
Extracting and Storing Document Metadata

Christian Schönberg and Burkhard Freitag

Department of Informatics and Mathematics, University of Passau
{Christian.Schoenberg, Burkhard.Freitag}@uni-passau.de

Technical Report, Number MIP-0907
Department of Informatics and Mathematics

University of Passau, Germany
August 2009

Contents

1 Introduction 1

2 Document Properties 3
2.1 Verdikt Document Model . 5

3 Metadata Extraction 7
3.1 Metadata Extraction using Java . 11

3.1.1 Information Extraction Procedure . 11
3.1.2 Information Extraction Utilities and Techniques 14

3.2 Metadata Extraction using XQuery . 17

4 Metadata Storage Requirements 21

5 Metadata Storage 22

6 Further Metadata Processing 26

7 Conclusion 30

A List of relevant Metadata 35
A.1 Structural Types of Fragments . 35
A.2 Function Types of Fragments . 36
A.3 Content . 36
A.4 References . 37
A.5 Didactical Information . 37
A.6 Source . 38
A.7 Versioning . 38
A.8 Errors . 38
A.9 Evaluation . 38
A.10 Dublin Core Metadata (extract) . 39

B List of available Metadata 39
B.1 LMML . 39
B.2 < ML3 > . 39
B.3 SCORM . 40
B.4 DocBook . 40
B.5 DITA . 40
B.6 HTML . 41
B.7 HTML with CSS and Information Extraction 41
B.8 LATEX . 41

C List of Metadata Vocabulary 41
C.1 Vocabulary in the verdikt/Document/ namespace 42
C.2 Vocabulary in the verdikt/Reference/ namespace 43
C.3 Vocabulary in the verdikt/Source/ namespace 43
C.4 Vocabulary in the verdikt/Didactic/ namespace 44
C.5 Vocabulary in the verdikt/Error/ namespace 44
C.6 Vocabulary in the verdikt/Evaluation/ namespace 44
C.7 Vocabulary in other namespaces . 45

D List of DocumentAdapter Methods 45

E List of XQuery Extensions and Functions 49
E.1 List of XQuery Extensions . 49
E.2 List of XQuery Functions . 51

3

Abstract

This paper gives an overview of information extraction techniques, metadata storage
practices, and metadata querying and transformation methods as they are employed
in the context of the Verdikt research project.

As a major part of document verification, an abstract internal model of the docu-
ment to be processed has to be generated. We describe the overall model-generating
procedure with a focus on metadata extraction and storage. Good practice is presented
and potential problems are discussed.

1 Introduction

With online-publishing of documents steadily growing, it is becoming increasingly difficult
to keep the structure and content of documents like technical documentations or e-learning
material in a consistent state. Manufacturers reuse content across several documentations,
compiling documents from a host of separate resources and text fragments that depend on
current requirements and priorities. Similarly, e-learning courses are often assembled from
existing modules, while their actual instances depend on the specific didactical intentions.
Documents published in a hypertext format such as XML or HTML add another difficulty:
there is usually more than one (linear) path through the document. For realistically large
documents this makes it almost impossible to check consistency criteria manually. There-
fore, a means to verify digital documents against specified criteria is gaining in impact and
relevance [KSS04].
The goal of the Verdikt1 project is to provide a method of automatic document verification.
An overview of the general approach of the project is shown in Figure 1: a user specifies
some consistency criteria using a high-level specification method (left hand side, top). The
resulting specification is transformed into a formal specification using temporal description
logics (left hand side, bottom). The relevant information is extracted from the document
to be checked (right hand side, top) and transformed into a document model. This model
can be enriched with background knowledge (right hand side, middle). A formal verification
model is generated from the enriched document model (right hand side, bottom). Model
checking is used to test the formal specification against the formal model. A positive result
is returned if the document satisfies the specification. Otherwise, an error report detailing
the specification violations is created. A description of the overall verification process can
be found in [WJF09]. Details about the employed temporal description logic, about the
model checking process, and further information about the verification process can be found
in [Wei08]. An approach to support the user-level specification of consistency criteria is
detailed in [JF08].

Documents

Document Model
(RDF Statements)

Verification Model
(Temporal Description Logic)

User Specification

Verification Formula
(Temporal Description Logic)

Result
(OK / Error Report)

User

Specification

Transformation

Model Checking

Information Extraction

Background Knowledge

Generation

Figure 1: Overview of the Verdikt approach

A detailed view of the right-hand-side of Figure 1 is shown in Figure 2. Documents are
preprocessed into a normalised and simplified form (top), from which the document model

1This work is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
under grant number FR 1021/7-1.

1

is extracted in the form of RDF statements using Java or XQuery (centre). Employing
existing RDF frameworks like Jena [CDD+04] or Sesame [BKH02], the statements of the
document model can be stored persistently (left hand side). Using ontology reasoning, the
document model can also be enriched with further background knowledge (right hand side).
Two options exist for generating the verification model from the document model: on the
one hand, the verification model can be generated directly using Java. On the other hand,
the verification model can be generated from an XML view of the RDF statement graph
using XQuery (left and right hand side, bottom).

RDF Statements
(#document, Topic, „Example Document“)
(#section1, Topic, „Introduction“)
(#document, Part, #section1)
...

Document Model

Background
KnowledgeOntology Reasoning

Verification Model
(Temporal Description Logic)

Persistent Storage
(DBMS)

RDF Framework

<object id=“document“>
<Topic data=“Example Document“/>
<Part id=“section1“>

<Topic data=“Introduction“/>
...

XML View Generation

Model Generation:
XQuery

Model Generation:
Java

Documents

Normalised
Document

Preprocessing

Information Extraction:
Java/XQuery

XML View of the Document Model

Figure 2: Detailed view of the information extraction and model generation

The framework developed as part of the Verdikt project has been tested on documents
from the domains of technical documentation, e-learning, and web pages. To that end, the
framework has to be able to handle several different file formats, including HTML, DocBook,
DITA, LMML, <ML3> and Microsoft Word.
This report focuses on a description of the metadata extraction and model generation pro-
cess. A description of the document model used to represent and store the metadata informa-
tion is provided in Section 2. The extraction process is outlined in Section 3. Requirements
for persistently storing the document model are detailed in Section 4, while the implemented
solution is explained in Section 5. The generation of a verication model from the document

2

model is presented in Section 6. Section 7 concludes this report with a summary.

2 Document Properties

The Verdikt project aims at verifying consistency criteria in documents. To allow for a
better understanding of this process, we will explain the notion of a Document as it is used
and understood in the Verdikt context. To that end, we also explain the terms Corpus and
Fragment .
A document is a tree of fragments: node fragments make up the inner structural parts of
the document, while atomic fragments are its leaves and contain the actual text or media
content. Any sensible partitioning of a document that is both useful from the point of view
of the intended application and compatible with the underlying document format is a valid
set of fragments. An atomic fragment is a part of a document that is chosen to be treated
as indivisible.
Child nodes of a fragment are called sub-fragments. Sub-fragments are ordered, so that
a unique document order (cf. [XPA99]) is imposed on the document tree. A fragment’s
immediate successor is its first sub-fragment; if no sub-fragment exists, the successor is its
first sibling (the next sub-fragment of the parent node); if no sibling exists, the successor is
the first sibling of the first parent that has at least one sibling. The only fragment without
a successor is the very last leaf fragment of the document. Figure 3 shows an illustration of
the document order, of sub-fragments, and of successors.
Our understanding of documents and their fragments is closely related to the data model of
XPath 2.0 [XPa07] and XML Information Set [XML04].

1

2 6

43 5 7

sub-fragment

successor

1-7 document order

Figure 3: Document order

There can be references between fragments. They have no bearing on the document’s tree
structure, but they offer additional valid paths through the document, apart from traversing
the tree in document order. Possible types of references include direct links, indirect refer-
ences (e.g. “See Chapter IV” or “See the definition of Binary Trees”), citations, references
to external entities (e.g. hyperlinks to external web sites), and includes (including fragments
into the document tree from an external source). Includes are the only kind of references
that extend the document tree: included fragments and their structure become part of the
tree. At this point, we only consider finite documents, e.g. we do not allow self-including
fragments or circular inclusions.
Node fragments can often be mapped onto structural components of the document (e.g.
chapters or sections). In such cases, they are assigned a structural type (e.g. “Chapter”).
Apart from their structural properties, they can often also be mapped onto functional de-
scriptions (e.g. “Introduction” or “Definition”), in which case they are assigned a matching

3

function type. Fragments are often assigned additional document metadata, such as topics
or didactic information. While node fragments represent no textual or other content of their
own (apart from topics and headlines), they aggregate such content in the form of their
atomic sub-fragments. Non-content metadata like didactic information or data about the
fragment’s source file are passed down the document tree and inherited by the sub-fragments
of a document node.

Illustration
Document

Illustration 2.1 (Document)
The illustration shows an example document consisting of three chapters. Fragment 2 is
included twice, first as a sub-fragment of Fragment A, then – by re-use – as a sub-fragment
of Fragment B. Fragments 1, 3, 4 and 5 have function types (in italics), while all fragments
have a structural type. Fragments that are not explicitly named have the structural types
“Paragraph” and “Image”, respectively. There is a cross-reference between Fragment 3 and
Fragment 5, which is not part of the document tree but creates a new path through the
document: a reader can omit Fragments 4 and 2 and jump directly to Fragment 5.
All named fragments (including the document itself) are node fragments, while the unnamed
fragments are atomic fragments.

Document α
Fragment A (Chapter)

Fragment 1 (Section, Introduction) Fragment 2 (Section)

Fragment B (Chapter)

Fragment 4 (Section, Example) Fragment 2 (Section)Fragment 3 (Section, Definition)

Fragment C (Chapter)

Fragment 5 (Section, Exercise)

We do not regard documents or fragments that are not digitally stored. However, apart
from this, no further storage limitations are imposed on a document: it can be stored as one
or more files in the filesystem, as one or more files across a network, or in a database. A doc-
ument does not even have to be written in a single file format: different fragments can have
different formats. However, usually a document is given in only a small number of different
formats, which are designed to work well together, e.g. HTML and PNG/SVG/JPEG, or
different formats of the Microsoft Office family.

4

Document formats are usually either semi-structured (like the XML-based formats DITA
[DIT07], DocBook [Doc09] or LMML [Süß05]), or sparsely-structured (like HTML, LATEX,
or Microsoft Word). Semi-structured formats add metadata information to the pure text,
such as structural or function types (see above), as well as content-related data, such as
keywords, important terms, or objectives. There can also be metadata concerning didactic
information, source references, quality assessment, and more. Sparsely-structured formats
also add metadata information to the textual content, but – as the name suggests – fewer in
both quantity and quality. While for example the plain HTML format tags headlines (and by
that, indirectly, sections and subsections), the LMML format also offers information about
the function of and the terms covered by a section. Some information extraction techniques
also provide meta-metadata, i.e. data about the quality (e.g. probability of correctness) of
the metadata that was extracted from a document.
A listing of relevant metadata used in the Verdikt project can be found in Appendix A.
A listing of the metadata information supported by different file formats can be found in
Appendix B.
After having described single documents and their structure and building blocks, i.e. frag-
ments, we now proceed to sets of documents. A corpus is usually a collection of documents
that have some connection with one another: they share the same topic or domain, they
describe the same or a similar product, they are written by the same author, or they serve
a similar purpose. Grouping documents has several advantages for the Verdikt system in
general, and the metadata extraction component in particular. The consistency criteria
checked with the Verdikt system often differ very little – if at all – across a suitably defined
corpus, thus limiting the effort required to specify them. Also, the documents of a corpus
usually share common characteristics, such as structure, terminology, key words, or other
background knowledge. Therefore, there is reason to assume that if the metadata extraction
works well for one of the documents of a corpus it will work similarly well for the rest of its
documents.

