R. Strniša, P. Sewell, and M. Parkinson. The Java Module System: Core Design and Se-
mantic Definition. In Proceedings of the International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 499–514. ACM Press,
2007.

63. P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 107–119. IEEE CS Press, 1999.

64. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product Lines. In
Proceedings of the International Conference on Generative Programming and Component
Engineering (GPCE), pages 95–104. ACM Press, 2007.

65. M. VanHilst and D. Notkin. Using Role Components in Implement Collaboration-based
Designs. In Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 359–369. ACM Press, 1996.

66. A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Information and
Computation, 115(1):38–94, 1994.

A Type Soundness Proof of FFJ

Before giving the main proof, we state and proof some required lemmas.

LEMMA A.1 If mtype(m, last(D)) = C→C0, then mtype(m, last(C)) = C→C0 for
all C <: D.

Proof Straightforward induction on the derivation of C <: D. There are two cases:
First, if method m is not defined in the declaration or in any refinement of class C,
then mtype(m, last(C)) should be the same as mtype(m, last(E)) where CT (Φ.C) =
class C extends E { . . . } for some Φ. This follows from the definition of mtype that
searches E’s refinement chain from right to left if m is not declared in C’s refinement
chain. Second, if m is defined in the declaration or in any refinement of class C, then
mtype(m, last(C)) should also be the same as mtype(m, last(E)) with CT (Φ.C) =
class C extends E { . . . } for some Φ. This case is covered by the well-formedness
rules for methods that use the predicate override to ensure that m is properly overrid-
den, i.e., the signatures of the overridden and the overriding declaration of m are equal,
and that m is not introduced twice, i.e., overloading is not allowed in FFJ. ut

42

LEMMA A.2 (Term substitution preserves typing) If Γ, x : B ` t : D and Γ, s : A,
where A <: B, then Γ ` [x 7→ s] t : C for some C <: D.

Proof By induction on the derivation of Γ, x : B ` t : D.

CASE (T-VAR) t = x x : D ∈ Γ

If x 6∈ x, then the result is trivial since [x 7→ s] x = x.10 On the other hand, if x = xi

and D = Bi, then, since [x 7→ s] x = si, letting C = Ai finishes the case.

CASE (T-FIELD) t = t0.fi Γ, x : B ` t0 : D0 fields(last(D0)) = C f D = Ci

By the induction hypothesis, there is some C0 such that Γ ` [x 7→ s] t0 : C0 and
C0 <: D0. It is easy to check that fields(last(C0)) = (fields(last(D0)), D g) for some
D g. Therefore, by T-FIELD, Γ ` ([x 7→ s] t0).fi : Ci. The fact that the refinements of
a class may add new fields does not cause problems. D g contains all fields that C0,
including all of its refinements, add to D0.

CASE (T-INVK) t = t0.m(t) Γ, x : B ` t0 : D0 mtype(m, last(D0)) = E→D
Γ, x : B ` t : D D <: E

By the induction hypothesis, there are some C0 and C such that:

Γ ` [x 7→ s] t0 : C0 C0 <: D0 Γ ` [x 7→ s] t : C C <: D.

By Lemma A.1, we have mtype(m, last(C0)) = E → D. Moreover, C <: E by the
transitivity of <: . Therefore, by T-INVK, Γ ` [x 7→ s] t0.m([x 7→ s] t) : D. The key is
that subclasses and refinements may override methods but the well-formedness rules of
methods ensure that the method’s type is not altered, i.e., there is no overloading in FFJ.

CASE (T-NEW) t = new D(t) fields(last(D)) = D f Γ, x : B ` t : C C <: D

By the induction hypothesis, Γ ` [x 7→ s] t : E for some E with E <: C. We have E <: D
by the transitivity of <: . Therefore, by rule T-NEW, Γ ` new D([x 7→ s] t) : D. Al-
though refinements of class D may add new fields, rule T-NEW ensures that the argu-
ments of the object creation match the overall fields of D, including all refinements, in
number and types. That is, the number of arguments (t) equals the number of fields (f)
which function fields returns.