2.1 Verdikt Document Model

The Verdikt project does not require the entire document for its verification process. Instead,
an abstract document model containing certain metadata, including structural information
about the document and some indication of the content of its fragments, such as occurring
terms or abbreviations, is sufficient.

Definition
Document Model

Definition 2.1 (Document Model)
The document model is a set of statements, each of which is a triple consisting of subject ,
predicate and object . In general, the statements form a directed graph. The edges are
annotated and represent the predicates of statements, while the nodes represent subjects
and objects. The directionality of each edge indicates which adjunct node is the subject and
which is the object of the statement. Nodes can contain textual data: these nodes are called
Data Objects – graphically denoted as rectangular boxes with values enclosed in double
quotes – and can only be used as objects in statements. Nodes that do not contain textual
data are called Content Objects – graphically denoted as ellipsoids – because they are used to
cluster other nodes and as such are often hubs for multiple statements. Nodes representing
statements are called Statement Objects – graphically denoted as diamond-shaped boxes.
Documents and their fragments are modelled as Content Objects in this graph, with the
relevant metadata attached to them in the form of Data Objects. The relations between
nodes are defined by the semantics of the connecting predicates, which for the purpose of

5

the Verdikt project use a standardised vocabulary. A listing of this vocabulary can be found
in Appendix C.

Definition
ReificationDefinition 2.2 (Reification)

Statements can have entire other statements as their subjects. The process of using state-
ments as nodes to facilitate statements about other statements is called reification. A
statement that is the subject of another statement is called a reified statement . A state-
ment that reifies another statement (i.e. that has another statement as a subject) is called
a reification statement .
Statement Objects are used to model reification, while their graphical representations are
used to represent reification graphically (see e.g. Figure 8).

Illustration
Document ModelIllustration 2.2 (Document Model)

The illustration shows a graphical representation of parts of the model of the document
shown in Illustration 2.1. Some fragments and sub-fragments have been omitted for the
sake of clarity.

Document α Fragment A

Fragment B

Fragment C

Fragment 1

Fragment 2

Fragment 3

Fragment 5

Fragment 1.1

Fragment 1.2

Fragment 2.1

Fragment 2.2

Fragment 3.1

Fragment 5.1

Part Part

PartPartPart

Part Part

Part

PartPart

Part

Part
Part

Part

Su
cc
es
so
r

Su
cc
es
so
r

Su
cc
es
so
r

Successor

Successor

Document

Chapter Section

Paragraph

Image

Introduction

Definition

Exercise

Paragraph

Paragraph

Paragraph

Structural Type

Function Type

Re
fe
re
nc
e

Paragraph

Successor

6

Example
Document Model

Example 2.3 (Document Model)
The example lists some of the statements corresponding to the model shown in Illustra-
tion 2.2. Statements 2 through 4 as well as statements 6 and 7 indicate how the document
is structured: Fragments A through C are the parts (sub-fragments) the document itself is
composed of, while Fragments 1 and 2 are both parts of Fragment A. Statements 1, 5 and
8 describe the structural type of the indicated fragments: the document is labelled “Docu-
ment”, Fragment A is labelled “Chapter”, while Fragment 1 is denoted to be a “Section”.
Statement 9 asserts the functional type of Fragment 1 to be “Introduction”. Statement 10
specifies that Fragment 2 is an immediate successor of Fragment 1, meaning that Fragment 2
follows directly after Fragment 1 according to the document order.〈

(Document α) ,
StructuralType−−−−−−−−−→, [“Document”]

〉
(1)

〈
(Document α) ,

Part−−−→, (Fragment A)
〉

(2)〈
(Document α) ,

Part−−−→, (Fragment B)
〉

(3)〈
(Document α) ,

Part−−−→, (Fragment C)
〉

(4)〈
(Fragment A) ,

StructuralType−−−−−−−−−→, [“Chapter”]
〉

(5)〈
(Fragment A) ,

Part−−−→, (Fragment 1)
〉

(6)〈
(Fragment A) ,

Part−−−→, (Fragment 2)
〉

(7)〈
(Fragment 1) ,

StructuralType−−−−−−−−−→, [“Section”]
〉

(8)〈
(Fragment 1) ,

FunctionType−−−−−−−−−→, [“Introduction”]
〉

(9)〈
(Fragment 1) ,

Successor−−−−−−→, (Fragment 2)
〉

(10)

3 Metadata Extraction

The Verdikt framework provides two different approaches to metadata extraction from doc-
uments. Figure 4 shows part of the general architecture of the framework.
The DocumentModel package contains the abstract classes and interfaces that represent the
document model:

• The MetadataModel interface represents the document model as a whole, storing all
pertinent data and providing access to its statements.

• The VerdiktObject interface is the base interface for the objects that make up the
statements and data of the document model.

7

• The DataObject interface represents simple data entries, like e.g. strings or integers.
It can only be used as the object of a statement, not as its subject.

• The ResourceObject interface is the base interface for more complex objects than
DataObjects. Like RDF’s resources, ResourceObjects can be used as both the subject
and the object of a statement.

• The ContentObject interface represents objects that do not have any value themselves,
but are used as hubs to group other objects.

• The VocabularyObject interface represents terms that can be used as the predicate
in a statement.

• The StatementObject interface represents statements. StatementObjects themselves
can be used as a subject or a an object in other statements.

The DocumentAdapter package contains classes used to create, modify, transform or display
document models. The abstract DocumentAdapter class provides a set of utility methods,
such as XSLT capabilities, reading and writing of files, creating checksums etc., that can
be used by classes extending the DocumentAdapter class. It also defines the two primary
methods load and save any extending class has to define. These methods are used to
import a document model from a source or transform it into a destination format. While
several classes extending the DocumentAdapter class have been defined to facilitate trans-
formation capabilities from and to various formats, several have been omitted in Figure 4
for the sake of clarity. For classes like DocBookDocumentAdapter or LMMLDocumentAdapter,
the load method provides the most important functionality: these classes are used to im-
port documents in various formats (e.g. DocBook [Doc09] and LMML [Süß05]), which is a
specialisation of their common base class DocumentAdapter. The RDFDocumentAdapter
class relies on both the load and save methods: the adapter is used to provide both
read and write access to RDF type files. Classes like JTreeDocumentAdapter primarily
use the save method: they are used for display purposes (e.g. creating a Java tree view).
Classes like RuleDocumentAdapter also focus on using the save method: they are used to
transform the document model into another format (e.g. into a verification model). The
XQueryDocumentAdapter is a special case: it is used to run an external XQuery program.
This program can be used on an XML document to extract metadata and to create a doc-
ument model, or it can be used on an XML serialisation of the document model to create a
verification model.
The rules package contains the necessary abstract classes and interfaces for specifying how
to generate a verification model from the document model using the RuleDocumentAdapter
class, which extends the abstract DocumentAdapter class.
The Memory, Jena, and Sesame packages contain implementations of the MetadataModel
that have been optimised for usage in combination with RDF storage in main memory,
RDF storage using the Jena framework, and RDF storage using the Sesame framework,
respectively.
Figure 5 shows how RDF frameworks like Sesame or Jena can be integrated into the Verdikt
framework for managing RDF data. Since the integration is based on interfaces, external
frameworks can be used transparently, and can be exchanged or updated easily.
Extracting the relevant metadata from a document is a difficult process. Two possible
approaches to metadata extraction that have been developed as part of the Verdikt project
are detailed below.

8

verdikt::DocumentModel

DocumentModel::Memory

DocumentModel::Jena

DocumentModel::Sesame

+findStatements(searchTerm : string) : Set<StatementObject>
-objects : Set<VerdiktObject>

DocumentModel::MetadataModelDocumentModel::VerdiktObject

-data : string
-format : string

DocumentModel::DataObject

DocumentModel::ContentObject
-namespace : string
-localname : string

DocumentModel::VocableObject
-subject : ResourceObject
-predicate : VocableObject
-object : VerdiktObject

DocumentModel::StatementObject

verdikt

DocumentModel::ResourceObject

verdikt::DocumentAdapter

+load(source : string) : MetadataModel
+save(dest : string, model : MetadataModel)

DocumentAdapter::DocumentAdapter

DocumentAdapter::DocBookDocumentAdapter

DocumentAdapter::LMMLDocumentAdapter

DocumentAdapter::XQueryDocumentAdapter

DocumentModel::Rules
+evaluate() : Set<VerdiktObject>
-condition : Condition

Rules::Selector

+evaluate() : bool

Rules::Condition

DocumentAdapter::RDFDocumentAdapter

DocumentAdapter::JTreeDocumentAdapter

DocumentAdapter::RuleDocumentAdapter

Figure 4: General architecture of the Verdikt framework

9

DocumentModel

DocumentModel::Sesame

DocumentModel::Memory

DocumentModel::Jena

«interface»
DocumentModel::VerdiktObject

Sesame::VerdiktObject

Memory::VerdiktObject

Jena::VerdiktObject

Sesame Framework

Jena Framework

Sesame Framework::SesameObject

Jena Framework::JenaObject

RDF Management &
Storage Back EndDocument Model Interface

«uses»

«uses»

Memory::VerdiktImplementation
«uses»

Verdikt Framework External Frameworks

Figure 5: RDF storage back end of the Verdikt framework

10

3.1 Metadata Extraction using Java

A powerful and versatile approach to metadata extraction is based on the creation of separate
Java class libraries for each required format. This method is powerful because it can take
advantage of the expressiveness of the Java programming language and any libraries avail-
able; it is versatile because it can be used to support any document format. It is, however,
also limiting in the sense that it requires not only knowledge and ability in programming,
but relies also on program libraries. These have to be pre-compiled and integrated into the
Verdikt framework each time a change or extension is to be incorporated.
As another approach to metadata extraction using Java, one can create a single program
for all possible input formats, and parameterise it using appropriate background knowledge
for each format. Knowledge in the form of facts, rules, and constraints can be used to guide
the program on how metadata is to be extracted from any applicable format. This approach
mitigates the limitation that the introduction of a new format requires a person with Java
programming skills to create a new program. However, it only moves this limitation to
a different level: now an expert in the specification of complex background knowledge is
required to create the parameters and rules for the existing program.
The approach also introduces a new limitation: a specification language for these parameters
and rules powerful enough to represent any extraction rule for documents has to be either
found or designed. While candidates for such a specification language exist (e.g. RuleML
[Ger03] or Drools [DRO09]), it still has to be shown that all necessary background knowledge
can be specified effectively and efficiently.
Therefore, the Verdikt project employs the more viable approach of creating specialised Java
programs for different document formats, incorporating all required knowledge directly into
the Java implementation. Nonetheless, parametrisation can still be a useful concept in a
more limited context. A prototype for an information extraction program based on XML
Schema files for different document formats, augmented with metadata extraction rules, is
currently under development as part of the Verdikt project.

Note 3.1
To alleviate the complexity of integrating new libraries into an existing framework as noted
above, the Verdikt framework provides a convenient plug-in mechanism. Java class files
adhering to the necessary interfaces can simply be copied into a dedicated directory within
the framework and will be recognised by the Verdikt system automatically.

3.1.1 Information Extraction Procedure

Information extraction, including metadata extraction, is usually done in three stages: pre-
processing , extraction, and postprocessing . Preprocessing is performed to decrease the com-
plexity of the core data extraction process. It can be used to bring the source file(s) into
a concise and cohesive form, to reduce redundancies, to simplify the structure, or to con-
vert files from a less easily accessible format to a more convenient one. The extraction
process locates, selects, accumulates, aggregates and filters relevant data from the prepro-
cessed source document(s) into a standardised form. Postprocessing is done to optimise the
extracted data for a specialised use case, e.g. for display purposes, or for domain specific
subsequent processing (see Section 6).