CASE (T-UCAST) t = (D)t0 Γ, x : B ` t0 : C C <: D

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and E <: C.
We have E <: D by the transitivity of <: , which yields Γ ` (D)([x 7→ s] t0) : D by
T-UCAST.

CASE (T-DCAST) t = (D)t0 Γ, x : B ` t0 : C D <: C D 6= C

10 Note that [x 7→ s] x is an abbreviation for [x1 7→ s1, . . . , xn 7→ sn] x. It means that all occur-
rences of the variables x1, . . . , xn in the term x are substituted with the corresponsing terms
s1, . . . , sn.

43

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and E <: C.
If E <: D or D <: E, then Γ ` (D)([x 7→ s] t0) : D by T-UCAST or T-DCAST, respec-
tively. If both D 6<: E and E 6<: D, then Γ ` (D)([x 7→ s] t0) : D (with a stupid warning)
by T-SCAST.

CASE (T-SCAST) t = (D)t0 Γ, x : B ` t0 : C D 6<: C C 6<: D

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and E <: C.
This means that E 6<: D because, in FFJ, each class has just one superclass and, if both
E <: C and E <: D, then either C <: D or D <: C, which contradicts the induction hy-
pothesis. So Γ ` (D)([x 7→ s] t0) : D (with a stupid warning), by T-SCAST. ut

LEMMA A.3 (Weakening) If Γ ` t : C, then Γ, x : D ` t : C

Proof Straightforward induction. The proof for FFJ is similar to the proof for FJ. ut

LEMMA A.4 If mtype(m, last(C0)) = D→D, and mbody(m, last(C0)) = (x, t), then
for some D0 and some C <: D we have C0 <: D0 and x : D, this : D0 ` t : C .

Proof By induction on the derivation of mbody(m, last(C0)). The base case (in which
m is defined in the most specific refinement of C0) is easy since m is defined in
CT (last(C0)) and the well-formedness of the class table implies that we must have
derived x : D, this : C0 ` t : C by the well-formedness rules of methods. The induction
step is also straightforward: if m is not defined in CT (last(C0)), then mbody searches
the refinement chain from right to left; if m has not been found, the superclass’ refine-
ment chain is searched. There are two subcases: first, m is defined in the declaration or
in any refinement of C0; this case is similar to the base case. Second, m is defined in a
superclass D0 of C0 or in one of D0’s refinements; in this case, the well-formedness of
the class table implies that we must have derived x : D, this : D0 ` t : C by the well-
formedness rules of methods, which finishes the case. ut

Note that this lemma holds because method refinements do not change the types of
the arguments and the result of a method, overloading is not allowed, and this points
always to the class that is introduced or refined.

THEOREM A.1 (Preservation) If Γ ` t : C and t −→ t′, then Γ ` t′: C′ for some
C′<: C.

Proof By induction on a derivation of t −→ t′, with a case analysis on the final rule.

CASE (E-PROJNEW) t = new C0(v).fi t′ = vi fields(last(C0)) = D f

From the shape of t, we see that the final rule in the derivation of Γ ` t : C must be
T-FIELD, with premise Γ ` new C0(v) : D0, for some D0, and that C = Di. Similarly,
the last rule in the derivation of Γ ` new C0(v) : D0 must be T-NEW, with premises
Γ ` v : C and C <: D, and with D0 = C0. In particular, Γ ` vi : Ci, which finishes the
case, since Ci <: Di.

CASE (E-INVKNEW) t = (new C0(v)).m(u) t′ = [x 7→ u, this 7→ new C0(v)] t0
mbody(m, last(C0)) = (x, t0)

44

The final rules in the derivation of Γ ` t : C must be T-INVK and T-NEW, with premises
Γ ` new C0(v) : C0, Γ ` u : C, C <: D, and mtype(m, last(C0)) = D → C. By
Lemma A.4, we have x : D, this : D0 ` t : B for some D0 and B, with C0 <: D0 and
B <: C. By Lemma A.3, Γ, x : D, this : D0 ` t0 : B. Then, by Lemma A.2, we have
Γ [x 7→ u, this 7→ new C0(v)] t0 : E for some E <: B. By the transitivity of <: , we ob-
tain E <: C. Letting C′ = E completes the case.

CASE (E-CASTNEW) t = (D)(new C0(v)) C0 <: D t′ = new C0(v)

The proof of Γ ` (D)(new C0(v)) : C must end with T-UCAST since ending with T-
SCAST or T-DCAST would contradict the assumption of C0 <: D. The premises of
T-UCAST give us Γ ` new C0(v) : C0 and D = C, finishing the case.

The cases for the congruence rules are easy. We show just the case E-CAST.

CASE (E-CAST) t = (D)t0 t′ = (D)t′0 t0 −→ t′0
There are three subcases according to the last typing rule used.

SUBCASE (T-UCAST) Γ ` t0 : C0 C0 <: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. By transitivity of <: ,
C′0 <: C. Therefore, by T-UCAST, Γ ` (C)t′0 : C (with no additional stupid warning).

SUBCASE (T-DCAST) Γ ` t0 : C0 D <: C0 D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. If C′0 <: C or C <: C′0,
then Γ ` (C)t′0 : C by T-UCAST or T-DCAST (without any additional stupid warning).
On the other hand, if both C′0 6<: C or C 6<: C′0, then Γ ` (C)t′0 : C with a stupid warning
by T-SCAST.

SUBCASE (T-SCAST) Γ ` t0 : C0 D 6<: C0 C0 6<: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. Then, also C′0 6<: C and
C 6<: C′0. Therefore Γ ` (C)t′0 : C with a stupid warning . If C′0 6<: C, then C 6<: C′0
since C 6<: C0 and, therefore, Γ ` (C)t′0 : C with stupid warning . If C′0 <: C, then Γ `
(C)t′0 : C by T-UCAST (with no additional stupid warning). This subcase is analogous
to the case T-SCAST of the proof of Lemma A.2. ut
THEOREM A.2 (Progress) Suppose t is a well-typed term.

1. If t includes new C0(t).fi as a subterm, then fields(last(C0)) = C f for some C and
f.

2. If t includes new C0(t).m(u) as a subterm, then mbody(m, last(C0)) = (x, t0) and
|x| = |u| for some x and t0.

Proof If t has new C0(t).fi as a subterm, then, by well-typedness of the subterm, it is
easy to check that fields(last(C0)) is well-defined and fi appears in it. The fact that
refinements may add fields (that have not been defined already) does not invalidate this
conclusion. Note that for every field of a class, including its superclasses and all its
refinements, there must be a proper argument. Similarly, if t has new C0(t).m(u) as a
subterm, then it is also easy to show that mbody(m, last(C0)) = (x, t0) and |x| = |u|
from the fact that mtype(m, last(C0)) = C → D where |x| = |C|. This conclusion
holds for FFJ since a method refinement must have the same signature than the method
refined and overloading is not allowed. ut

45

THEOREM A.3 (Type soundness of FFJ) If ∅ ` t : C and t −→∗ t′ with t′ a normal
form, then t′ is either a value v with ∅ ` v : D and D <: C, or a term containing
(D)(new C(t)) in which C <: D.

Proof Immediate from Theorem A.1 and A.2. Nothing changes in the proof of Theo-
rem A.3 for FFJ compared to FJ. ut

B Type Soundness Proof of FFJPL

In this section, we provide proof sketches of the theorems Correctness of FFJPL and
Completeness of FFJPL. A further formalization would be desirable, but we have stopped
at this point. As is often the case with formal systems, there is a trade-off between for-
mal precision and legibility. We decided that a semi-formal development of the proof
strategies are the best fit for our purposes.