Preprocessing The Verdikt framework supports three major preprocessing components:

11

• The first is an instance of the XML Tidy library [XML08], which is used to correct
errors in XML documents that are not well-formed. It can also be used to bring HTML
files into XHTML form, which is better suited for being processed.

• The second component is a support structure for XSL transformation, giving libraries
easy access to powerful transformation capabilities between XML formats.

• The third component is an external library, written in Microsoft .Net, that can read
files in Microsoft Word format and produces an XML file containing relevant features
of the Word file (see Figure 6 for an example of such features). This XML file can be
further processed by other components of the Verdikt framework.

Note 3.2
Other proprietary file formats such as Adobe PDF, Adobe Indesign or QuarkXPress that
lack open interfaces are not supported directly. However, files in proprietary formats can
often be converted into a supported file format using an external application.

Word Document

Process Definitions

Name ID Manager

The following table defines...

Draft

Implementation

Evaluation

Alice

Bob

Claire

P1

P2

P3

Headline

Table Header

Table Cell

P1

P2

P3

Draft

Implementation

Evaluation

Alice

Bob

Claire

Process DefinitionsTopic
Part

Part

Part

Name

Manager

Name

Manager

Manager

Name

Document Model

Figure 6: Feature extraction from a Microsoft Word document

Extraction In the field of information extraction/information retrieval, three major ap-
plications are the extraction of specific data from a document (e.g. names, dates, or dates
related to names) [Ham99, Ste03, Rob05], the classification of the components of a document
(e.g. examples or definitions) [Mic00], and the indexing of relevant terms in a document (e.g.
for search engines) [Ber01]. In the context of the Verdikt project, it is not only necessary
to extract any possibly relevant data and terms, but also to apply a classification process
to generate a model of the source document that is as complete as possible (see Section 2).
For details on why the document model should be complete, see Section 6.

Many information extraction tools and techniques employ either XPath, rules, or regular
expressions, all with similar expressiveness [STS00, CM04, Mil02]. Since the Verdikt system
focusses on processing XML-based file formats and on XML representations converted from
other formats (cf. the paragraph on preprocessing above), XPath seems to be a sensible
choice. XPath is a powerful tool for locating data at well-defined positions. However, speci-
fying locations on specific or even alternating recursive paths (e.g. a/[b]∗/c or a/[b/c]∗/d) is

12

beyond the expressiveness of XPath (see also Note 6.5). Furthermore, specifying locations
that depend on complex contextual information (regarding both content and structure, see
below) is both time consuming and error prone. Therefore, another approach is required.

Recursive Processing For data that is difficult or impossible to locate using XPath, a
recursive algorithm is required that traverses the document along the lines of sub-fragments,
successor fragments, and references. This process needs to keep track of the document
context as it moves between document fragments.

Definition
Document Con-

text

Definition 3.1 (Document Context)
In general, the Document Context of a document fragment is the complete path through the
document (cf. Section 2) that was followed starting from the document root to reach the
fragment.
However, in most cases it is not necessary to regard the entire path to a fragment. It is
often sufficient to gather relevant properties that were encountered along that path, such
as information about chapters or topics. This leads to a distinction between two types of
context data: context data that changes its value when the document context changes from
a fragment to one of its sub-fragments, and that reverts to its former value when the context
changes back to the original fragment is called hierarchical context data. Context data that
changes its value when the document context changes from one fragment to another, but
remains unaffected when the context changes back to a parent fragment of the current
sub-fragment is called linear context data.

Illustration
Document Con-

text

Illustration 3.3 (Document Context)
The illustration shows a small part of a document and the points at which the two different
types of context data can change their values.

<section>
…
<subsection>
…
<paragraph>
…

</paragraph>
…

</subsection>
…

</section>

Author
(linear context data)

Topic
(hierarchical context data)

3 2 1

a

b

The linear context data about the author that is marked on the left hand side changes its
value at an arbitrary point in the document, thus ignoring its hierarchical structure. The
hierarchical context data about the current topic that is marked on the right hand side only
changes in accordance with the document structure.

13

Note 3.4
It is possible that a fragment can be reached on multiple paths through the document.
Therefore, a fragment can occur in different document contexts in the same document. The
document context will be determined dynamically at run time, instead of statically be-
fore processing the document. Dynamic context determination corresponds to the intuition
that the same text fragment can play different roles depending on its occurrence within a
document or document corpus.

Note 3.5
When processing a document recursively, the context data of the current fragment depends
on the path through the document that was taken to reach this fragment. If the same
fragment can be reached on different paths, it is processed multiple times with different
context data. The Verdikt system supports this recursive process by providing a specialised
data structure to model the document context during the recursion.

3.1.2 Information Extraction Utilities and Techniques

Relevant utilities and techniques for information extraction include dictionaries, language
ontologies, language recognition and domain ontologies.

Dictionaries Keyword recognition is an important aspect of information extraction. It is
also important to extract terms in such a way that they can be mapped on or included into
a standardised vocabulary, to detect semantical relations between text fragments. For both
purposes, dictionaries can be used in combination with grammar rules. By detecting and
altering word forms, extracted terms can be brought into a grammatical normal form (e.g.
nominative singular) through stemming (root reduction). This makes it easier to compare
and recognise extracted words and phrases.
Dictionaries from the OpenOffice project [Ope09] are employed in the Verdikt system by
means of the JMySpell Java interface2, which also provides access to the grammatical
rules included with the dictionaries. The Verdikt system provides simplified access to the
dictionary-related commands and techniques of the JMySpell interface that are useful for
information extraction.

Language ontologies Language ontologies can specify semantic relations between words.
They are useful for detecting alternate keywords for keyword recognition. They can also
be used as a substitute for specialised domain ontologies when these are not available. An
ontology for the English language is included into the Verdikt system in the form of Wordnet
[Wor06].

Language recognition A prerequisite for employing any of the language dependent util-
ities named above is the correct identification of the language of any given text fragment.
In some cases, the name of the language of the text is encoded in the document metadata
(e.g. using an xml:lang attribute or a dc:Language element). In other cases, i.e. for con-
verted Word documents, the name of the language as provided by the word processor used

2http://jmyspell.javahispano.net/index_en.html, last visited Aug. 2009

14

http://jmyspell.javahispano.net/index_en.html

to create the document is included in the document metadata. The Verdikt system also
implements a language recognition heuristic based on the occurrence of common words for
several languages.

Domain ontologies Lists of relevant terms, as well as extended semantic relations be-
tween relevant terms can be found in specialised domain ontologies. A predefined list of
important domain terms can improve the recall value of the information extraction, i.e. the
percentage of terms that were recognised in the document as opposed to those that were
missed. Knowledge about semantic relations between extracted terms can be used to create
a more complete and meaningful model of the extracted data. At the moment, the Verdikt
system supports basic domain ontologies, but does not make use of the richer semantic
background these ontologies can provide.

Miscellaneous In addition to supporting the techniques and tools described above, the
Verdikt framework provides a number of utilities to assist in creating new libraries for new
document formats. Among them are several convenience methods: a graphical interface for
user input, graphical feedback to the user, handling of temporary files, conversion between
simple XML Schema types and Java types, reading and writing text and XML files, switching
between multiple available XML implementations, creating file checksum data, handling data
compression and compressed files, and providing a common way to pass external options to
the library. The latter method is useful to change the default behaviour of static libraries.
These methods are accumulated in the abstract DocumentAdapter class (cf. Figure 4). For
a list of these methods see Appendix D.

Example
Java/DocBook

Example 3.6 (Java/DocBook)
In this example, we will describe briefly how a metadata model is extracted from documents
in the XML-based DocBook format.
First, using XSL preprocessing, the DocBook document is transformed to conform to a
simplified version of the DocBook standard: multiple files are integrated into one, different
yet equivalent ways to encode the same data are unified, and comments and other superfluous
elements are removed.

<sect1>
<title>Data Structures</title>
<legalnotice>…</legalnotice>
<simplelist>…</simplelist>
<variablelist>…</variablelist>
<sect2>

<termdef>Heap</termdef>
…

</sect2>
<glossary>

<glossentry>
<glossterm>Binary Tree<glossterm>

</glossentry>
…

</glossary>
</sect1>

<section>
<title>Data Structures</title>

<itemizedlist>…</itemizedlist>
<itemizedlist>…</itemizedlist>
<section>
<termdef>Heap</termdef>
…

</section>
<glossary>

<glossentry>
<glossterm>Binary Tree<glossterm>

</glossentry>
…

</glossary>
</section>

Original Document Simplified Document

Data Structures
Heap
Binary Tree

Relevant Terms

15

Next, also using XSL technology, a list of relevant terms is extracted from the document by
probing appropriate XML elements such as definition or glossary elements.
At the beginning of the main processing phase, this list is then extended with the help
of a dictionary to cover all possible grammatical forms of the terms, so that they can be
easily recognised in the text of the document. This is a reverse form of stemming , i.e. the
reduction of a word to its base stem [FBY92]. Instead of trying to detect matches to relevant
terms by stemming every word in the document, only the relevant terms are stemmed and
expanded to cover their grammatical forms (“reverse stemming”). These grammatical forms
can then easily be found in the document. Among a collection of dictionaries those matching
the language of the document are selected. If the language is not encoded in the HTML
markup, it is detected automatically. If automatical detection fails, the user is prompted
for the information.

Data Structures
Heap
Binary Tree

Data Structures
Data Structure
Data Structure‘s
Data Structures‘

Heap
Heaps
Heap‘s
…

Binary Tree
…

Reverse Stemming

Finally, traversing the DOM tree recursively using XPath, the relevant metadata are col-
lected from the simplified document: information about the fragments is derived from the
appropriate structural elements of the DocBook standard such as chapter, section, example
or note, while information about their content is gathered from their topics and from the
list of terms.

• The structural type of all fragements found by //section is “Section”

• The function type of all fragments found by //partintro is “Introduction”

• The topic of any fragment is indicated by ./title/text()

• For all listed terms (and their word forms) T : if a fragment F contains T , then T is a
relevant term for F

• . . .

The extracted metadata information is inserted into the statement-based document model
of Section 2.1 using the vocabulary defined in Appendix C.

16

section #1

Paragraph

section #2

paragr. #2

paragr. #1

Section

Data Structures

Heap

Data Structure

Part

Part

Topic

Term

Term

Document Model

3.2 Metadata Extraction using XQuery

As a second approach to metadata extraction the Verdikt framework can apply XQuery
programs, too. While XQuery is a Turing-complete language and can make full use of XPath
expressions, it still has several limitations that need to be addressed. The first and most
obvious one is that XQuery programs can only process XML-based documents. Although
this problem can be solved easily using the same techniques as for the Java-based extraction,
it requires external components that are not part of the XQuery program. The same is true
for other pre-processing steps as well: running XSL transformations or converting Microsoft
Word files exceeds the scope of the XQuery language. Similar limitations apply to the
actual processing of the document: XQuery does not provide the necessary stack-based data
structures for a hierarchical context, it lacks support for even basic user interaction, and
it cannot determine file checksums or handle data compression or perform a host of other
basic yet central tasks.
To overcome these limitations, the Verdikt framework provides a number of extensions to the
XQuery language. Implemented as Java callback functions in the Qexo XQuery implemen-
tation [Qex07], these extensions provide access to most of the commands and components
available to the Java-based metadata extraction described in Section 3.13. For a listing of
these XQuery extensions, see Appendix E.1. Some custom auxiliary XQuery functions are
defined in the vdk namespace. They are not required for metadata extraction, but provide
convenient access to commonly used techniques. For a listing of these XQuery functions,
see Appendix E.2.
Using the auxiliary functions mentioned above, an XQuery program creates an RDF XML
document that represents the document model and that can be imported as a document
model by the Verdikt framework. The general approach is illustrated in Figure 7.