B.1 Correctness

THEOREM B.1 (Correctness of FFJPL) Given a well-typed FFJPL product line pl (in-
cluding with a well-typed term t, well-formed class, introduction, and refinement tables
CT , IT , and RT , and a feature model FM), every program that can be derived with a
valid feature selection fs is a well-typed FFJ program (cf. Figure 10).

pl = (t, CT , IT , RT , FM) pl is well-typed fs is valid in FM
derive(pl , fs) is well-typed

The proof strategy is as follows: assuming that the FFJPL type system ensures that
each slice is a valid FFJ type derivation (Lemma B.1) and that each valid feature se-
lection corresponds to a single slice (Lemma B.1), it follows that the corresponding
feature-oriented program is well-formed. Before we prove Theorem B.1 we develop
two required lemmas that cover the two assumptions of our proof strategy.

LEMMA B.1 Given a well-formed FFJPL product line, every slice of the product line’s
type derivation corresponds to a (set of) valid type derivation(s) in FFJ.

Proof (Proof sketch) Given a well-formed FFJPL product line, the corresponding type
derivation consists of possibly multiple slices.

The basic case is easy: there is only a simple derivation without branches due to
mutually exclusive features (optional features may be present). In this case, each term
has only a single type, which is the one that would also be determined by FFJ. Fur-
thermore, FFJPL guarantees that referenced types, methods, and fields are present in all
valid variants, using the predicate validref .

Let us illustrate this with the rule T-FIELDPL; the other rules are analogous:

∀E ∈ E : validref (Φ, E.f)
Γ ` t0 : E a Φ fields(Φ, last(E)) = F , C f,G
Γ ` t0.f : C11, . . . , Cn1, . . . , C1m, . . . , Cnm a Φ

(T-FIELDPL)

46

In the basic case there are no branches in the type derivation and thus the term
t0 has only a single type E1. For the same reason, fields returns only a simple list of
fields that contains the declaration of field f. Finally, T-FIELDPL checks whether the
declaration of f is present in all valid variants (using validref). Hence, in the basic
case, an FFJPL derivation that ends at the rule T-FIELDPL is equivalent to a set of
corresponding FFJ derivations, which do not contain alternative and optional features
and thus t0 has a single type, fields returns a simple list of fields that contains the
declaration of f, and the declaration of f is present. The reason that an FFJPL derivation
without mutually exclusive features (i.e., a single slice) corresponds to multiple FFJ
derivations is that the FFJPL derivation may contain optional features whose different
combinations correspond to the different FFJ derivations. Using predicate validref , all
type rules of FFJPL ensure that all possible combinations of optional features are well-
typed.

In the case that there are multiple slices in the FFJPL derivation, a term t0 may have
multiple types E. The type rules of FFJPL make sure that every possible shape of a given
term is well-typed. Each possible type of the term leads to a branch in the derivation
tree. The premise of T-FIELDPL checks whether all possible shapes of a given term
are well-typed by taking the conjunction of all branches of the derivation. Hence, if
T-FIELDPL is successful, each individual branch holds, i.e., each slice corresponds to a
well-typed FFJ program. Ensuring that, in the presence of optional features, all relevant
subterms are well-typed (i.e., all referenced elements are present in all valid variants), a
well-typed slice covers a set of well-typed FFJ derivations that correspond to different
combinations of optional features, like in the basic case.

For example, in a field projection t0.f, the subterm t0 has multiple types E. For all
these types, fields yields all possible combinations of fields declared by the variants
of the types. It is checked whether, for each type of the subterm t0, each combination
of fields contains a proper declaration of field f. The different types of f become the
possible types of the overall field projection term. Like in the basic case, it is checked
whether every possible type of t0 is present in all valid variants (using validref), so that
each slice corresponds a valid FFJ derivation, i.e., a whole set of derivations covering
different combinations of optional features. ut

LEMMA B.2 Given a well-formed FFJPL product line, each valid feature selection cor-
responds to a single slice in the corresponding type derivation.

Proof (Proof sketch) By definition, a valid feature selection does not contain mutually
exclusive features. Considering only a single valid feature selection, each term has only
a single type. But the type derivation of the overall product line contains branches corre-
sponding to alternative types of the terms. A successive removal of mutually exclusive
features removes these branches until only a single branch remains. Consequently, a
valid feature selection corresponds to a single slice. ut

Proof (Proof sketch of Theorem B.1 (Correctness of FFJPL)) The fact that the FFJPL

type system ensures that each slice is a valid FFJ type derivation (Lemma B.1) and that
each valid feature selection corresponds to a single slice (Lemma B.2), implies that each
feature-oriented program that corresponds to a valid feature selection is well-formed.

ut

47

B.2 Completeness

THEOREM B.2 (Completeness of FFJPL) Given an FFJPL product line pl (including
a well-typed term t, well-formed class, introduction, and refinement tables CT , IT ,
and RT , and a feature model FM), and given that all valid feature selections fs yield
well-typed FFJ programs, according to Theorem B.1, pl is a well-typed product line
according to the rules of FFJPL.

pl = (t, CT , IT , RT , FM) ∀ fs : (fs is valid in FM ⇒ derive(pl , fs) is well-typed)
pl is well-typed

Proof (Proof sketch of Theorem B.2 (Completeness of FFJPL)) There are three basic
cases: (1) pl has only mandatory features; (2) pl has only mandatory features except a
single optional feature; (3) pl has only mandatory features except two mutually exclu-
sive features. Proving Theorem B.2 for the first basic case is trivial. Since only manda-
tory features exist, only a single FFJ program can be derived from the product line. If
the FFJ program is well-typed, the product line is well-typed, too, because all elements
are always reachable and each term has only a single type. In fact, the type rules of
FFJPL and FFJ become equivalent in this case.

In the second basic case, two FFJ programs can be derived from the product line,
one including and one excluding the optional feature. The difference between the two
programs is the content of the optional feature. The feature can add new classes, refine
existing classes by new methods and fields, and refine existing methods by overriding.
If the two programs are well-typed, then the overall product line is well-typed as well
since the reachability checks succeed in every type rule of FFJPL. Otherwise, at least
one of the two programs would not be well-typed since, in this case, the reachability
checks are the only difference between FFJPL’s and FFJ’s type rules (as in the first case,
each term has only a single type since there are no mutually exclusive features). The
fact that the two FJ programs are well-typed implies that all elements are reachable in
the type derivations of two FFJ programs. Thus, the reachability checks of the FFJPL

derivation succeed in every case, i.e., the product line in question is well-typed.
In the third basic case, two FFJ programs can be derived from the product line,

one including the first alternative and the other including the second alternative of the
feature in question. The difference between the two programs is, on the one hand, the
program elements one feature introduces that are not present in the other and, on the
other hand, the alternative definitions of similar elements, like two alternative defini-
tions of a single class. The first kind of difference is already covered by the second
basic case. Alternative definitions of a program element (second kind of difference)
that are well-typed in the context of their enclosing FFJ programs, are well-typed in
FFJPL because they lead to two new branches in the derivation tree which are handled
separately and the conjunction of their premises must hold. Since the corresponding
FFJ type rule for the element succeeds in both FFJ programs, their conjunction in the
FFJPL type rule always holds, i.e., the product line in question is well-typed.

Finally, we it remains to show that all other cases, i.e., all other combinations of
mandatory, optional, and alternative features, can be reduced to combinations of the
three basic cases, which proves Theorem B.2. To this end, we divide the possible rela-
tions between features into three disjoint sets: (1) a feature is reachable from another

48

feature in all variants, (2) a feature is reachable from another feature in some, but not
in all, variants, (3) two features are mutually exclusive. From these three possible rela-
tions we construct a general case that can be reduced to a combination of the three basic
cases.

Assume a feature Φ that is mandatory with respect to a set of features Π, that is
optional with respect to a set of features Ω, and that is alternative to a set ∆ of features.
We use arrows to illustrate to which of the three basic cases a pairwise relation between
Φ and each element of a list is reduced:

Φ
2 //

1

��

3

 A
AA

AA
AA

A Ω

Π ∆

Such an arrow diagram can be created for every feature of a product line. The reason is
that the three kinds of relations are orthogonal and there are no further relations relevant
for type checking. Hence, the general case covers all possible relations between features
and combinations of features. The description of the general case and the reduction
finish the proof of Theorem B.2, i.e., FFJPL’s type system is complete. ut

49