Example
XQuery/HTMLExample 3.7 (XQuery/HTML)

This example describes how an XQuery program is used to extract a metadata model from
documents in HTML format by means of pre-defined CSS classes. Fragments of an XQuery
program are shown to illustrate the method.

3In Example 3.7 and in Illustration 3.8, all Verdikt extensions to XQuery are syntactically denoted by
^...^

17

RDF Parser

Java Program

Qexo XQuery Engine

XQuery Program

Method Calls

RDF XML Code

XML Document

XML Objects
Document ModelRDF Statements

Documents

Figure 7: Java Callback in XQuery

Before the document is processed, any syntactical errors found are corrected if possible.
This is done automatically using XML Tidy through the Verdikt XQuery extension function
^load($filename)^.

<html>
…
<body>

<div class=“chapter” id=“c1”>
<h1>Hashtable</h1>
<div class=“definition” id=“d1”>

<h2>Database Index</h2>
Hash table structures…
used in <i>DB</i>…
index for tables…

</div>
…

“Tidied” HTML Document

A recursive traversal of its DOM tree determines the document structure according to HTML
headline elements and previously known CSS stylesheet class definitions such as “chapter”
or “section” (e.g. line 4 in Illustration 3.8). If no stylesheet definitions are available, the
search is restricted to HTML elements, resulting in less detailed structural information.
Further querying of stylesheet classes such as “introduction”, as well as recognising distinct
keywords such as “Example” or “Definition” in the text help identifying the functions of
recognised fragments (line 24).

When looking for content information of fragments (e.g. relevant terms or technical abbre-
viations), the HTML code itself offers only limited clues. However, HTML elements merely
specifying layout can still help to discover at least some important phrases. Emphasised
text, e.g. text in italics, is recognised as relevant terms or items (line 31 in Illustration 3.8).
Afterwards, a pre-compiled list of domain-relevant abbreviations can be used to detect ab-
breviations and to separate them from regular terms (line 26).

18

<abbreviations>
<entry>

<long>Database</long>
<short>DB</short>
<short>D.B.</short>

</entry>
…

List of abbreviations

This list of abbreviations defines a set of terms (such as “Database”) and a list of common
abbreviations for each term (e.g. “DB”). Whenever one of the abbreviated forms of a term is
encountered in the text, it can be mapped to its extended form. This allows for an abstract
view of e.g. “DB” and “D.B.” as “Database”. Thus, any consistency checking can be done on
the representative of the equivalence class formed by the term and its syntactical variations.
Moreover, because of this abstraction the consistency checking can even take the usage of
the abbreviated and the extended form of a term into account, for example to check that
each term is used in its extended form before it is used in its abbreviated form.

As an additional optimisation, a small ontology – basically a list of semantically equivalent
terms or terms equivalent except for spelling such as “standby” and “stand-by” – is employed
to combine terms that represent the same concept (line 9 in Illustration 3.8).

<equivalences>
<entry>

<word>Hash table</word>
<equiv>Hashtable</equiv>
<equiv>Hash-table</equiv>

</entry>
…

Ontology of equivalent terms

The ontology defines a set of standardised terms (such as “Hash table”), as well as a list of
alternate spellings or synonyms for each term. If one of these alternate forms is encountered
in the document, its standardised form is used for the document model instead of the form
originally used in the document. This process results in an abstract view of the original
document, because terms are grouped together by their semantical meaning, rather then by
their purely syntactical representation.

The XQuery program generates a set of RDF statements in XML representation, using the
appropriate auxiliary functions (cf. Appendix E.2). For the sake of clarity, the XQuery code
fragment shown below in Illustration 3.8 employs a simplified version of these functions:
instead of using separate functions for different types of subjects and objects (e.g. content
objects or data objects) to assemble statements from (vdk:statement subject content(),
vdk:predicate object data(), . . .), a generic version (vdk:statement) that works for all
types of subjects and objects is used.

The resulting RDF XML code can be incorporated into the document model by using an
RDF parser.

19

(doc, Part, c1)
(c1, StructuralType, “Chapter”)
(c1, Topic, “Hash table”)

(d1, FunctionType, “Definition”)
(d1, Topic, “Database Index”)

(d1, Abbreviation, “Database”)
…

Resulting RDF statements

Illustration
XQuery/HTML

Illustration 3.8 (XQuery/HTML)
This illustration shows part of the XQuery code used to process the HTML document as
discussed in Example 3.7.

1 (: $element is an XML element representing the current fragment;
$abbr is an XML structure containing a list of abbreviations;
$equi is an XML structure containing a small ontology of equivalent terms :)

2 declare function local:traversal($element, $abbr, $equi) {

3 (: detect the document structure from CSS definitions or HTML headlines :)
4 if ($element/@class="chapter" or $element/h1)
5 then (

6 (: find the fragment’s title :)
7 let $pretitle := $element/span[@class="headline"] | $element/h1,

8 (: if there is an equivalent term, use it instead of the fragment’s title :)
9 $title := if ($equi//entry[equiv=$pretitle])
10 then $equi//entry[equiv=$pretitle]/word
11 else $pretitle
12 return (

13 (: get the parent fragment from the context and declare the current
fragment a part of it :)

14 vdk:statement(^context.get("parent")^, "Part", $element/@id),

15 (: set the structural type of the current fragment to “Chapter” :)
16 vdk:statement($element/@id, "StructuralType", "Chapter"),

17 (: set the topic of the current fragment to the one determined above :)
18 vdk:statement($element/@id, "Topic", $title)),

19 (: save the current element as the new parent in the context :)
20 vdk:ignore(^context.add("parent", $element/@id)^)
21)
22) else (

23 (: detect fragment function types from CSS definitions or from the
content of HTML headlines :)

24 if ($element/@class="definition" or

20

contains($element/h2, "Definition"))
25 then (

26 (: set the function type of the current fragment to “Defintion” :)
27 vdk:statement($element/@id, "FunctionType", "Definition"),
28 ...
29) else (

30 (: detect relevant terms from HTML formatting elements :)
31 if (local-name($element)="i")
32 then (
33 let $term := $element/text()
34 return (

35 (: if the detected term is a known abbreviation. . . :)
36 if ($abbr//entry[short=$term])
37 (: . . . then add its long form as an abbreviation

to the parent fragment :)
38 then vdk:statement(^context.get("parent")^,

"Abbreviation", $abbr//entry[short=$term]/long)
39 (: . . . otherwise add the term itself to the parent fragment :)
40 else vdk:statement(^context.get("parent")^,

"Term", $term),
41 ...
42)
43) else (

44 (: process the document fragments recursively :)
45 for $child in ($element/∗)
46 return (

47 (: push the current context onto a stack before the recursion. . . :)
48 vdk:ignore(^context.backup^),
49 local:traversal($child, $abbr, $equi),
50 (: . . . and get it back from the stack after returning

from the recursion :)
51 vdk:ignore(^context.restore^)
52)
53)
54)
55)
56 }

4 Metadata Storage Requirements

Several requirements for metadata storage have been identified in the course of the Verdikt
project:

• First, a storage scheme has to be independent of the file format the metadata was
extracted from. The same metadata store must be able to handle metadata derived

21

from e.g. HTML sources, Microsoft Word documents, or image files.

• Second, the storage format must be an open, standardised format. This allows to cre-
ating extensions and optimisations, and facilitates the exchange of metadata between
storage units.

• Of course, a query language is essential for data access, in particular for extraction
purposes.

• To support metadata models of large sizes, the storage scheme has to be scalable.
Currently, the availability of a database implementation is considered the best way to
address this issue.

• Finally, the storage scheme has to be expressive enough to represent any metadata
model that can conceivably be created.

The W3C recommendation RDF [RDF04] satisfies all these requirements. Not surprisingly,
the document model defined in Definition 2.1 is compatible with the RDF data model, i.e.
a collection of statements of the form (subject predicate object).
Generally, RDF models form directed graphs. For large models, these graphs can become
huge, both in terms of node count and number of edges. Several possible optimisations for
RDF implementations using databases have been suggested [CDD+04, AMMH07, HLQR07].
However all of them appear to work well only under specific conditions [SGK+08]. While
document metadata models exhibit very specific characteristics, no specialised approach has
been suggested yet that is capable of exploiting these characteristics for performance gain.
Document metadata, even though formally a graph structure, has very close resemblance
to a tree structure. This is due to the original document structure, which is basically
tree-like: most documents are divided into sections or chapters, and often subsections or
subchapters, branching the document out like a tree. This is evident in various document
formats, including XML, HTML or Word. Since this basic structure is retained in the
metadata model, only a small number of cross-connections (statements) break up the tree
structure into a full graph, most notably cross-references from the original document. As of
today, no RDF storage and retrieval implementation is able to exploit this feature for better
performance [SF09].

5 Metadata Storage

An evaluation of RDF frameworks has shown the Sesame framework [BKH02] to be the most
promising storage solution for document metadata models available at the time of the study
[SF09]. The evaluation also revealed a problem common to all tested RDF frameworks:
they lack support for reification in their Java interfaces. The ability to make statements
about other statements can be critical for adding information regarding the quality of other
metadata. See Figure 8 for an example of a statement where reification is used to annotate
the statement with information about its quality. Therefore, a solution to circumvent this
limitation is required.
Fortunately, only Sesame’s Java interface lacks support for reifying statements: its underly-
ing database schema, its RDF parser, and its SPARQL [SPA08] query interface all support
reification. Therefore, merely an insertion procedure for reified statements had to be de-
fined. This was exploited in the Verdikt framework to create a work-around: creating and
modifying reified statements is done by generating RDF XML code for the statements in

22

s1: (c1, doc:Topic, Binary Tree)
s2: (s1, eval:Probability, 0.75) c1 0.75

s1
s2

ProbabilityBinary
Tree

Topic

Figure 8: Reified statement (s1) as RDF triples (left hand side) and as RDF graph (right
hand side)

question, which is then inserted into the Sesame database via the RDF parser. Querying rei-
fied statements is done using a combination of SPARQL queries. Figure 9 shows an overview
of the work-around. In the future, new versions of Sesame, or other RDF frameworks that
support reification directly might be used as the RDF management back end for the Verdikt
framework, hopefully rendering the current work-around obsolete.

Sesame
Framework

Document
Model

XML CodeRDF Parser

Generate
RDF XML

Code

Stream

Load RDF
XML Code

Statement
whose

Subjects and
Objects are

not
Statements

List all
non-reifying
Statements

Statements

Recursively
list State-
ments that
reify other

Statements

Combine
Statement Graph

Figure 9: Employing Reification in Combination with the Sesame Framework

Note 5.1
The Jena framework in its current version (2.6.0) offers some limited support for reification
in its Java interface. While this support makes a complex work-around as for the Sesame
framework unnecessary, it was clearly added as an afterthought. Therefore, using reification

23

with Jena still requires additional implementation effort, which will not be detailed here.

Inserting/modifying reified statements To insert reified statements into the Sesame
database, the Verdikt framework generates RDF XML code for each of these statements.
Figure 10 shows the XML code corresponding to the RDF statements in Figure 8. This
XML code is then loaded into the Sesame database via Sesame’s RDF parser.

<rdf:Description rdf:ID=“c1”>
<doc:Topic rdf:ID=“s1”>Binary Tree</doc:Topic>

</rdf:Description>

<rdf:Description rdf:about=“s1”>
<eval:Probability rdf:ID=“s2”>0.75</eval:Probability>

</rdf:Description>

Figure 10: Reified statement (s1) as RDF XML code

Querying reified statements Retrieving reified statements involves a more complex
procedure. First, a list of all “pure” statements that do not reify other statements (i.e. that
have both subjects and objects which are not statements themselves) is obtained through
a SPARQL query. Based on this initial set of statements, a set of reified statements is
generated by a recursive procedure that successively retrieves reifying statements. This
procedure starts with the pure, non-reification statements, and creates a list of statements
that reify these pure statements. Then, the procedure creates a list of statements that reify
the statements that were found in the previous iteration of the procedure. This process is
repeated, until no new statements are found.

Algorithm
Sesame

Reification

Retrieval

Algorithm 5.1 (Sesame Reification Retrieval)
The following algorithm returns a list of all statements from a SPARQL-enabled RDF store,
including reified statements. It uses a custom data model for RDF statements instead of the
Sesame model to be able to express reification. Statements are implicitly converted into the
custom data model immediately after being returned by the SPARQL query engine, which
still uses the Sesame data model.

list-statements()
1 statements ← sparql-query(list all resources r where

(r rdf:type rdf:Statement) and
(r rdf:subject s) and not (s rdf:type rdf:Statement) and
(r rdf:object o) and not (o rdf:type rdf:Statement)

)
2 return list-statements-recursively(statements)

24

list-statements-recursively(statements)
1 reification-statements ← nil
2 for each statement stmt from statements
3 do
4 reification-statements ← reification-statements +sparql-query(

list all resources r where (r rdf:type rdf:Statement) and
(r rdf:subject stmt) or (r rdf:object stmt)

)
5
6 if reification-statements 6= nil
7 then
8 reification-statements ←

list-statements-recursively(reification-statements)
9 return statements + reification-statements

Since the Sesame sparql-query method returns all resources using its own data model –
which does not support reification – employing a single SPARQL query to list all (reified)
statements is impossible: the Sesame data model immediately looses any reification relation
between statements.

Proposition
Termination of

list-statements

Proposition 5.1 (Termination of list-statements)
The procedure list-statements terminates iff the auxiliary procedure
list-statements-recursively terminates.
The procedure list-statements-recursively terminates iff the RDF store does not
contain cyclic reification of statements, i.e. iff there are no statements t0 = (s0, p0, o0), . . . ,
tn = (sn, pn, on), n ∈ N>, such that ti = si+1 (or ti = oi+1), for all 0 6 i < n and tn = s0

(or tn = o0).

An evaluation of RDF querying languages has shown that SPARQL and SeRQL [BK03]
are the most suitable languages for our purposes [SF09]. While both are supported by the
Sesame framework, the W3C recommendation SPARQL is more widely applied. Therefore,
SPARQL was selected as the query language of choice for RDF retrieval in the Verdikt
project. There are, however, still two problems with the SPARQL language. The first
problem is SPARQL’s lack of support for general recursive queries of arbitrary depth and
even for querying the transitive closure of properties. The second problem is caused by the
fact that blank nodes have no features that uniquely identify them across multiple query
results. As a consequence, it is impossible to combine multiple results.

Recursive queries Currently, SPARQL does not support the recursive traversal of prop-
erty paths (cf. [SPA09], Section 2.6). For example, there is no mechanism to express queries
like “Find all fragments that are transitively part of the main document”. Only fragments
that are direct parts of the document can be found, but it is impossible to describe a tran-
sitive part-of relation. The only way to retrieve all parts of parts of . . . is to determine the
document depth beforehand and to unfold the recursive query down to that depth.

Blank nodes The lack of recursive queries is aggravated by the second problem: it is
almost impossible to combine the results of multiple queries. Identifiers for so-called blank

25

nodes, i.e. nodes without textual content or a URI reference (“content objects” in the Verdikt
context), are assigned on a temporary basis, and they are only unique in the context of the
query result the blank nodes occur in. Identifiers for blank nodes in different query results
have no relation to one another. Therefore, the result of a first query cannot be used as the
starting point for a second query. As case in point, this makes it impossible to implement
recursive queries by issuing repeated queries, each one building on the results of the last.

The first problem can be bypassed by ignoring the query language mechanism completely
and working solely with the class model provided by the Java interface. Here, blank nodes
can be uniquely identified, which makes it possible to use the approach of repeated queries
mentioned above.
There is no generic solution to the second problem known to the authors – apart from adding
custom, externally generated identifiers to all blank nodes on a permanent basis, which is
akin to abstaining from using blank nodes entirely and replacing them with URI resources
(“vocabulary objects” in the Verdikt context). This, however, defeats the purpose of blank
nodes, which is to provide nodes that can be used locally, but which cannot be referenced
from an external context. The solution adopted for the Verdikt system is that whenever
blank nodes are used, the system disregards the RDF query engine and falls back on the
Java interface.

Note 5.2
Ignoring the query language mechanism is almost the opposite approach to the one required
for using reification, precluding any attempts to work with either the Java interface or the
query language exclusively.

6 Further Metadata Processing

After the metadata information has been extracted from a document and stored in a
database, it needs to be processed further and used to generate a verification model that can
be used for model checking (cf. Figures 1 and 2). The verification model is an abstraction
of the original document consisting of

• a set of states, each representing some fragment of the document

• a set of concepts and roles attached to each state, each representing a number of facts
about that state

• a list of connections (transitions) between states.

More details about the verification model (cf. Illustrations 6.2 and 6.4) and on the model
checking process itself can be found in [Wei08].
The exact content of the verification model – e.g. fragments of what structural types are
represented as states, or which metadata is represented as concepts or roles – depends on
external requirements, however. Therefore, the document metadata is stored in a docu-
ment model, and customised verification models are generated from the document model
as required. Since these requirements are not necessarily known beforehand, the metadata
model has to be as complete as possible in order to accommodate them. There are four
main aspects that can be customised:

26

Structural Units First, the structural units to be represented as states need to be de-
termined. This is not always straightforward because different abstraction levels may be
required depending on the specific application. For example, one application only needs
to regard the document structure on the level of chapters, while another requires a more
detailed view on the level of paragraphs or something in between. The more detailed view
would overload the model for the first application with too many details, hampering both
runtime performance and user understanding of the verification results, while the less de-
tailed view would be insufficient for the second application. Thus, the structural type of
fragments that are to be mapped to the states of the verification model needs to be adjusted
according to the current application.

Note 6.1
Concepts, as well as roles, are defined in the temporal description logic ALCCTL [Wei08].
ALCCTL is a combination of ALC [BFH00] and CTL [BHWZ02]: ALCCTL concepts and
roles inherit the set semantics of ALC, where concepts are interpreted as sets of individuals,
and roles are interpreted as relations.

Concepts Second, the metadata to be represented as concepts has to be selected, and
the concepts need to be named. A concept, resolved at some state, represents a set
of objects that satisfy some semantical stipulation defined by that concept. For exam-
ple, in Section 2 of this report, a concept named “IllustratedTopic” would yield the set
{Document, Document Model}. The concept name “IllustratedTopic”, as well as the se-
mantics of “all titles of illustrations” have to be defined for the creation of the verification
model.

Roles Next, the metadata to be represented as roles has to be selected, and the roles need
to be named as well. Roles are similar to concepts, except that they return sets of two-tuples
of objects, instead of flat sets of objects. For example, in Section 3.1 of this report, a role
named “topicOf”, defining the relation between fragments and topics, would yield the set
{(Definition 3.1, Document Context) , (Illustration 3.3, Document Context) ,
(Example 3.6, Java/DocBook)}.

Quality Finally, an optional lower bound on the quality of the metadata to be considered
can be defined. Some metadata extraction techniques are not perfectly accurate: a degree
of uncertainty is introduced into the data model. Possible measures of uncertainty include
actual correctness or probability of correctness. A minimum quality of metadata for different
measurements can be specified to exclude data of low quality.

Illustration
Model GenerationIllustration 6.2 (Model Generation)

The illustration shows how a verification model is generated from a document model:

27

section #1

section #2

section #3

paragr. #1

paragr. #2

paragr. #3

paragr. #5

paragr. #4

subsect. #1

Part

Example

Definition

Data Structure

Binary Tree

Part

Part

Part

Successor

Successor

Successor

Successor Reference

Term

Term

Let us define the parameters for model generation as follows:

• States: //∗[structural type = ‘Section’]
Select all fragments that are sections

• Concepts:

– DefinedTopic: //∗[function type = ‘Definition’]/Part∗/Term/∗
Select all term data that is a descendant (part of a part of a...) of a fragment
that is a definition

• Roles:

– exemplifiesTopic: //∗[FunctionType=‘Example’] →
(./>Part∗[StructuralType=‘Section’], ./Part∗/Term/∗)

Start with all fragments that are examples. Then select all parent fragments (re-
verse of a part of a part of a...) that are sections and relate them to all descendent
(part of a part of a...) term data.

The following verification model will be generated:

s1 s2 s3

Definition = {Data Structure}

Definition = {Binary Tree}
exemplifiesTopic = {(s2, Binary Tree)}

28

Note 6.3
Neither of the concepts of Illustration 6.2 could have been defined using conventional means
(XPath or SPARQL) due to the recursive /Part∗/ (or />Part∗/, respectively) path speci-
fication:

Part

Part

Reference

In XPath, recursion cannot be limited to certain paths. An XPath recursion (e.g.
descendent-or-self::Term) would follow all descending paths through the document that
lead to a “Term” node. There is no way to restrict the recursive descent to “Part” paths.
Thus, XPath would not only return all terms that occur in parts of the current node, but
also any terms that can be reached on other paths, e.g. by following the “Reference” path
indicated above. This, however, would violate the semantics (and obviously the intent) of
the rules specifying the concepts.
In contrast to XPath, SPARQL does not allow recursion at all (cf. Section 5).

When generating a verification model from a document model, different parameters for the
model generation process can lead to very different verification models.

Illustration
Model Genera-

tion II

Illustration 6.4 (Model Generation II)
Altering the parameter defining the states leads to a verification model different from that
of Illustration 6.2:

• States: //∗[structural type = ‘Paragraph’]
Select all fragments that are paragraphs

The following verification model will be generated:

p2

p3

p5

p4

p1

Definition = {Data Structure}

Definition = {Binary Tree} exemplifiesTopic = {(p3, Binary Tree)}

29

Note 6.5
The structure of the verification model of Illustration 6.4 differs significantly from that of
Illustration 6.2. In particular, the verification model of Illustration 6.4 shows that it is
possible to skip the example for binary trees (state p3) in the original document, while
the verification model of Illustration 6.2 suggested otherwise (state s2). Thus, different
parameters can lead to different models and even to different verification results for the
same verification criteria. A criterium specifying that for every definition an example must
follow would be satisfied for the verification model of Illustration 6.2, but would be violated
for the verification model of Illustration 6.4, even though both verification models were
generated from the same document model.

Currently, the Verdikt framework provides two approaches to generating verification models
from document models. One is based on using XQuery on a specialised XML serialisation
of the RDF graph. The other approach is based on a Java implementation of a set of
specification rules.

XML serialisation Because XQuery programs can only be applied to XML data, the RDF
graph has to be converted into an XML DOM tree. While a standard exists for representing
RDF as XML code [RDF04], this standard allows for many (often substantially) different
XML representations of the same RDF data. This makes it all but impossible to create an
XQuery program that runs on this data, because it would have to take every possible XML
representation into account. The solution is to create an RDF XML serialisation (or an
XML view, in database terminology) that is unambiguous, i.e. that is always the same for
the same RDF data. Details on this approach can be found in [SF09]. As its main drawback
it does not scale well for large RDF graphs, because the serialisation instantiates every RDF
reference, leading to a replication of data: if two RDF nodes a and b both have edges to a
third RDF node c, then the XML serialisation needs to duplicate c and create an edge from
a to c1 and another edge from b to c2. This scales poorly for graphs with a high number of
edges in proportion to nodes.

Java rules The second approach can be applied directly to the RDF graph. It is based
on a number of navigation and filter rules such as “all paths with ‘part’-statements” and
“all statements with object values of ‘Chapter’ ”, that can be used to select subgraphs,
separate some nodes and include others (cf. Illustration 6.2). They are utilised to define
states, concepts, roles, and quality constraints for the verification model as described above.
A more detailed description of this approach will be available in a forthcoming report.
The Java approach scales better than the XML serialisation, yet suffers from a different
drawback: it requires Java programming skills. However, a graphical interface to resolve
this issue is currently being developed.

7 Conclusion

In the course of this report, we have presented an overview of the three main components
of the model generation aspect of the Verdikt project: the metadata extraction from various
document formats, the metadata storage in an RDF database framework, and the generation
of a customised verification model from the available metadata.

30

Limitations of the components have been pointed out. Possibilities for improvements have
been discussed as well.
In future work, some of the limitations shall be mitigated, in particular the lack of support
for recursive queries of non-predetermined depth in metadata querying. Also, enhancements
will be devised, among others the utilisation of known structural characteristics of document
metadata for database storage and retrieval.

31

References

[AMMH07] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable Semantic
Web Data Management Using Vertical Partitioning. In VLDB’07: Proceedings
of the 33rd International Conference on Very Large Data Bases, pages 411–422.
ACM, 2007.

[Ber01] Daniel Charles Berrios. Methods for semi-automated index generation for high
precision information retrieval. PhD thesis, Stanford University, 2001. Adviser
– Lawrence M. Fagan.

[BFH00] Alexander Borgida, Enrico Franconi, and Ian Horrocks. Explaining alc sub-
sumption. In Proceedings of the 14th European Conference on Artificial Intelli-
gence (ECAI), pages 209–213, Berlin, Germany, 2000. IOS Press.

[BHWZ02] S. Bauer, I. Hodkinson, F. Wolter, and M. Zakharyaschev. On Non-Local Propo-
sitional and Local One-Variable Quantified CTL*. In Proceedings of TIME’02,
pages 2–9, Manchester, UK, 2002. IEEE Computer Science Press.

[BK03] J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query
Language. In SWAD-Europe Workshop on Semantic Web Storage and Retrieval,
2003.

[BKH02] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: A
Generic Architecture for Storing and Querying RDF and RDF Schema. In
ISWC 2002: Proceedings of the First International Semantic Web Conference,
pages 54–68. Springer, 2002.

[CDD+04] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkin-
son. Jena: implementing the semantic web recommendations. In WWW Alt.
’04: Proceedings of the 13th international World Wide Web conference on Al-
ternate track papers & posters, pages 74–83, New York, NY, USA, 2004. ACM.

[CM04] Valter Crescenzi and Giansalvatore Mecca. Automatic information extraction
from large websites. Journal of the ACM, 51(5):731–779, 2004.

[DIT07] OASIS Darwin Information Typing Architecture. Available online at
http://www.oasis-open.org/committees/dita, 2007. last visited Aug. 2009.

[Doc09] OASIS DocBook. Available online at http://www.oasis-open.org/docbook/,
2009. last visited Aug. 2009.

[DRO09] Drools Business Logic integration Platform. Available online at
http://www.jboss.org/drools/, 2009. last visited Aug. 2009.

[FBY92] W. B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures &
Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 1992. Chapter 8.

[Ger03] Gerd Wagner and Said Tabet and Harold Boley. MOF-RuleML: The Abstract
Syntax of RuleML as a MOF Model. Integrate 2003, OMG Meeting, available
online at http://www.omg.org/docs/br/03-10-02.pdf, 2003. last visited Aug.
2009.

[Ham99] Hamish Cunningham. Information Extraction, a User Guide. Research Memo
CS-97-02, University of Sheffield, Sheffield, 1999. Update of 1997 version.

32

[HLQR07] Ralf Heese, Ulf Leser, Bastian Quilitz, and Christian Rothe. Index Support for
SPARQL. In ESWC 07: Proceedings of the European Semantic Web Conference,
2007.

[JF08] Mirjana Jakšić and Burkhard Freitag. Temporal Patterns for Document Verifi-
cation. Technical Report MIP-0805, University of Passau, Germany, 2008.

[KSS04] Reiner Kuhlen, Thomas Seeger, and Dietmar Strauch, editors. Grundlagen der
praktischen Information und Dokumentation. K. G. Saur Verlag, 2004.

[Mic00] Michael E. Tipping. The Relevance Vector Machine. In Advances in Neural
Information Processing Systems 12, page 652658. MIT Press, 2000.

[Mil02] Robert C. Miller. Lightweight Structure in Text. PhD thesis, School of Computer
Science, Carnegie Mellon University, May 2002.

[Ope09] OpenOffice. Available online at http://www.openoffice.org/, 2009. last visited
Aug. 2009.

[Qex07] Qexo – The GNU Kawa implementation of XQuery. Available online at
http://www.gnu.org/software/qexo/, 2007. last visited Aug. 2009.

[RDF04] RDF/XML Syntax Specification (Revised). Available online at
http://www.w3.org/TR/rdf-syntax-grammar/, 2004. last vis. Aug. 2009.

[Rob05] Robert Baumgartner and Oliver Frölich and Georg Gottlob and Patrick Harz
and Marcus Herzog and Peter Lehmann. Web Data Extraction for Business
Intelligence: the Lixto Approach. BTW 2005, 2005.

[SF09] Christian Schönberg and Burkhard Freitag. Evaluating RDF Querying Frame-
works for Document Metadata. Technical Report MIP-0903, University of Pas-
sau, Germany, 2009.

[SGK+08] L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes, and S. Manegold. Column-
Store Support for RDF Data Management: not all swans are white. In
VLDB’08: Proceedings of the International Conference on Very Large Data
Bases, Auckland, New Zealand, September 2008. ACM.

[SPA08] SPARQL Query Language for RDF. Available online at http://www.w3.org-
/TR/rdf-sparql-query/, 2008. last visited Aug. 2009.

[SPA09] SPARQL New Features and Rationale. Available online at
http://www.w3.org/TR/2009/WD-sparql-features-20090702/, 2009. last
visited Aug. 2009.

[Ste03] Stefan Kuhlins and Ross Tredwell. Toolkits for generating wrappers a survey
of software toolkits for automated data extraction from Web sites. In LNCS,
pages 184–198. Springer, 2003.

[STS00] Eleni Stroulia, Judi Thomson, and Gina Situ. Constructing xml-speaking wrap-
pers for web applications: Towards an interoperating web. Reverse Engineering,
Working Conference on, 0:59, 2000.

[Süß05] Christian Süß. Eine Architektur für die Wiederverwendung und Adaptation von
eLearning-Inhalten. PhD thesis, University of Passau, 2005.

33

[Wei08] Franz Weitl. Document Verification with Temporal Description Logics. PhD
thesis, University of Passau, 2008.

[WJF09] Franz Weitl, Mirjana Jakšić, and Burkhard Freitag. Towards the Automated
Verification of Semi-structured Documents. Data & Knowledge Engineering,
68:292–317, 2009.

[Wor06] WordNet – a lexical database for the English language. Available online at
http://wordnet.princeton.edu/, 2006. last visited Aug. 2009.

[XML04] XML Information Set (Second Edition). Available online at
http://www.w3.org/TR/xml-infoset/, 2004. last visited Aug. 2009.

[XML08] XML/HTML Tidy. Available online at
http://www.w3.org/People/Raggett/tidy/, 2008. last visited Aug. 2009.

[XPA99] XML Path Language (XPath). Available online at
http://www.w3.org/TR/xpath/, 1999. last visited Aug. 2009.

[XPa07] XML Path Language (XPath) 2.0. Available online at
http://www.w3.org/TR/xpath20/, 2007. last visited Aug. 2009.

34

A List of relevant Metadata

This list describes the metadata that is relevant in the scope of the Verdikt project.

A.1 Structural Types of Fragments

Name Description
Book Describes a complete book as a structural element. Can

have multiple parts or chapters.
Bookpart Describes a part of a book as a structural element. Can

have multiple chapters.
Chapter Describes a chapter as a structural element.
Subchapter Describes a subchapter that is part of a chapter as a struc-

tural element.
Section Describes a section as a generic structural element that can

be used at different levels of a document.
Screenunit Describes a screenunit as a structural element, for example

in e-learning documents.
Paragraph Describes a paragraph as a generic structural element at

the lowest level of a document.
Level Describes the level of a structural element, e.g. for layered

sections. Depending on the document structure, a level
may not be well-defined.

Initial Describes a possible initial point of a document, that is the
start of a reading path. There can be more than one initial
point, or none.

Final Describes a possible final point of a document, that is the
end of a reading path. There can be more than one final
point, or none.

35

A.2 Function Types of Fragments

Name Description
Paragraph Describes the most generic type of fragment, an untyped

paragraph.
Definition Describes a fragment containing a definition.
Example Describes a fragment containing an example.
Theorem Describes a fragment containing a theorem.
Corollary Describes a fragment containing a corollary.
Lemma Describes a fragment containing a lemma.
Proposition Describes a fragment containing a proposition.
Proof Describes a fragment containing a proof.
Note Describes a fragment containing a note.
Hint Describes a fragment containing a hint.
Algorithm Describes a fragment containing an algorithm.
Sourcecode Describes a fragment containing source code.
Task Describes a fragment containing a task.
Solution Describes a fragment containing a solution.
Table Describes a fragment containing a table.
List Describes a fragment containing a list.
Numbered
List

Describes a fragment containing a numbered list.

Image Describes a fragment containing an image.
Animation Describes a fragment containing an animation, e.g. Adobe

Flash.
Audio Describes a fragment containing audio data.
Video Describes a fragment containing video data.

A.3 Content

Name Description
Topic Describes a topic in a document, e.g. a headline.
Subtopic Describes a subtopic in a document, e.g. a subheading.
Language Describes the language of a document or document frag-

ment, in a standard encoding.
Summary Describes a short summary of a document or document

fragment.
Term Describes a term in basic grammatical form (nominativ sin-

gular) that is relevant for a document or for a document
fragment.

Programming
Language

Describes the Name of a programming language in which a
document fragment is written.

36

A.4 References

Name Description
Reference Describes an explicit and direct reference, e.g. “href”.
Successor Describes a structural successor, e.g. between two chapters.
Part Describes a structural part-of relation, e.g. between a chap-

ter and a subchapter.
Quote Describes a literature reference.
Indirect Ref-
erence

Describes an implicit and not neccessarily distinct refer-
ence, e.g. using a key word.

Dis-
ambiguation

Describes a reference to different meaning of a term, e.g.
for homonyms.

Related Describes related terms, e.g. as part of taxonomies.
Unrelated Describes similar or equal terms that are nonetheless unre-

lated. See “Disambiguation”.
Same Describes different terms that point to the same abstract

object, e.g. synonyms.
Prerequisite A term or structural unit should be placed before another

on a reading path to facilitate better understanding for the
user.

A.5 Didactical Information

Name Description
Target
Group

Describes a target group for a document or a document
fragment.

Duration Describes the probable time required to read or work
through a document or document fragment.

Importance Describes the relecancy of a document or document frag-
ment in relation to other documents or document frag-
ments.

Intensity/
Complexity

Describes the intensity or difficulty of a document or doc-
ument fragment.

Medium Describes the target medium of a document or document
fragment, e.g. web page, screen document or printed ver-
sion.

Objective Describes the learning objective of a document or docu-
ment fragment. The vocabulary for the objectives should
be identical to that of the terms (see above).

37

A.6 Source

Name Description
Filename/URI Describes a local or remove storage location for a source

file.
Format Describes the document format of the source file.
Import
Method

Describes the method used to import the source file.

Linenumber Describes the line number of the source file from which
certain data was read.

Internal ID Describes an internal ID of the source file from which cer-
tain data was read.

A.7 Versioning

Name Description
Version of Describes the relation to other models of the same docu-

ment or document fragment in other versions.
Version
Number

Describes the version number of a document or document
fragment.

Last Change Describes the time and date of the last change to a source
file.

Checksum Describes the checksum of a source file.

A.8 Errors

Name Description
Access Error Describes an access error to a source file, e.g. missing access

rights.
Format
Error

Describes a format error in a source file, e.g. invalid XML
code.

Other Error Describes other errors, e.g. a memory overflow.

A.9 Evaluation

Name Description
Quality Describes the quality of a metadatum in quantitative terms,

e.g. “75% true”.
Probability Describes the probability of a metadatum, e.g. “with 75%

probability true”.
Correctness Describes the correctness of a metadatum using fuzzy log-

ics, e.g. “The truth is 75% similar to this datum”.
Relevancy Describes the relevancy of a reference, e.g. for indirect ref-

erences.
Source Describes the way a metadatum was derived, e.g. “fact”,

“guess”, “conclusion”, “inference”.
Truth Describes the final truth value of a metadatum, after con-

sideration of all factors.

38

A.10 Dublin Core Metadata (extract)

Name Description
Creator Describes the creator of a document or document fragment.
Date Describes the creation date and time of a document or doc-

ument fragment.
Description Describes a summary of the content of a document or doc-

ument fragment.
Format Describes the document format of a a document or docu-

ment fragment, in a standard encoding.
Language Describes the language of a document or document frag-

ment, in a standard encoding.
Relation Describes the relation of a document or document fragment

to other documents or document fragments.
Subject Describes the topic of a document or document fragment.
Title Describes the title of a document or document fragment.

B List of available Metadata

This list describes the metadata that is available in various document formats.

B.1 LMML

Metadata Availability
Structural Types Complete
Function Types Complete
Content Complete, language only implicitly known
References No content relations (same, related, etc.)
Didactical Information No duration
Source No line number (depending on the XML parser)
Versioning Only partially supported by the format, has to be

managed externally
Errors Complete
Evaluation No inference or uncertain data, only relevancy
Dublin Core Metadata No relations, language only implicitly known

B.2 < ML3 >

Metadata Availability
Structural Types Complete
Function Types Complete
Content No language
References No content relations (same, etc.)
Didactical Information No importance
Source No line number (depending on the XML parser)
Versioning Not supported, has to be managed externally
Errors Complete
Evaluation No inference or uncertain data
Dublin Core Metadata No relations or language

39

B.3 SCORM

Metadata Availability
Structural Types Undefined
Function Types Undefined
Content Complete, but only on the top document level
References Only semantical references
Didactical Information No importance and objectives, medium only im-

plicitly known
Source No line number (depending on the XML parser)
Versioning Partially supported through the lifeCycle element
Errors Complete
Evaluation No inference or uncertain data
Dublin Core Metadata Complete

B.4 DocBook

Metadata Availability
Structural Types Complete
Function Types Only sparsely supported, very generic
Content Terms and summary not supported directly, lan-

guage not supported
References No content relations and no indirect references
Didactical Information Undefined
Source No line number (depending on the XML parser)
Versioning Not supported, has to be managed externally
Errors Complete
Evaluation No inference or uncertain data
Dublin Core Metadata No relations or language

B.5 DITA

Metadata Availability
Structural Types Only with topic maps
Function Types Only with othermeta elements or other DITA ex-

tensions
Content Complete, terms only with DITA extensions
References No content relations and no indirect references
Didactical Information Only target group and importance
Source No line number (depending on the XML parser)
Versioning Not supported, has to be managed externally
Errors Complete
Evaluation No inference or uncertain data
Dublin Core Metadata No relations

40

B.6 HTML

Metadata Availability
Structural Types Limited
Function Types Undefined
Content Only language, or with uncertainty
References Only direct references, semantical references par-

tially supported through link elements
Didactical Information Undefined
Source No line number (depending on the XML parser)
Versioning Not supported, has to be managed externally
Errors Complete
Evaluation Inferences have to be made externally
Dublin Core Metadata Completely available in therory, but rarely used

B.7 HTML with CSS and Information Extraction

Metadata Availability
Structural Types Complete
Function Types Depending on CSS definitions and IE
Content Complete
References Only direct references
Didactical Information Undefined
Source No line number (depending on the XML parser)
Versioning Not supported, has to be managed externally
Errors Complete
Evaluation Inference can be done by the IE component
Dublin Core Metadata Completely available in therory, but rarely used

B.8 LATEX

Metadata Availability
Structural Types Complete
Function Types Available through definition and usage of high-

level commands
Content Only topics
References No content relations and no indirect references
Didactical Information Undefined
Source Complete
Versioning Not supported, has to be managed externally
Errors Complete
Evaluation Inferences have to be made externally
Dublin Core Metadata Partially available through definition and usage

of high-level commands

C List of Metadata Vocabulary

This list describes the predefined vocabulary used to describe document models, grouped
by namespace.

41

C.1 Vocabulary in the verdikt/Document/ namespace

document:structuralType The structural type of a fragment, e.g. “Chapter” (see Sec-
tion 2).

Example
document:structuralTypeExample C.1 (document:structuralType)〈

(chapter3) ,
structuralType−−−−−−−−−→, [“Chapter”]

〉
〈

(section3.1) ,
structuralType−−−−−−−−−→, [“Section”]

〉

document:functionType The function type of a fragment, e.g. “Example” (see Sec-
tion 2).

Example
document:functionTypeExample C.2 (document:functionType)〈

(section1.1) ,
functionType−−−−−−−−→, [“Introduction”]

〉
〈

(paragraph4.3.2) ,
functionType−−−−−−−−→, [“Definition”]

〉

document:topic The topic of a fragment, usually the title.

document:term A precise term in normal form using a standardised vocabulary, e.g.
“Binary Tree”.

document:initial Indicates whether or not a fragment is an initial node, e.g. is the first
step on a path through the document. Linear documents only have a single initial fragment,
but non-linear documents with a complex structure and multiple starting points may have
more than one.

Example
document:initialExample C.3 (document:initial)〈

(section1.1) ,
initial−−−→, [“true”]

〉
〈

(paragraph4.3.2) ,
initial−−−→, [“false”]

〉

42

document:language The natural language of a fragment in standardised form, e.g. “en us”.

Example
document:language

Example C.4 (document:language)〈
(section3.1) ,

language−−−−−→, [“en uk”]
〉

C.2 Vocabulary in the verdikt/Reference/ namespace

reference:part Indicates that a fragment is part of another fragment, regarding the doc-
ument structure (see Section 2). Fragments that are part of other fragments can inherit
properties such as topics or didactic information.

Example
reference:part

Example C.5 (reference:part)〈
(chapter2) ,

part−−→, (section2.1)
〉

If (chapter2) deals with a certain topic, then it can be inferred that (section2.1) also deals
with that topic, or with a more specific subset of it.

reference:successor Indicates that a fragment follows directly after another (see Sec-
tion 2).

Example
reference:successor

Example C.6 (reference:successor)〈
(chapter2) ,

successor−−−−−−→, (chapter3)
〉

Note C.7
One fragment can only have one successor, according to the document order.

reference:reference A general purpose reference, used for cross references and for refer-
ences with unclear semantics.

reference:citation A citation. Used for literature references.

reference:external Reference to an external entity, usually a web page.

C.3 Vocabulary in the verdikt/Source/ namespace

source:filename The source filename (relative or absolute) of a fragment. This informa-
tion is used to keep track of the connection between the original document and its metadata
model.

43

source:URI The source URI of a fragment (for web-based documents). This information
is used to keep track of the connection between the original document and its metadata
model.

source:lastChange The time stamp of the last change of the source file. Used to detect
new versions of documents in the corpus that already have a model representation.

source:checksum The checksum of the source file (at the time of metadata extraction).
Used to detect new versions of documents in the corpus that already have a model repre-
sentation.

source:format The document format of the source file, e.g. “Microsoft Word” or “HTML”.

C.4 Vocabulary in the verdikt/Didactic/ namespace

didactic:duration Time that the associated content should take to work through for a
reader.

didactic:audience The targeted audience for the content of a fragment, e.g. “Students”.

didactic:intensity The difficulty level of the content of a fragment, e.g. “Advanced”.

didactic:medium The intended target medium for the content of a fragment, e.g. “Screen”
or “Paper”.

C.5 Vocabulary in the verdikt/Error/ namespace

error:parse Number of parse errors encountered in the source document. This number
can indicate possible data loss due to corrupted source files.

error:message An error message recorded for the source document. This message can
indicate possible data loss due to corrupted source files.

C.6 Vocabulary in the verdikt/Evaluation/ namespace

evaluation:quality The quality of a given statement (quantitative measurement). A
higher number indicates a higher quality. This is similar to marks ranging from A to F, or
from 1 to 5.

Example
evaluation:qualityExample C.8 (evaluation:quality)〈

〈S〉 , quality−−−−→, [“0.75”]
〉

evaluation:probability The probability of a given statement (probabilistic measure-
ment). The primary source for probabilistic data is information obtained using techniques
of machine learning.

44

evaluation:correctness The correctness of a given statement (fuzzy measurement). This
type of measurement is currently only used for experimentation purposes.

evaluation:source Information about how the data was derived, e.g. “Fact”, “Guess”,
“Reasoning”, “Inference”...

Example
evaluation:source

Example C.9 (evaluation:source)〈
〈S〉 , source−−−−→, [“inference”]

〉

evaluation:truth The truth value of a given statement, either set by the user from ex-
ternal facts or background knowledge, or inferred from the other measurements. This value
is an abstraction of the other quality measurements. A truth value of 0.0 indicates a false
statement, a truth value below 0.5 indicates a statement that should not be trusted, a
truth value above 0.5 indicates a statement that might be trusted, and a truth value of 1.0
indicates a statement that is true.

C.7 Vocabulary in other namespaces

The complete Dublin Core vocabulary can also be used.

D List of DocumentAdapter Methods

This list describes the auxiliary methods provided by the abstract class DocumentAdapter.

String getXSDType(String javatype) Converts a Java type into an XSD type.

void openWordnet() Initialises the Wordnet database for use.

void closeWordnet() Closes the Wordnet database after use.

List<String> getRootWords(String word, String language) Returns all roots (stems)
of a word, using Wordnet.

edu.mit.jwi.item.POS getPartOfSpeech(String word, String language) Trys to de-
termine the PartOfSpeech of a word. Returns NULL if unsuccessful. Returns only one POS,
even if multiple options exist, in the order Noun, Verb, Adjective, Adverb. Uses Wordnet.

List<String> getRelatedWords(String word, [boolean samePOS], String language)
Returns a list of semantically related words, using Wordnet.

List<String> formatWordnetWords(List<String> words) Formats a list of words that
were returned by Wordnet. I.e. replaces “ ” with “ ”.

List<String> getLanguageList() Returns a list of all language names known to the
system.

45

List<String> getLanguageCodes(String language) Returns the codes associated with
a language, e.g. “en us”, “en uk” for “English”.

String getLanguageFromCode(String code) Returns the language associated with a code,
e.g. “German” for “de de”. Returns the empty string in case of failure.

String getDictionary(String language) Finds a dictionary for a language. Returns
the empty string in case none is found.

String getDocumentLanguage(Node node, [ResourceObject document], [VerdiktMetadataModel
model], [String defvalue]) Returns the language of the current document. If auto-
matic determination fails, the user is asked.

List<String> extendTerm(String term, String language) Extends a term by dif-
ferent grammatical word forms. The list returned contains a copy of the original term at
position 0.

Frame getParent() Returns the parent frame used for swing dialog display.

void setParent(Frame parent) Sets the parent frame used for swing dialog display.

Document loadXML(String filename/InputStream input/InputSource input) throws
LoadException Loads an XML file into an XML DOM tree.

Document loadWord(String filename) throws LoadException Loads a Microsoft Word
file into an XML DOM tree. Converts the Word file to XML and loads it.

String loadString(String filename) throws LoadException Loads a text file into a
string.

void saveString(String filename, String value) throws SaveException Saves a string
to a text file.

void saveXML(String filename, Node node) throws SaveException Saves an XML doc-
ument to a file.

NodeList xpath(String exp, Node node) throws Exception Evaluates an XPath ex-
pression and returns the result as a node set.

String xpathValue(String exp, Node node) throws Exception Evaluates an XPath
expression and returns the result value as a string.

String getTempFilename([String extension]) Generates a filename for a temporary
file. Note that this file will be automatically deleted when the virtual machine exits.

void setXMLImplementation(String value) Sets the XML DOM implementation that
is used.

46

void setSAXImplementation(String value) Sets the SAX implementation that is used.

Node runXSL(Node tree, String xsl, [String paramname], [Object paramvalue]) throws
LoadException Run an XSLT stylesheet on an XML tree.

String getPathFromFilename(String filename) Extracts the path name from a com-
plete filename and converts all “\” to “/”. The resulting path includes the final / (e.g.
/tmp/example/test.xml results in /tmp/example/).

String getFileFromFilename(String filename) Extracts the file name portion from a
complete filename (e.g. /tmp/example/test.xml results in text.xml).

String getLastPathFromFilename(String filename) Extracts the last path part name
from a complete filename (e.g. /tmp/example/test.xml results in example).

String getNextToLastPathFromFilename(String filename) Extracts the next to last
path part name from a complete filename (e.g. /tmp/example/test.xml results in tmp).

String getChecksum(String filename/Node node) throws LoadException Returns the
checksum hash of a file/XML node. Note that it is not guaranteed which hash implementa-
tion is used.

String getTextContent(Node node) Extracts the entire text content from a node. Re-
places node.getWholeText() for implementations that do not support this method.

String xmlEscape(String s) Escapes XML special characters in a string.

String xmlEscapeText(String s) Escapes XML tag characters in a string (does not
escape quotation marks).

String nodeToString(Node node, [int indent]) Returns a string representation of an
XML fragment. This String can be used to write to an XML file.

String nodeInnerToString(Element node) Returns a string representation of all chil-
dren of an XML fragment.

String getStringFromUser(String title, String message, [String[] list], [String
defaultvalue]) Asks the user for a simple string value from a list.

void showProgress(String message, [String note], [int min], [int max]) Shows
a progress dialog with progress between min and max and with an initial note.

void updateProgress(int progress/String note) Updates the progress to a specific
value/note. A value change has no effect for indeterminate progress.

void finishProgress() Closes the progress dialog.

47

VerdiktObject getDocumentObject(String filename, ResourceObject corpus, MetadataModel
model, [String defvalue]) Returns the name of the current document (the document
that the file indicated by filename is a part of).

VerdiktObject getCorpusObject(String filename, MetadataModel model, [String defvalue])
Returns the name of the current corpus (the corpus that the file indicated by filename is a
part of).

boolean canLoad() Indicates whether or not the document adapter supports the load
operation.

boolean canSave() Indicates whether or not the document adapter supports the save
operation.

VerdiktMetadataModel load([String filename], [VerdiktMetadataModel model]) throws
LoadException The import method. Call this method to get the metadata content from
a file or other data storage facility. The method updates the metadata model passed as a
parameter.

void save([String filename], VerdiktMetadataModel model) throws SaveException
The export method. Call this method to save the metadata content to a file or other data
storage facility.

String getDefaultFilename() Provides a default filename or default access information
for user dialogs.

List<String> getDefaultFileExtensions() Returns the default file extensions for doc-
uments made available by the adapter.

boolean isFileAdapter() Indicates whether or not the document adapter accesses files
or something else (e.g. a database).

String getName() Returns the name of the adapter.

String getDescription() Returns a description of the adapter.

void setOption(String name, String value) Sets an option with a specified name and
value. Usage of these options depends on the particular adapter.

String getOption(String name) Returns the value of an option with a specified name.
Usage of these options depends on the particular adapter.

List<String> listOptions() Returns all names of options that are currently set.

HashMap<String,String> getOptions() Returns the complete set of options.

48

void setOptions(HashMap<String,String> opts) Replaces the complete set of options.

E List of XQuery Extensions and Functions

E.1 List of XQuery Extensions

This list describes the XQuery extensions of the Verdikt framework. For each command, a
short description and its return value is given, as well as its return type and when the return
value is computed. Possible computing times are load-time, i.e. when the XQuery program
is read by the processor, but before it is executed, and run-time, i.e. during the execution
of the XQuery program.

^print(message)^ Prints the message on the screen and returns it. (String, run-time)

^requestStop()^ Returns true, if the run-time environment requests a stop of operations,
e.g. if the maximum number of files have been processed, false otherwise. (boolean, run-
time)

^corpus^ Returns the name of the current Corpus. (String, load-time)

^document^ Returns the name of the current Document. (String, load-time)

^generate-id()^ Generates a unique ID. (String, run-time)

^verdikt^ Generates the Verdikt XQuery functions declarations, see Appendix E.2. (String,
load-time)

^visited(filename)^ Returns true if the file has been processed before, false otherwise.
(String, run-time)

^filename^ Returns the default filename, either from the parameters or from querying
the user. (String, load-time)

^filepath(basepath, filename)^ Calculates the current absolute path out of a base
path and the filename. (String, run-time)

^load(file)^ Loads an XML file, corrects XML errors (e.g. HTML errors), saves the
corrected XML code to a temporary file and returns its filename. (String, run-time)

^loadWord^ Loads a Microsoft Word file, converts it to XML, saves the XML code to a
temporary file and returns its filename. (String, run-time)

^save(xmlvar, filename)^ Saves XML code to a file. Returns true on success, false on
failure. (boolean, run-time)

^errors()^ Returns the number of errors encountered during loading. (int, run-time)

49

^checksum(file)^ Calculates the checksum of a file. (String, run-time)

^type(var)^ Returns the Java type of a variable. (String, run-time)

^context.set(name, value, [hierarchical])^ Adds a name/value pair to the current
context and returns the value. The optional hierarchical parameter indicates if the element
should be ignored by the backup/restore methods (hierarchical=0), or if it should be included
(default, hierarchical=1). (type of value, run-time)

^context.add(name, value, [hierarchical])^ Adds a list with the given name to the
current context (if it does not already exist), appends the value to it and returns the
value. The optional hierarchical parameter indicates if the element should be ignored by
the backup/restore methods (hierarchical=0), or if it should be included (default, hierarchi-
cal=1). (type of value, run-time)

^context.get(name, [index])^ Retrieves a value from the context, using the specified
name. If the value is a list, either the last element is returned, or that indicated by index.
If the value is not a list, the optional index parameter is ignored. If the name does not exist
or the list is empty, a null value is returned. (type of value, run-time)

^context.remove(name, [index|value])^ Removes the last entry or the entry indicated
by index or the entry with the indicated value from a list indicated by name and returns it. If
the name does not exist or the list is empty, a null value is returned. Note: Stack behaviour
can be achieved by removing elements with no index parameter, while queue behaviour can
be achieved by removing elements with an index of 0. (type of value, run-time)

^context.empty(name)^ Checks if the list indicated by name is empty. If a list of this
name does not exist, true is returned as well. (boolean, run-time)

^context.clear(name)^ Removes all elements from the list indicated by name. Returns
true. (boolean, run-time)

^context.size(name)^ Returns the size of the list indicated by name. (int, run-time)

^context.contains(name, value)^ Checks if the list indicated by name contains the
indicated value. (boolean, run-time)

^context.removeDuplicates(name)^ Removes any duplicate entries from the list indi-
cated by name. Returns true. (boolean, run-time)

^context.backup()^ Saves the current context information to a stack and returns null.
This method is usually called before a recursion, so that any changes made to the context
during the recursion can be restored afterwards. (null, run-time)

^context.restore()^ Restores the context to a former state from a stack and returns
null. This method is usually called after returning from a recursion, so that any changes
made to the context during the recursion can be restored afterwards. (null, run-time)

50

^rdf(file)^ Loads the contents of an RDF XML file and generates the appropriate defi-
nitions. (String, load-time)

^askUser(title, message)^ Displays a message box with a text input field to the user
and returns the user’s input. (String, run-time)

^true^ Returns true. (boolean, run-time)

^false^ Returns false. (boolean, run-time)

^^ Inserts the character ‘ˆ’ into the text, used for escaping single instances of ˆ, since those
would result in a load error. (String, load-time)

E.2 List of XQuery Functions

This list describes the XQuery functions defined in the Verdikt namespace.

vdk:model($content) Generates the RDF declaration for a Verdikt Metadata Model, in-
cluding the content.

vdk:statement subject content($id, $predicate) Generates the RDF declaration for
a statement, with a content object as the subject. The predicate has to be generated using
one of the vdk:predicate object ...() functions.

Example
StatementExample E.1 (Statement)

The XQuery code
vdk:statement subject content($document,

vdk:predicate object data(‘doc:’, ‘StructuralType’, ‘Document’))

produces the RDF statement
〈

(Document α) ,
StructuralType−−−−−−−−−→, [“Document”]

〉
.

vdk:statement subject vocable($ns, $name, $predicate) Generates the RDF decla-
ration for a statement, with a vocabulary object as the subject. The predicate has to be
generated using one of the vdk:predicate object ...() functions.

vdk:statement subject statement($id, $predicate) Generates the RDF declaration
for a statement, with a statement object as the subject. The predicate has to be generated
using one of the vdk:predicate object ...() functions.

vdk:predicate object content($ns, $name, [$statementid], $objectid) Generates
the RDF declaration for the predicate and the object of a statement, with a content object
as the object.

vdk:predicate object data($ns, $name, [$statementid], $data, [$type]) Gener-
ates the RDF declaration for the predicate and the object of a statement, with a data object
as the object.

51

vdk:predicate object vocable($ns, $name, [$statementid], $vns, $vname) Gener-
ates the RDF declaration for the predicate and the object of a statement, with a vocabulary
object as the object.

vdk:predicate object statement($ns, $name, [$statementid], $objectid) Gener-
ates the RDF declaration for the predicate and the object of a statement, with a statement
object as the object.

vdk:ignore($data) Simply ignores the data and returns (), used for hiding unwanted
return values.

52

	Introduction
	Document Properties
	Verdikt Document Model

	Metadata Extraction
	Metadata Extraction using Java
	Information Extraction Procedure
	Information Extraction Utilities and Techniques

	Metadata Extraction using XQuery

	Metadata Storage Requirements
	Metadata Storage
	Further Metadata Processing
	Conclusion
	List of relevant Metadata
	Structural Types of Fragments
	Function Types of Fragments
	Content
	References
	Didactical Information
	Source
	Versioning
	Errors
	Evaluation
	Dublin Core Metadata (extract)

	List of available Metadata
	LMML
	<ML3>
	SCORM
	DocBook
	DITA
	HTML
	HTML with CSS and Information Extraction
	LaTeX

	List of Metadata Vocabulary
	Vocabulary in the verdikt/Document/ namespace
	Vocabulary in the verdikt/Reference/ namespace
	Vocabulary in the verdikt/Source/ namespace
	Vocabulary in the verdikt/Didactic/ namespace
	Vocabulary in the verdikt/Error/ namespace
	Vocabulary in the verdikt/Evaluation/ namespace
	Vocabulary in other namespaces

	List of DocumentAdapter Methods
	List of XQuery Extensions and Functions
	List of XQuery Extensions
	List of XQuery Functions

